Proofs by induction in equational theories with constructors
Gérard Huet, J.M. Hullot

To cite this version:

HAL Id: inria-00076533
https://hal.inria.fr/inria-00076533
Submitted on 24 May 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PROOFS BY INDUCTION IN EQUATIONAL THEORIES WITH CONSTRUCTORS

Gérard HUET
Jean-Marie HULLOT

Août 1980
Résumé

Nous montrons comment faire des démonstrations (et des réfutations) d'identités dans l'algèbre initiale d'une variété, équationnelle, par une simple extension de l'algorithme de complétion de Knuth et Bendix. Ceci nous permet de démontrer par des méthodes équationnelles des théorèmes dont la preuve nécessite d'ordinaire l'utilisation d'un principe de récurrence. Nous montrons des applications de cette méthode à des preuves de programmes calculant sur des structures de données récursives, et à des preuves de sommes algébriques. Ce travail étend et simplifie des résultats récents de Musser et de Goguen.

Abstract

We show how to prove (and disprove) theorems in the initial algebra of an equational variety by a simple extension of the Knuth-Bendix completion algorithm. This allows us to prove by purely equational reasoning theorems whose proof usually requires induction. We show applications of this method to proofs of programs computing over data structures, and to proofs of algebraic summation identities. This work extends and simplifies recent results of Musser and Goguen.

Proofs by Induction in Equational Theories with Constructors

Gérard Huet and Jean-Marie Hullot

INRIA

Abstract

We show how to prove (and disprove) theorems in the initial algebra of an equational variety by a simple extension of the Knuth-Bendix completion algorithm. This allows us to prove by purely equational reasoning theorems whose proof usually requires induction. We show applications of this method to proofs of programs computing over data structures, and to proofs of algebraic summation identities. This work extends and simplifies recent results of Musser and Goguen.

Introduction

We assume familiarity with the basic notions of equational logic and term rewriting systems. See for instance. For simplicity of notation, we assume we have only one sort; all the results of this paper carry over to many-sorted theories without difficulty.

A set of equations \mathcal{E} defines a variety, that is the class of algebras which are models of the equations considered as axioms. An equation $M = N$ is said to be valid in this variety if it is true in all these models. It is well known that this is equivalent to whether $M = N$ can be derived from \mathcal{E}, using instantiation and replacement of equalities. In the cases where \mathcal{E} can be compiled into a canonical term rewriting system by the Knuth-Bendix completion algorithm, we can decide this problem by testing for identity the canonical forms of M and N.

Equations may also be used as definitions. This is frequent in computer science: programs written in applicative programming languages, abstract interpreter definitions and algebraic data type specifications are of this nature. In this framework, one has in mind a notion of standard model defined by these equations: the initial algebra defined by the set of equations. Now we have lost the nice completeness property of equational logic: an equation $M = N$ cannot in general be proved to be valid (or invalid) in the initial algebra by mere equational reasoning: some kind of induction is necessary.

However, Musser has recently shown an interesting theorem which may be roughly stated as follows: if the set of equations considered contains the axiomatisation of an equality predicate, then an equation is valid in the initial algebra if and only if adding it as an axiom does not make the theory inconsistent (in the sense that true or false is derivable). This permits proofs (and disproofs) of equations without explicit induction. The method was simplified by Goguen and Huet and Oppen.

We show in this paper that in the case where one considers inductive definitions over free algebras, and when the Knuth-Bendix completion algorithm converges, we can make these proofs by a very simple extension of the completion algorithm, and without the need of an equality axiomatization. We show how the method applies to proofs of simple properties and optimizations of primitive recursive programs over recursively defined data structures. The inductive completion algorithm defined in the paper generates implicitly the necessary instances of structural induction. The method generalizes to commutative-associative theories, and we show an application to proofs of algebraic summation identities.

1. A Principle of Definition

The key of our method consists in partitioning our function symbols between constructors and defined function symbols, and to express the necessary relationships between them via a principle of definition.

