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Abstract

Based on simple observations of the organization and
functioning of data base systems, we give formal definitions for
data base mappings. Then, we define a natural structure on the
set of data base mappings and we study the notion of independence.
In part II of this work (appearing as a separate INRIA research

_report n° 63) we apply our theory of data base mappings to two im-

portant areas of data base systems : data base decomposition and
view updating.

Résumé

Nous dennens une définition formelle des opérateurs rela-
tionnels, basée sur 1'observation de 1'organisation et du fonction-
nement des bases de données. Puis nous définissons une structure
naturelle de 1'ensemble des opérateurs relationnels et nous &tudions
1a notion d'indépendence.

Dans la 2éme partie de ce travail (qui constitue un 2éme rapport
INRIA n® 63) nous appliquons les résultats de notre théorie i deux
domaines importants des Bases de données : la décomposition et les
mises & jour dans les vues.
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INTRODUCTION

A data base is an amount of information about facts of the
real world. This information is coded and stored on memory devi-
ces as a set of data. We can view the data base as an object,
or a variable, with a name, say BASE, and a state, or value at
time t, say BASEt. The value BASE_ is the set of data in the
data base at time t.

t

The facts of the real world represented in a data base,
usually follow certain rules. These can be

- physical rules, for example, "every human being is either
male or female"

- human rules, for example, "salaries never decrease"

The translation of these rules in the data base context, gives
rise to integrity constraints, that is, rules that the data must

satisfy in order to represent accurately the real world. Therefore,
the integrity constraints define a set of possible values of the
data base, that is, a state space for the variable BASE.

Let us take a closer look at some of the usual ways in which a
data base is used :

Querying : A query is a mapping which associates to each value of
the state space the answer (for that value)

Updating : An update is a mapping which associates to each value
of the state space a new value of the state space (the modified
data base value).

View definition : The view is a new data base whose state space is

defined by a mapping on the state space of the original data base.
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Distribution : Data base distribution sets up a mapping which asso-

ciates to each value of the state space the set of values of the
local data bases.

We shall call a data base mapping any mapping from a data base
state space into another. We have just seen that such mappings appear

in a number of different situations. We feel therefore justified in
studying the set of data base mappings from a general point of view.
We would Tike to point out that the notion of a data base mapping

is not related to any specific data model. However, in order to

avoid excessive formalisms, we have chosen a specific model, namely,
the relational model, as the context of our discussion. An additional
reason for this choice is the number of available theoretical results.
We would 1ike to use these results in order to illustrate our theory.

The paper is organized as follows. In Section 2, we recall briefly
the basic definitions and notation from the relational model. In Sec-
tion 3, we define formally a data base mapping and a lattice struc-
ture on the set of these mappings as follows. A data base mapping is
seen as an "information carrier". Given two mappings carrying compa-
rable information, we say that the one that carries more information

dominates the other. Dominance being a partial order relation, we

define a maximal and a minimal element in the set of data base mappings.
Finally, we study the suppremum and the infimum of finite sets of
mappings. In Section 4, we study the notion of independence of data
base mappings. Independence is defined in a way similar to the one

used for random variables.

We believe that a theory of data base mappings in itself is of
Tittle interest (in fact the mathematical tools used are relatively
simple). It becomes important if it can solve concrete data base
problems. In a companion paper , we apply our theory to two such
problems, namely, data base decomposition and view updating. The
solution to these problems is a (a posteriori) justification for a
theory of data base mappings.
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THE RELATIONAL MODEL

Let U = {Al,Az,...,An} be a set of names called attributes.
With each attribute Ai we associate a set of values Vi (these sets
of values need not be distinct). Any mapping on U which assigns to
each attribute A; a value in V; is called a tuple over U. A set of
tuples over U is called a relation over U. It is not hard to see
how the tuples of a relation can be represented as Tines in a table
where each column is associated one-to-one with an attribute. The
notation

R(AI:V1;A2:V2;...;An:Vn)

is referred to as a relation schema. It is used to represent a vari-

able R whose values are (finite) relations over A. We shall call R
a relational variable. An example of a relation schema is the follow-

ing
PAY(EMPLOYEE : NAME ; SALARY : INTEGER)

PAY is the relational variable, EMPLOYEE and SALARY are the attributes
and NAME and INTEGER are the associated sets of values. For example,
NAME could be a set of character strings and INTEGER a set of integers.
Whenever the attributes imply clearly the corresponding sets of values,
we can simplify further the notation by dropping the sets of values.
Thus, the previous relation schema can be written as follows

PAY (EMPLOYEE , SALARY)

We shall use the symbol Rt to denote the value of the relational vari-
able R at time t. Also, we shall use the symbol x.A to denote the res-
triction of a tuple x over U to a subset A of U.

A data base variable D is a set of relational variables. The value
of D at time t, denoted Dt’ is the set of values of its relational vari-
ables at time t. A data base schema consists of
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1 - a data base variable D
2 - a predicate C on the values of D expressing the integrity

contraints

It will be denoted by <D|C>. The data base state space, asso-
ciated to<D|C>, and denoted S<D|C>, is defined as follows

S<D|C>= {Dt[C(Dt) = true}

The symbol A will stand for the empty predicate, i.e., A(Dt)
is always true. Therefore, S<D|A>is simply the set of all possible
values of D. It follows that

S<D|C> < S<D|xr> ¥ C

Let us now define the relational operations that we shall be
using in our examples.

Let R(U) be a relation schema. The projection of a value Rt over
a subset A of U, denoted Rt[A], is defined as follows

R(IAT = {X.Alx ¢ R}

Let R1(Ul), R2(U2) be two schemas such that Ul o U2 = @.

Let Al € Ul, A2 ¢ U2 be two attributes and V1, V2 their associated
sets of values. Let 6 be a binary relation on V1 and V2, i.e.,
6 < V1 x V2 (usually, 6 is one of the following : =,#,2,<,>,<).

The 8-join of th and R2t over Al and A2, denoted th[AleA2]R2t,
is a relation over Ul v U2, defined by

th[AleAZJRZt = {(x1,x2)|x1 € th, X2 € RZt, x1.Al 6 x2.A2}

An equijoin is a 6-join where 6 is the equality.

The natural join is a 6-join when Ul n U2 # @. It is denoted by
th * R2t and it is defined as follows



th * R2t = {x|x.Ul ¢ th, x.U2 € R2t}

where x denotes tuples over Ul u U2.

Given a relation schema R(U), an elementary condition is an

expression of the form (Aiea), where A; e U, 8¢ vy x Vi and a ¢ Vi'
For example, given the relation schema

R(STUD,COURSE ,GRADE , PROF )

the expressions (GRADE > 70) and (PROF # John) are elementary con-
ditions. A selection condition C on R(U) is a Boolean expression of
elementary conditions (i.e., a predicate on tuples of Rt)' The selec-
tion of R, with respect to C, denoted RtIC, is defined by

(R.IC) = {x]|x e Ry, C(x) = true}

Finally, we define the two kind of integrity constraints that we
shall use in this paper :

Let R(U) be a relation schema. A functional dependency is syntac-

tically denoted X > Y, where X and Y are (not necessarily disjoint)
subsets of U. The semantics is as follows. We say that Rt satisfies
X Y if

¥a,beR a.X = b.X=>a.Y=>b.Y

t

A multivalued dependency is denoted syntactically by X - Y.

The semantics is as follows. We say that Rt satisfies X ~— Y, iff
(Rt|X=x)[Y] = (Rt|X=x and Z=z)[Y], ¥ x, ¥ z such that xz e R.[XZ].

Given a relation schema U we shall use the letters X, Y, Z,... to
denote subsets of U. We shall denote unions of subsets of U by conca-
tenation of their symbols, for example, XYZ stands for XuYu Z.
However, we shall use this notation only when the subsets are disjoint.



DATA BASE MAPPINGS : DEFINITION AND STRUCTURE

A data base mapping transforms a given data base into a new
one. Therefore, in order to define such a mapping, we need

- a data base schema <D|C>

- a data base variable D'

- a mapping f that associates to each value in S<D|C>,
a value in S<D'|x>

Definition 1 - Given a data base schema <D|C>and a data base vari-

able D', any mapping
f:S<D|C> >SS <D'[r>

is called a data base mapping. 0

The image f(S<D|C>) being a subset of S<D'|x>, it defines
- a state space on D'. This state space can also be defined by a pre-
dicate C' such that :

f(S<D|C>) = S<D'|C'>

Whenever there is no confusion possible, we shall use the symbo1l
S to denote the set S<D|C>. Also, we shall use the symbol MAP to
denote the set of all mappings on S. We shall not talk here about the
definition of the set MAP nor about the computability of its mappings.
Questions of this nature are treated elsewhere?.

Let us now turn into the question of structuring the set MAP,
Of course, we would 1ike to define a structure with an intuitive mean-
ing to it. So, let us see first what a data base mapping can do for
us. In the introduction, we discussed several situations (querying, view
definition, etc..) where a data base mapping is used to extract part
‘ of the information in the data base in the desired format. Therefore,



we can consider a data base mapping as a "communication channel™
between the data base and the user. The user turns his channel on
whenever he needs information from the data base. The quantity
and format of the information that he gets depend on the "channel
specifications". Therefore, we should be able to associate with
each data base mapping a measure of the information it can carry.
Rather than defining a quantitative measure for each mapping we
shall try to

(i) compare data base mappings based on their "capacity",
i.e., the amount of information they can carry

(i) compose them somehow so that their capacity is added up.

Definition 2 - Let f,g ¢ MAP. We say that f dominates g, denoted
f>g, iff

f(Dtl) = f(th) => g(Dtl) = g(DtZ) ¥ Dtl’ th e S a

Intuitively, this means that if two data base values cannot
be distinguished by f then they cannot be distinguished by g either.
Let us note that this comparison between f and g depends only on
the common domain of the two mappings, namely S, and not on their
co-domains which are different in general.