We assume given signature Σ. Every operator F in Σ is given with its arity. The signature Σ is partitioned as $\Sigma = C \cup D$. We call operators in C the constructors, and members of D the defined operators. We assume there are at least two constructors (for instance, true and false).
Let \mathcal{T} be the set of terms constructed from operators in Σ and variables in a given denumerable set \mathcal{V}. We use \mathcal{G} to denote the set of ground terms, i.e., containing no variables, and we assume \mathcal{G} non-empty. Finally we denote by \mathcal{GC} the set of ground terms formed solely from constructors.

Principle of Definition. Let \mathcal{E} be a set of equations over Σ, $=_{\mathcal{E}}$ the corresponding congruence on \mathcal{T}. We say that \mathcal{E} defines \mathcal{D} over \mathcal{C} if and only if for every M in \mathcal{D} there exists a unique N in \mathcal{D} such that $M =_{\mathcal{E}} N$.

It is convenient to express our principle of definition as the conjunction of two properties:

1. For every M in \mathcal{G} there exists N in \mathcal{GC} such that $M =_{\mathcal{E}} N$.
2. For every M, N in \mathcal{GC} we have $M =_{\mathcal{E}} N$ only if $M = N$.

When \mathcal{E} satisfies (1), we shall use $\mathcal{GC}_{\mathcal{E}}[M]$ for M in \mathcal{G}, to denote any N in \mathcal{GC} such that $M =_{\mathcal{E}} N$. Note that (1) implies that we have a constructor signature in the sense of Goguen. If \mathcal{E} satisfies (2) as well, \mathcal{GC}_E is a function, and then the set \mathcal{GC} can easily be made into a Σ-algebra by associating with F of arity n the function $\lambda M_1, \ldots, M_n. \mathcal{GC}_{\mathcal{E}}[F(M_1, \ldots, M_n)]$. Moreover:

Lemma 1. If \mathcal{E} satisfies the principle of definition, the algebra \mathcal{GC} is isomorphic to the initial algebra $I(\Sigma, \mathcal{E})$.

Proof. Follows directly from the fact that the initial algebra is (isomorphic to) the quotient of \mathcal{G} by $=_{\mathcal{E}}$. (See for instance.)

2. Sufficient Conditions for Deciding the Definition Principle

Let us consider sufficient conditions for our principle of definition to hold. We shall from now on regard our sets of equations (when possible) as sets of (oriented) rewrite rules. We assume familiarity with the terminology of term rewriting systems. In particular, we recall that a canonical term rewriting system is defined as being confluent (i.e. to have the Church-Rosser property) and noetherian (i.e. all sequences of rewriting terminate).

Lemma 2. Let \mathcal{E} be such that it defines a noetherian term rewriting system such that every term of the form $F(M_1, M_2, \ldots, M_n)$ with F in \mathcal{D} and M_1, \ldots, M_n in \mathcal{GC}, is reducible. Then \mathcal{E} satisfies (1).

Proof. Define $\mathcal{GC}_{\mathcal{E}}[M]$ for M in \mathcal{G}, as some \mathcal{E}-normal form of M. It is easy to show by structural induction that any such normal form must be in \mathcal{GC}.

There are several ways to give effective conditions that are sufficient to entail the hypothesis of lemma 2. We shall propose here one such condition; we recommend skipping the details of the next definition on a first reading.

Definition. We define inductively what it means for a set $S = \{ S_1, \ldots, S_p \}$ of k-tuples of terms $S_i = (S^1_i, \ldots, S^k_i)$ ($1 \leq i \leq p$) to be complete for \mathcal{C}. First we require every variable of S to occur in only one occurrence. Then $k = 0$, and $S = \{ \}$. Or else:

- either the set of $k-1$-tuples $\{ (S^1_i, \ldots, S^{k-1}_i) \mid S^1_i \in \mathcal{V} \}$ is complete,
- or else for every C in \mathcal{C}, say of arity n, there is at least one S^1_i with leading function symbol C, and the union of the two sets of $n + k - 1$-tuples $\{ (P_1, \ldots, P_n, S^2_i, \ldots, S^k_i) \mid S^1_i = C(P_1, \ldots, P_n) \}$ and $\{ (z_1, \ldots, z_n, S^2_i, \ldots, S^k_i) \mid S^1_i \in \mathcal{V} \}$ is complete, where the z_i's are new distinct variables not occurring in S.

Remark. That this definition is well-founded, first on the number of function symbols contained in S, and second on k.