Example 1

Relation schemas : R1(EMPL,SAL,DEPT), R2(DEPT,MGR, #EMPL)
R3(EMPL ,DEPT,MGR), R4(EMPL,DEPT, #EMPL)

Integrity constraints :

cl : EMPL ~ SAL,DEPT 1in R1

c2 : DEPT - MGR,# EMPL in R2

c3 : The attribute #EMPL in R2 is the number of employees in
the corresponding department computed from R2

C :clac2ac3
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Data base variables : D = {R1,R2}, D1 = {R3}, D2 = {R4}

Data base mappings :

fl : S<D|C> + S<D1|x> such that |
£1(D,) = (Rl » R2,)[EMPL,DEPT,MGR], ¥ D &S <D|C>
(1)
f2 : S<D|C> » S<D2|x> such that
£2(D,) = (RL, *R2,)[EMPL,DEPT #EMPL], ¥ D, ¢ S <D|C>

It follows from Definition 2 that fl > f2 0
From now on, when defining data base mappings, we shall use a
simplified notation as follows. Instead of the definitions (1) in

the previous example, we shall write

fl

(R1 « R2) CEMPL ,DEPT,MGR]
(1')
£2

(R1 % R2)[EMPL ,DEPT, # EMPL ]

An immediate consequence of Definition 2 is the following
theorem.

Theorem 1 - Let f,g ¢ MAP such that f = g. Then, there exists h ¢ MAP
such that g = hf O

(Juxtaposition of mappings denotes composition throughout this paper).
It should be emphasized that this theorem guarantees existence but not
computability of the mapping h.

Let us see some more examples to further illustrate Definition 2.

Example 2

Relation schemas : R(STUD,COURSE,GRADE,PROF), R1(STUD,COURSE,GRADE)
R2(STUD,COURSE)

Integrity constraints : C = A
Data base variables : D = {R}, D1 = {R1}, D2 = {R2}
Mappings : fl = RCSTUD,COURSE,GRADE], f2 = RLSTUD,COURSE]

Applying Definition 2 we obtain fl > f2 0
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Example 3

Relation schemas : R(NAME,ADDR,SAL), R1(NAME,ADDR,SAL),
R2 (NAME ,ADDR,SAL)

Integrity constraints : C : NAME - ADDR,SAL in R
Data base variables : D = {R}, D1 = {R1}, D2 = {R2}
Mappings : f1 = (R|SAL < 15000)LNAME,ADDR,SAL]

f2 = (R[1000 < SAL < 12000)[ NAME ,ADDR, SAL ]

Applying Definition 2 we obtain : f1 > f2 a

According to Definition 2, the more data base values f can
distinguish, the more information it can carry. Therefore, it is
natural to consider the partition on S induced by f. We shall denote
this partition by S/f. Each member of S/f is a set of data base
values that cannot be distinguished by f. So the smaller these mem-
bers are the more information f can carry. We shall denote by
S/f 2 S/g the fact that the partition S/f is a refinement of S/g
(i.e., each member of S/f is contained in some member of S/q). It .
follows that : f > g <=> S/f > S/g. Similarly, let ¢ denote the
equivalence relation induced on S by f (i.e., two data base values
are equivalent iff they have the same image under f). It follows
from Definition 2 that : f = g <=> =¢ © zg. We state these results
formally in the following theorem.

Theorem 2 - Let f,g ¢ MAP. Then

fz2g<=> S/fzS/g<=>§fczg 0

It follows from Definition 2 that the relation "dominates" is
reflexive and transitive but not antisymmetric (as f > g and g < f
implies S/f = S/g, but not necessarily f=g). Therefore, it is not
a partial order on MAP. In order to define a partial order we need

Lel

an equivalence relation on MAP such that mappings inducing the same
partition on S are equivalent. -
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Definition 3 - Let f,g ¢ MAP. Then, f and g are equivalent, denoted
f=zgiff f2gandg=>f O

It can be easily verified that = is an equivalence relation on
MAP and that = becomes a partial order on the set of equivalence
classes in MAP.

Next, we shall Took for maximal and minimal elements (up to
equivalence) in the set MAP. First, let us see an example of equi-
valent data base mappings.

Example 4

Relation schemas : R(STUD,COURSE,GRADE,PROF), R1(STUD,COURSE),
R2(COURSE,PROF), R3(STUD,COURSE, PROF)

Integrity constraints : cl : STUD,COURSE - GRADE in R,
c2 : COURSE - PROF in R, C =clac2

Data base variables : D = {R}, D1 = {R1,R2}, D3 = {R3}

Mappings : f1 = (RLSTUD,COURSEI, R[COURSE,PROF])
2 = RLSTUD,COURSE,PROF]

We have : fl > f2 and f2 > fl, therefore, fl = f2 il

Let us now go back to our interpretation of a data base mapping
as a communication channel. Intuitively, such a channel has a maximum
capacity if it lets the whole data base information go through. It
has a minimum capacity if it lets no information go through, that is,
if it transmits the same message no matter what the data base value is.
This leads to the following definition.