Example. With $\mathcal{C} = \{ S, 0 \}$, with S unary and 0 a constant, the following set is complete for \mathcal{C}:

$\{ (0, S(x)), (x, 0), (S(x), S(0)), (S(x), S(S(y))) \}$.

Lemma 3. Let $S = \{ S_1, \ldots, S_p \}$ be a set of k-tuples of terms complete for \mathcal{C}. For every k-tuple of ground terms in \mathcal{GC}: (M_1, \ldots, M_k) there exist n_i with $1 \leq n_i \leq p$, and a substitution σ, such that for every $1 \leq i \leq k$, we have $M_i = \sigma(S^i_{n_i})$.

Proof. Easy induction on the definition of complete.

This lemma permits us to state a sufficient condition for property (1), which we shall use in practice:

Lemma 4. Let \mathcal{E} be a set of equations defining a noetherian term rewriting system such that, for every F in \mathcal{D}, there is in \mathcal{E} a set of rewrite rules whose left-hand sides are of the form $F(S^1_1, \ldots, S^1_i)$, ($1 \leq i \leq p$), and the set $\{ S_1, \ldots, S_p \}$ is complete for \mathcal{C}. Then \mathcal{E} has property (1).

Proof. It is easy to show, using lemma 3, that the assumption of the lemma implies that of lemma 2.

Remark. That if \mathcal{E} is finite and known to be noetherian, then the hypothesis of the lemma is a decidable condition. Actually, when giving the definition of F in \mathcal{D} by cases on arguments constructed over \mathcal{C}, one naturally gets complete sets of arguments.

Finally we state a trivial sufficient condition for property (2).
Lemma 5. Let \mathcal{E} be a set of equations defining a canonical term rewriting system such that every left-hand side is of the form $F(M_1, \ldots, M_n)$ with F in D. Then \mathcal{E} has property (2).

Proof. Since \mathcal{E} is canonical, we have $M =_{\mathcal{E}} N$ if and only if $M^1 = N^1$, where M^1 denotes the canonical form of M obtained by an arbitrary terminating sequence of rewrites by rules in \mathcal{E}. If all left-hand sides of equations in \mathcal{E} have their leading function symbol in D, we have $M^1 = M$ for every M in \mathcal{GC}.

Putting together the two preceding lemmas gives a useful sufficient criterion for the principle of definition to hold. For instance, any set of primitive recursive definitions satisfies the hypotheses of lemmas 4 and 5.

Remark that if \mathcal{E} obeys the hypothesis of lemma 5, then the converse of lemma 2 holds: \mathcal{E} satisfies the definition principle if and only if \mathcal{GC} is the set of \mathcal{E}-normal forms, and then $\mathcal{GC}[M]$ is the canonical form of M defined by \mathcal{E}. However, the converse of lemma 4 may not hold, since property (1) may be the consequence of axioms in \mathcal{E} whose left-hand sides contain multiple occurrences of a variable. We shall return to this problem in section 5.

3. Structural Induction and the Principle of Definition

In this section, we shall show how our principle of definition permits us to prove and disprove properties of the standard model $I(\Sigma, \mathcal{E})$. The next lemma shows that the principle of definition is preserved by extension if and only if this extension is valid in the standard model.

Lemma 6. Let \mathcal{E} satisfy (1) above. Let \mathcal{E}' be any set of Σ-equations such that $=_{\mathcal{E}}$ is contained in $=_{\mathcal{E}'}$. Then \mathcal{E}' satisfies (2) if and only if:

a) \mathcal{E} satisfies (2), and
b) every equation of \mathcal{E}' holds in $I(\Sigma, \mathcal{E})$.

Proof. Obviously, \mathcal{E}' satisfies (1), and it satisfies (2) only if \mathcal{E} does too.

\Rightarrow Assume that \mathcal{E}' satisfies (2) and that $M = N$ in \mathcal{E}' does not hold in $I(\Sigma, \mathcal{E})$. This means that for some ground substitution σ we have $\sigma(M) \neq_{\mathcal{E}} \sigma(N)$. In particular we get $\mathcal{GC}[\sigma(M)] \neq \mathcal{GC}[\sigma(N)]$, although $\mathcal{GC}[\sigma(M)] =_{\mathcal{E}'} \mathcal{GC}[\sigma(N)]$, a contradiction with (2) for \mathcal{E}'.