Definition 4 - Let D,  « S<D|C> be a fixed data base value. Define

lg : S<D|C> » S<D|rx> such that 15(Dy)

Dy ¥ Dy eS<D|C>

Og : S<D|€C> =+ S<D|rA> such that 0g(Dy) Dio ¥ Dy € S<D|C> O

t

The following theorem is an immediate consequence of Definition 4.
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Theorem 3 - The following is true ¥ f ¢ MAP

(1) 05 =< f <l

(1) =gczccSxs 0

This theorem implies that 1S and OS are the largest and the
smallest element of MAP, respectively (up to equivalence).

Let us now ook for the infimum and the supremum of two data
base mappings f and g. We shall work with the equivalence relations

=¢ and =g Recall first (Theorem 2), that f > g <=> ¢ © =g
The relation

is a first candidate, as e coa and Eg c o . Unfortunately, o is
not necessarily transitive i.e., it is not an equivalence relation.

However, the transitive closure

is always an equivalence relation and the following theorem shows
that it is the required one.

Theorem 4 - Let f,g < MAP. Let 8 = (Ef u = )*. Then S/8 is the infimum
of S/f and S/g a

g

Proof : We must show that (1) S/B < S/f and S/8 < S/g 5 (2) for every
Yy such that : S/y < S/f and S/vy < S/q9 we have S/y < S/B .

(1) Letoc=(EfUEg).ThenEfcucoc*=BandEgcocca*=B.
Therefore, S/8 < S/f and S/B < S/g Q.E.D.

(2) Let y be an equivalence relation such that S/y < S/f and
S/y < S/g. Then Zpcy and =
oc=(':‘fuzg)cy.

As o is the smallest equivalence relation containing o we
conclude that B = o™ < Y, i.€., S/y < S/B Q.E.D.

g < y. Therefore, we obtain,
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This theorem shows the existence of an infimum for f and g
(up to equivalence). We shall denote this infimum by f A g.
For the supremum of f and g the task is easier as the relation
=¢ N Eg is an equivalence relation.

Theorem 5 - Let f,g ¢ MAP. Then S/z¢n 2y s the infimun of S/f

and S/g 0

Proof : Let a = Efrwzg. Then ¢ is an equivalence relation. Now,
aczZcand ac Eg implies that S/f»s S/o and S/g < S/a. On the

other hand let h = f and h > g. Then N and = © Eg' There-
fore, % © (Ef n Eg) = . It follows that S/h = S/a Q.E.D.

A

We shall denote the supremum (up to equivalence) of f and g
by f v g. The mapping f v g consists of "adding up" the informa-
tion carried by f and g. A natural way to express this operation
seems to be the juxtaposition of the values of f and g.

Definition 7 - Let fl be a mapping from S into S<D1|@>. Let f2 be

a mapping from S into S<D2|@>. Let D1 n D2 = §. The juxtaposition
of fl and f2, denoted by f1 x f2 is a mapping from S into S<DluD2|p>,
defined by

(f1 x £2)(D,) = (f1(D,),f,(D,)) ¥D, ¢S O

Example 5

Relation schemas : R(NAME,ADDR,TEL), R1(NAME,ADDR), R2(NAME,TEL)
Integrity constraints : C : NAME - ADDR,TEL in R

Data base variables : D = {R}, D1 = {R1}, D2 = {R2}

Mappings : fl1 = RCNAME,ADDR], f2 = RINAME,TEL]

The juxtaposition of fl and f2 is the mapping
fl x f2 = (RINAME,ADDR], RCNAME,TELI)

It is interesting to note that in this example we have f1 x f2 = 1S 0
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Theorem 6 - Let f,g ¢ MAP. Then f x g = fv g 0

Proof : Let Dl’ D2 e S<D[C>. Then,

Dy *fxg D, <=> f xg(Dy) = f x 9(D,)
<=> (f(0;)s 9(D})) = (£(D,), g(D,))
<=> f(Dl) = f(Dz) and Q(Dl) = 9(02)
<=> D1 ¢ 02 and D1 Eg D2
Therefore, Ef><g = (5f n Eg) that is, S/f><g = S/f\/g Q.E.D.

This theorem implies that f x g is a representative of the equi-
valence class of f v g. Let us now study the case of f g through
an example.

Example 6

Relation schemas : R(STUD,EXAM,HOUR), R1(STUD,EXAM), R2(STUD,HOUR),
R3(STUD)

Integrity constraints : ¢l : STUD,HOUR -~ EXAM, c2 : EXAM - HOUR
C=clarc2

Data base variables : D = {R}, Dl = {R1}, D? = {R2}, D3 = {R3}
Mappings : f1 = R[STUD,EXAM], f2 = R[STUD,HOUR], f3 = RISTUD]

We have : f1 a f2 = R[STUD] = f3. That is, the projection on the
attribute STUD represents the smallest common part of the two mappings. 0O

We can generalize this last example in the case of two projections
RCXY] and RCXZ] of the same relation. We can see that the projection
R[X]1is always the smallest common part, that is, it defines the mapping
f A g. However, it Tooks like, apart from this special case (projection
and functional dependencies), there is no simple expression for f A g,
in_terms of mappings. So,although we have found a simple expression for
f v g, no such expression is in sight for f a g.
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As g is a complement of f and f(Dtl) = f(Dtl), we have :
g(Dyq) # 9(Dy,)-

Therefore, one of the following two assertions is true
9(Dy3) # 9(Dyq) or g(Dy3) # 9(Dyy)

Suppose the following is true
Q(Dt3) # g(Dtl) (2)

Let us define h by

{hwm - h(Dyg)
h(Dt) = g(Dt), ¥ Dt € S such that : Dt # Dtl’ DE# Dt3

x [where x is a value not in g(S<D|C>)]

It follows from this definition that h is a complement of f and,
because of (2) and (3) h is not greater than g, a contradiction to
(1) Q.E.D.

O0f course, this result does not exclude the existence of minimal
complements.

Definition 9 - Let f,g ¢ MAP. Then, g is a minimal complement of f iff

(1) fxgzlg

(i1) h<g and f xhz=l¢=> h=g 0

In the proof of Theorem 8 we have already seen how, given a mini-
mal complement, we could construct a new one. This suggests that, in
general, a data base mapping has more than one minimal complement.

Can we give an intuitive meaning to these complements ? Let us see
an example.

Example 8

Relation schemas : R(PART,COST,SALEPRICE,PROFIT,PROFITRATE), R1{PART,COST)
R2(PART,PROFIT), R3(PART,SALEPRICE), R4(PART,PROFITRATE)
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Integrity constraints :
cl : PART -» COST,SALEPRICE,PROFIT,PROFITRATE in R

c2 : COST 2 0 in R, c¢3 : SALEPRICE > COST in R,

cd : PROFIT
in R

SALEPRICE - COST in R, c5 : PROFITRATE = PROFIT/COST

C=clac2Zac3ancdach
Data base variables : D = {R}, Di ='{Ri}, i=1,2,3,4,5

Data base mappings : fl1 = RCPART,COST], f2 = R[PART,PROFIT],
f3 = RLPART,COST]

One can verify easily that each of the pairs (f1,f2), (f1,f3)
(f1,f4) suffices to reconstruct the data base. Therefore, each of
the mappings f2, f3, f4 is a complement of fl. Furthermore, each of
them is a minimal complement of fl and no two of them are comparable
(as none of them alone suffices to compute any other). O

In the previous example, we relied heavily on the fact that
the attributes were strongly related by the integrity constraints
(see, for example, constraints c4 and c5). Let us consider an example
with only functional dependencies as integrity constraints.

Example 9

Relation schemas : R(MGR,SECR,DEPT,SAL), RI1(MGR,DEPT)
R2(MGR,SECR,SAL), R3(MGR,SAL), R4(MGR,SECR), R5(DEPT,SECR)
R6(DEPT,SAL)

Integrity constraints :
cl : MGR <> SECR <> DEPT in R, ¢2 : MGR ~» SAL, C = cl A c2

Data base variables : D = {R}, Dl = {R1}, D2 = {R2}, D3 = {R3,R5},
D4 = {R4,R6} -

Data base mappings : f1 = R[MGR,DEPT], f2 = R[MGR,SECR,SAL],
f3 = (RCMGR,SAL], RCDEPT,SECR]), f4 = (RIMGR,SAL], RLDEPT,SECR]) .
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The mappings f2, f3 and f4 are each a minimal complement of fl.
Furthermore, no two of them are comparable . a

This éxamp]énﬁghtsuggést that the multiplicity of minimal
complements is related to functional dependencies. So, let us con-
clude this section by a simple example that shows that the multi-
plicity of comp]éments has nothing to de with functional dependencies
either.

Example 10

Relational schemas : R1(MALE), RZ2(FEMALE), R3(PERSON)

Integrity constraints : C : Rl1 n R2 = §

Data base variables : D = {R1,R2}, D1 = {R1}, D2 = {R2}, D3 = {R3}

Rl, f2 = R2, f3 = Rl u R2

Data base mappings : f1

The mappings f2 and f3 are complements of fl and they are not
comparable. That is, with the information provided in this example,
we cannot produce the list of females, starting from the 1ist of
persons and vice versa. ]
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INDEPENDENCE OF DATA BASE MAPPINGS

The concept of independence is well known in diverse branches of
mathematics such as linear algebra and probability theory. The interest
in this concept Ties in the fact that it allows to act independently
on two objects. Also it allows the decomposition of a complex system
into simple and independent parts that we can study separately.

In this section, we study the concept of independence between
two data base mappings. Viewing mappings as information carriers
we can see, intuitively, the following situations arising.

1 - One of the mappings determines the other

2 - The two mappings are somehow related but none of them
determines the other

3 - The two mappings have nothing to do with each other :
they are independent.

We have already studied the first situation through the "domi-
nance" relation in the previous section. We set now to study the
other two.

Let us start by an example of logical propositions about a
data base

P : John makes more than § 1000

P1 : John makes g 1200

P2 : John makes between $ 800 and $ 4000
P3 : Peter makes g 5000

We see that P1 determines P. P2 and P are related but none of
them determines the other. And, it looks Tike P3 and P are independent.
Put differently, p determines p', if knowing p we know p' ; p is related
to p', if knowing one of the two gives us some information about the
other ; p is independent of p', if knowing p does not affect our know-
ledge of p'. This last approach is the one taken when defining the
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independence of random variables in probability theory.