\Leftarrow If every equation of \mathcal{E}' holds in $I(\Sigma, \mathcal{E})$, then for every M, N in \mathcal{G} we have $M =_{\mathcal{E}'} N$ if and only if $M =_{\mathcal{E}} N$, and (2) for \mathcal{E}' follows from (2) for \mathcal{E}.

The next three lemmas give technical properties of equality in the standard model that are essential to the proof of our completion algorithm.

Lemma 7. Let $M = C(M_1, \ldots, M_n), N = C(N_1, \ldots, N_n)$, with C in \mathcal{C}. Let \mathcal{E} be a set of equations satisfying the principle of definition such that $M =_{\mathcal{E}} N$. Then $M_i =_{\mathcal{E}} N_i$ holds in $I(\Sigma, \mathcal{E})$ for every $i, 1 \leq i \leq n$.

Proof. Let σ be an arbitrary ground substitution, and assume $M =_{\mathcal{E}} N$. We have $\sigma(M) = C(\sigma(M_1), \ldots, \sigma(M_n)) =_{\mathcal{E}} C(\sigma(N_1), \ldots, \sigma(N_n)) = \sigma(N)$, and by (1) we get

$C(\mathcal{GC}[\sigma(M_1)], \ldots, \mathcal{GC}[\sigma(M_n)]) =_{\mathcal{E}} C(\sigma(N_1), \ldots, \sigma(N_n))$

which implies by (2) $\mathcal{GC}[\sigma(M_i)] = \mathcal{GC}[\sigma(N_i)]$ for every $i, 1 \leq i \leq n$, and thus $\sigma(M_i) =_{\mathcal{E}} \sigma(N_i)$. Since this holds for every ground σ, we get that $M_i =_{\mathcal{E}} N_i$ holds in $I(\Sigma, \mathcal{E})$.

Corollary. With M and N as above, let \mathcal{E} containing $M = N$ and satisfying (1). Consider $\mathcal{E}' = \mathcal{E} - \{M = N\} \cup \{M_i = N_i \mid 1 \leq i \leq n\}$. Obviously $=_{\mathcal{E}'}$ is contained in $=_{\mathcal{E}}$. Now either \mathcal{E} satisfies (2), in which case $I(\Sigma, \mathcal{E}') = I(\Sigma, \mathcal{E})$ by lemma 7, and \mathcal{E}' satisfies (2) by lemma 6, or else \mathcal{E}' does not satisfy (2).

Lemma 8. Let $M = C(M_1, \ldots, M_n), N = D(N_1, \ldots, N_p)$, with C and D two distinct constructors. Let \mathcal{E} be a set of equations satisfying (1) and such that $M =_{\mathcal{E}} N$. Then \mathcal{E} does not satisfy (2).

Proof. Let σ be any substitution substituting ground terms for every variable occurring in M or N. From $M =_{\mathcal{E}} N$ we get

$\sigma(M) = C(\sigma(M_1), \ldots, \sigma(M_n)) =_{\mathcal{E}} D(\sigma(N_1), \ldots, \sigma(N_p)) = \sigma(N)$

and therefore by (1)

$\mathcal{GC}[\sigma(M_1)], \ldots, \mathcal{GC}[\sigma(M_n)] =_{\mathcal{E}} D(\mathcal{GC}[\sigma(N_1)], \ldots, \mathcal{GC}[\sigma(N_p)])$

a contradiction with (2).

Lemma 9. Let $M = C(M_1, \ldots, M_n)$, with C in \mathcal{C}, and let N be a variable. Let \mathcal{E} be a set of equations satisfying (1) and such that $M =_{\mathcal{E}} N$. Then \mathcal{E} does not satisfy (2).

Proof. Let σ be any substitution that replaces N by a term whose leading function symbol is a constructor distinct from C (Remember that we assume the existence of at least two constructors.) We have $\sigma(M) =_{\mathcal{E}} \sigma(N)$, and the result follows from the preceding lemma.

We are now ready to present our extension of the Knuth-Bendix completion algorithm.