The concept of independence has been studied in the context
of data base decomposition'®?“. Decomposition is done through pro-
jections and the data base is reconstructed by a join. Furthermore,
the integrity ocnstraints are restricted to be functional dependen-
cies. In such a context, if we consider a relation schema
R(EMP,DEPT,MGR) with EMP -~ DEPT ; DEPT -+ MGR , the two parts of the
decomposition

RCEMP,DEPT] with EMP - DEPT
RI[BEPT,MGR] with DEPT -+ MGR

are considered independent, essentially because the set of the data
base integrity constraints is preserved in the decomposition. On

the other hand, if we consider the relation R(STUD,EXAM,HOUR) with
STUD,HOUR -~ EXAM ; EXAM - HOUR then, the two parts of the decomposi-
tion

RCSTUD, EXAM]
RCEXAM,HOUR] with EXAM - HOUR

are not considered independent because the set of data base integrity
constraints is not preserved (in order to preserve it we must intro-
duce constraints Tinking the two parts of the decomposition).

Our objective is to give a general definition of independence,
applicable to any kind of data base mappings and any kind of integrity
constraints and then test our definition on examples. In doing so,
we shall start by the intuitive definition that we discussed earlier.

"Two data base mappings f and g are independent if knowing
the value of f does not affect our knowledge of the value
of g, and vice versa".

Suppose that the data base is at state Dt at some time t.
Think of an observer whose only knowledge of the data base is :
<D|C>, f and g. That is, his knowledge consists of
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1: D; « S<D|C>
2 : (D) € F(S<D|C>)
3: g(Dt) e 9(S<D|C>)

Suppose now that the observer sees the value f(D
His knowledge now about Dt has become

1 '1 1
1 :Dte f (Dt)

That is, his knowledge about f(Dt) is now complete

2' : £(D,) = D}

Finally, his knowledge about g(Dt) has become
] -1 ]
3" : g(Dy) € g(f *(Dy))
This knowledge about g(Dt) has not changed, compared to 3 above, if
4 : g(f1(D})) = g(S<D]C>)
A similar reasoning for g gives

-1

5 : f(g (DY

t)) = f(S<D|C>)

We can rewrite 4 and 5 above as follows :

¥ Dj e f(S) ¥Djeg(S) 3D, S such that f(D,) = D}

and g(Dt) = D;

which is equivalent to the following

(f < g)(S) = f(S) = g(S)

that is, every value in f(S) is "compatible" with every value in g(s).

Definition 10 - Let f,g < MAP. Then f and g are independent, denoted
f g, iff (f x g)(S) = f(S) x g(S) 0
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Let us test this definition on an example.

Example 11
Relation schemas : R1(EMPL,SAL), R2(PART #,COST)

Integrity constraints : cl : EMPL > SAL in R1, c2 : PART# - COST in R2
C=clac2

{R1,R2}, D1 = {R1}, D2 = {R2}
R1, f2 = R2

Data base variables : D

Data base mappings : fl

Clearly, (fl x f2)(S) = f1(S) x f2(S). Therefore, fl and f2 are
independent. a

Let us now see an example of two mappings that are not indepen-
dent.

Example 12
Relational schemas : R(STUD,EXAM,HOUR), R1(STUD,EXAM), R2(EXAM,HOUR)

Integrity constraints : cl : EXAM - HOUR in R, c2 : STUD,HOUR + EXAM
inR, C==cl A c2

Data base variables : D = {R}, Dl = {R1}, D2 = {R2}

Data base mappings : f1 = R[STUD,EXAM], f2 = R[EXAM,HOUR]

We have now (fl x f2)(S) # f1(S) x f2(S), since the following
values of fl1 and f2 are not compatible.

D1t STUD EXAM DZt EXAM HOUR
John Math Math 9 a.m
John Physics Physics 9 a.m

Therefore, fl and f2 are not independent (i.e., a user who Tookds at
Dlt knows, about DZt, that Math and Physics exams do not take place
at the same hour). O
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Let us now see an example of independence which does not seem
to fit into our definition.

Example 13

Relational schemas : R(NAME,ADDR,AGE), R1(NAME,ADDR), R2(NAME,AGE)
Integrity constraints : C : NAME - ADDR,AGE 1in R

Data base variabies : D = {R}, D1 = {R1}, D2 = {R2}

Data base mappings : fl = R[CNAME,ADDR], f2 = RCNAME,AGE]

Following Rissanen's definition®, these two mappings are inde-
pendent. However, the following values are not compatible.

Dlt NAME ADDR D2t NAME AGE
John Paris John 25
Peter | London Jack 30

Therefore, according to our definition, the mappings fl and f2 are
not independent. This is so because looking at value Dlt we learn
something about the value DZt. Namely, by Tookina at D1t we know

the Tist of names in D2t (because Dlt and DZt are projections of the
same Dt)' Nevertheless, there is some sort of independence between
f1 and f2, that we could state as follows

"given that the list of names in D1t and DZt is the same,
knowing Dlt does not change our knowledge about DZt".

That is, f1 and fz are independent up to a list of names. Notice,
that the list of names can be represented by a third mapping
f3(Dt) = R[CNAME] O

Definition 11 - Let f,g,h ¢ MAP. Then f and g are independent modulo h,
denoted f ~ g mod h, iff

(f x g)(B) = f(B) x g(B) ¥ B e S/h O
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Following again the natural structure that we have defined on
MAP we define the complement of a given mapping f as any mapping ¢
- whose information "added" to that of f reconstructs the data base.

Definition 8 - Let f, g ¢ MAP. Then g is a‘complemént of f iff

fxgElS O

The following theorem is an immediate consequence of Defini-
tion 8.

Theorem 7 - Let f,g ¢ MAP. The following statements are equivalent

(i) g is a complement of f
('I'l) Efxg= '=S
(1ii) f x g is injective
(iv) g distinguishes all pairs of data base values that
cannot be distinguished by f. 0
Example 7

Relation schemas : R(NAME,ADDR,AGE)
Integrity constraints : C : NAME - ADDR,AGE

Data base variables : D = {R}, Dl =D2 =D

/AN

f1 = (R|AGE = 25), f2 = (R]AGE < 30)

It follows from Definition 8 that fl and f2 are complementary
mappings. a

Some important consequences of Definition 8 are the following.

1 - The mapping 1S is the complement of every f, as f x 1S =1

This implies that every mapping f has at least one complement.

2 - If g is a complement of f and 9, =9 then 99 is a complement
of f. That is, a complement is defined up to equivalence.

3 - If g is a complement of f and 91 2 9 then 91 is a complement
of f (to see this observe that gy 29 => f x 91 = f x g and,
as f x g = 15 we obtain f x g; = 1¢)
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It follows from Definition 8 that Dt and (f(Dt),g(Dt)) are
equivalent representations of the data base, in the sense that they
contain the same information. The second representation however, in
Tight of point 3 above, may contain redundant information. Therefore,
we would Tike to find a complement of f which is unique and minimal

Such a comp]ément would contain the smallest amount of information
necessary to add to f in order to reconstruct the data base. Let us
then define the set

COMP(f) = {h]h « MAP and h is complement of f}

The question we are asking rephrased in mathematical terms, is
the following : if the infimum of COMP(f) exists, does it belong to
this set ? Apart from a trivial case, the answer is no.

Theorem 8 - The infimum of COMP(f) belongs to COMP(f) iff

f = 1S or f = OS O

Proof : 1If part :

1 - Suppose f = Og. Then f x g =
COMP(f) = {1} and inf(COMP(f

1S g = 15‘ Therefore,
)) = S e COMP(f)
2 - Suppose f = ls. Then g < COMP(f) ¥ g ¢ MAP. That is,
COMP(f) = MAP and, therefore,
inf(COMP(f)) = Og « COMP(f)

Only if part : We shall assume that the infimum of COMP(f) exists
and that it belongs to COMP(f) and we shall derive a contradiction.
That is, we suppose that f % OS’ fZ 1S and

3 g such that (i) fxg lg and (ii) f xh =1 =>h=g (1)

wé have that :
f £ 1S => 3JA ¢ S/f such that : [A] > 1
= 3JA ¢ S/f, Dtl’ th e A, Dtl # th
f ¢ 0S => 3B e S/f such that : B# Aand B # @

= ElDt3 e B such that : Dt3 # Dtl and Dt3 # th
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That is, f ~ g mod h iff f ~ g on every B ¢ S/h. Looking back
at the previous example, we see that fl ~ f2 mod f3. It is interest-
ing to note that for h = OS’ Definition 11 reduces to Definition 10.
That is,

fang<=>fn~n gmod 0S

Let us now study the properties of independence. First, let us see
an equivalent characterization of independence.

Definition 12 - Let f1, f2 < MAP. Let f1(S) = S1, f2(S) = S2. The
values Dlt e S1, D2t e S2 are called compatible iff there exists

D, € S such that f1(D,) = D1, and f2(D,) = D2 0

t t) t

It follows from this definition that
(D1,,02,) is compatible iff f171(DL.) n f27'(D2,) # 0
This leads to an equivalent definition of independence.

Theorem 9 - Let fl, f2 ¢ MAP. Then fl ~ f2 iff

¥Dl, e S ¥D2, esS2 f17H(01,) n f27

t (b2,) #9 O

As an immediate consequence of this theorem we obtain the following
properties of independence.

Theorem 10 - Let f,g,h ¢ MAP. Then

(i) fvlg <=>f = 0g

(i) f 0

(iid) fmf<=>fEOS

(iv) frgandhs<f=hng a

Let us now look at properties of conditional independence.

Theorem 11 - Let f,g,h ¢ MAP. Then

h>f=>f~gmodh a
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Proof : Let B ¢ S/h. As h > f, there exists A ¢ S/f such that B < A.
Therefore, f(B) = f(A) = {y}, for some y ¢ f(S). We have :

(f x g)(B) = {(f(Dy),9(D;))|D; e B}
{(y,9(D,) Dy « B}
{y}x{g(Dy) Dy € B}
{y} x g(B)

£(B) x g(B) Q.E.D.