4. The Inductive Completion Algorithm

Let \mathcal{E} satisfying the principle of definition, \mathcal{E}' any set of Σ-equations. Run the Knuth-Bendix completion algorithm.
algorithm on $\mathcal{E} \cup \mathcal{E}'$, with the following modifications. We assume given a well-founded partial ordering on terms $>$, compatible with the term structure and stable by substitution, with which we prove the termination of the successive sets of rewrite rules. We assume familiarly with the Knuth-Bendix completion algorithm, as presented for instance in Huet. The only modification occurs in the step in which a pair of terms, coming from either a simplified critical pair or a reduced rewrite rule, is considered for orientation before being added as a new rewrite rule. This step should be modified as follows, assuming that (M, N) is the current candidate rewrite rule, with $M \neq N$.

- If $M = C(M_1, \ldots, M_n)$ with C in \mathcal{C}, then:
 - If $N = C(N_1, \ldots, N_m)$ then replace the pair by the n pairs $(M_1, N_1), \ldots, (M_n, N_n)$
 - If $N = D(N_1, \ldots, N_p)$, with D in \mathcal{C}, $D \neq C$, or $N = x$ stop “disproof”
 - Otherwise:
 - If $N > M$, introduce new rule $N \rightarrow M$
 - Otherwise stop “failure”

- Otherwise:
 - If $N = C(N_1, \ldots, N_n)$ with C in \mathcal{C} do symmetrically as above
 - Otherwise:
 - If $M > N$, introduce new rule $M \rightarrow N$
 - If $N > M$, introduce new rule $N \rightarrow M$
 - Otherwise stop “failure”.

The new inductive completion algorithm may:
- stop with success, i.e. we get a finite canonical term rewriting system.
- stop with disproof.
- stop with failure, i.e. either the ordering $>$ used was inadequate to prove the termination of the set of current rewrite rules, or this set is nonterminating, and the method is therefore not applicable.
- run forever, generating an infinite set of rewrite rules.

Theorem. If the algorithm stops with success, every equation in \mathcal{E}' holds in $I(\Sigma, \mathcal{E})$. Furthermore, the resulting canonical term rewriting system satisfies the principle of definition. If the algorithm stops with disproof, some equation in \mathcal{E}' does not hold in $I(\Sigma, \mathcal{E})$. Conversely, if some equation in \mathcal{E}' does not hold in $I(\Sigma, \mathcal{E})$, the algorithm stops with either disproof or failure.

Proof. From the lemmas above and the properties of the Knuth-Bendix algorithm, as proved in Huet.

Note that lemma 5 forbids us to introduce a left-hand side whose main function symbol is a constructor. This is necessary, as shown by the following example. Let $\mathcal{C} = \{A, B\}$, $\mathcal{D} = \{C\}$, all symbols nullary. Let $\mathcal{E} = \{C = A\}$, and $\mathcal{E}' = \{C = B\}$. With $A > C$ and $B > C$, the usual completion algorithm would converge with the canonical set $\{A \rightarrow C, B \rightarrow C\}$. The algorithm above would oblige us to use an ordering such that $C > A$ and $C > B$, would construct for $\mathcal{E} \cup \mathcal{E}'$ the term rewriting system $\{C \rightarrow A, C \rightarrow B\}$, and the critical pair (A, B) would (correctly) force stopping with disproof.

The theorem above was inspired by the work of Musser, and its extensions in the taut presentations of Goguen and the s-separable theories of Huet and Oppen. However, note that here no special equality axioms are required.

5. General Organization of Inductive Proofs

Assume we are working in the initial theory $I(\Sigma, \mathcal{E})$, with $\Sigma = \mathcal{C} \cup \mathcal{D}$. That is, we are interested in studying properties of the objects freely constructed from members of \mathcal{C}, and to this end we have axiomatized the operators of \mathcal{D} using the equations in \mathcal{E} as recursive definitions.

We check that every left-hand side of \mathcal{E} is of the form $F(M_1, \ldots, M_n)$ with $F \in \mathcal{D}$, that \mathcal{E} is confluent, noetherian, and verifies the hypothesis of lemma 4. These checks usually go together: if \mathcal{E} is a set of primitive recursive-like definitions, it can be proved noetherian by a simple lexicographic ordering argument, every defined function symbol has trivially a complete set of arguments, and the set is confluent because there are no critical pairs.