[}

The following are immediate consequences of Theorem 11.

f~ngmodf
f~ngmodg
fngmodfvg
f ~ g mod 1S

The following theorem translates Theorem 10 to the case of condi-
tional independence. Its proof is trivial.

Theorem 12 - Let f,h ¢ MAP. Then

(1) frvlgmod h<=>f <h
(i1) f v Og mod h
(iii) f~rnfmodh<=>f<h 0

Let us look again into the meaning of f ~ g mod h. The mappings
f and g are independent "up to h" and, for h = OS’ we have total in-
dependence. So, h expresses somehow a "1ink" between f and g.
Of course, we would Tike to see what is the "weakest 1ink", if it
exists, up to which f and g are independent. To do this, we must
study the set

MOD(f,g) = {h|f ~ g mod h}
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Theorem 11 already gives some information on this set as the follow-
ing figure shows. The hachured part is included in the set MOD(f,g),
but what we are mainly interestedirliS'the Tower part, i.e., the part

lying under f and g. To study this part we need the following lemmas.

Os
Lemma 1 - Let f,g,h ¢ MAP. Let T < S. Then

(1) (f x g)(T) = f(T) x g(T)

= [h(T)] =1 O
(2) h<fand h<g

Proof : Let f',g',h' denote the three mappings restricted to the
set T. Clearly, (1) and (2) still hold for the restrictions, and
it follows from (1) that f' ~ g'. Then, Theorem 9 implies that

¥ A ¢ T/f' ¥B' ¢ T/g' A' nB'" #0 (3)
It follows from (2) that

¥ A' ¢ T/ 5301 e T/h' such that A' ¢ C1

¥B' ¢ T/g' 3C2 e T/h' such that B' c C2

It follows from (3) that C; =C, =T Q.E.D.

Lemma 2 - Let f,g,h,k ¢ MAP. Then,

£~ g mod k
=>k = h 0
h<fand hx<g
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Proof : f ~ g mod k implies that
(F x g)(T) = £(T) x g(T) ¥ Te S/h

Applying Lemma 1 we obtain that |[h(T)| = 1. Therefore, there
exists C e S/h such that Tc<¢C, i.e., k>h Q.E.D.

The following theorem is an immediate consequence of Lemma 2.
Theorem 13 - Let f,g,h ¢ MAP. Then,
faogmodh=>h>fag O
A corollary of this theorem is the following
Theorem 14 - Let f,g,h ¢ MAP. Then,
fng=>fags Og (but the converse is not true) 0

It follows from Theorem 13 that every mapping in the set MOD(f,g)
dominates f A g as shown in the following figure (the set MOD(f,q)
corresponds to the shaded area).

Two negative results about independence are the following

1 - It is not always true that : f v g mod (f A g). Looking
back at Example 12, we have : fl A f2 = RCHOUR] and
fl N f2 mod f1 A f2 is not true.
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2 - The set MOD(f,g) is not closed under “dominance", i.e.,
it is possible to find mappings f,g,k,h1 such that
f v~ g mod h, h1 >h and f A~ g mod h1 is false.
One simply has to add to h some information that
“correlates" f and g as the following example shows.

Example 14

Relation-schemas : R(PART,COST,SALEPR), R1(PART,COST), R2(PART,SALEPR)
R3(PART), R4(PART)

Integrity constraints : C : PART » COST,SALEPR

Data base variables : D = {R}, D1
D4 = {R3,R4}

Mappings : f1 = R[PART,COST], f2 = R[PART,SALEPR], f3 = R[PART]
f4 = (RCPARTI, (R|COST < SALEPR)[PART])

{R1}, D2 = {R2}, D3 = {R3}

Then we have :

fl~ f2 mod f3, 4 = f3 but fl~ f2 mod f4 is false [0

In conclusion, we have seen two notions of independence
- Total independence : f ~ g

- Conditional independence : f ~ g mod h

We have shown that the best we can do is : f ~ g mod (f A g).
We shall call this "optimal" case weak independence.
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CONCLUSION

Viweing data base mappings as "information carriers", we have
been able to define formally the following key concepts

1 - Dominance : Given two data base mappings carrying comparable
information the one that carries more information dominates

the other.

2 - Independence : Two data base mappings are independent if

knowing the value of the one does not affect our knowledge
of the value of the other.

3 - Weak independence : Two data base mappings are weakly inde-
pendent if they are independent "up to their common part".

4 - Complement : Two data base mappings are complementary if
the "sum" of the information they carry is sufficient to
recompute the data base.

It is important to note that our theory does not depend on any
specific data model. However, we have chosen to present it in the
context of a specific model, namely, the relational model, in- order
to avoid excessive formalism.

In the second part of this paper we apply the above concepts to
two specific data base problems : data base decomposition and view
updating. We also discuss some parallels that exist between the theory
of data base mappings, on the one hand, and the theory of relations
and probability theory, on the other hand.
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