Now let \mathcal{E}' be a set of equations which we conjecture about the inductive theory above. We run the inductive completion algorithm above, initializing the set of rewrite rules to \mathcal{E} and the set of equations to \mathcal{E}'. If the algorithm stops with failure, nothing interesting may be said. If it stops with disproof, some equation from \mathcal{E}' does not hold in the theory. If it stops with success, generating a canonical set \mathcal{E}_1, all of the equations from \mathcal{E}' are true in $I(\Sigma, \mathcal{E}) = I(\Sigma, \mathcal{E}_1)$, and furthermore \mathcal{E}_1 satisfies the definition principle. We may therefore iterate the process, trying a new set of conjectures \mathcal{E}'_1, while profiling of the previously proved conjectures as lemmas.

Let us now consider the situation when we want to enrich our theory with new function symbols. First of all, we remark that it would be unsound to add new constructors, since a theory complete for \mathcal{C} might not be complete for some extended \mathcal{C}'. Furthermore
we may have proved some theorem valid in \(I(\Sigma, \xi)\)
which is not valid in the extended theory \(I(\Sigma', \xi')\).
For instance, with \(C = \{ A, B \}\) and \(\xi = \{ F(A) = A, F(B) = B \}\) we may prove \(F(x) = x\), but this
formula is not valid any more if we extend our theory
with constructor \(C\) and definition \(F(C) = A\). We
shall therefore assume that our set of constructors \(C\)
is constant, and that we only permit to enrich our
signature by adding new defined function symbols. We
are sure this way that our extensions are monotonous,
in the sense that any theorem proved in a theory is still
true in an extended theory, even if we do not keep it
around as a lemma.

Assume therefore that we are currently dealing
with a set of equations \(\xi\) that is known to satisfy
the definition principle, and that we are adding a new
function symbol \(F\) and some new definitions \(\xi'\). How
do we know that \(\xi \cup \xi'\) satisfies the definition
principle? Our problem is that \(\xi\) itself may not satisfy
the hypothesis of lemma 4, because \(\xi\) may be obtained
after some steps of completion that may have destroyed
the completeness property. For instance, consider \(C =
\{ \text{true}, \text{false} \}\), \(D = \{ \vee \}\), \(\xi = \{ \text{true} \land \text{true}, \text{true} \lor \text{false} = \text{false} \}\). If we attempt
to prove the theorem \(\text{true} \lor \text{true} = \text{false}\) using the comple-
tion algorithm, we shall step with success, generating
the canonical set \(\xi' = \{ \text{true} \lor \text{true} = \text{true}, \text{false} \lor \text{false} = \text{false} \}\). If we attempt
these same extensions of lemmas 4 and 5 will be enough to tel-
us how to enrich canonical theories while preserving
the definition principle.

Assume that \(\xi\) obeys the hypothesis of lemma 5
and is known to have property (1) relatively to a given
signature \(\Sigma = C \cup D\). Now assume we want to enrich
our theory by one more defined symbol \(F\), i.e. we now
consider signature \(\Sigma' = C \cup (D \cup \{ F \})\). Consider any
set \(\xi'\) obtained from \(\xi\) by adding a complete definition
for \(F\), i.e. a set of equations with left-hand sides of
the form \(F(S_1), \ldots, S_n\), the argument tuples \(S_i\)s
forming a complete set. If \(\xi'\) is canonical, it satisfies
the principle of definition for the extended signature.
This way we know how to test the validity of our
definition principle in an incremental way. Actually,
remark that the process of enriching a theory, once
the completeness property has been checked, is exactly
the same as proving lemmas: it just consists in running
the completion algorithm. This is probably the most
surprising feature of our theorem-Prover: we treat new
axioms and conjectures to be proven in exactly the
same manner.

In practice it will be useful to deal with sorted
theories. Over sorted theories, we shall be able to in-
troduce new constructors, provided we introduce at a
time all constructors of a given sort, and that none
of the symbols considered so far had arguments of
the new sort. For instance, we may consider intro-
ducing sort boolean with constructors true and false,
define certain boolean connectives and prove properties
about them, then introduce sort integer with con-
structors 0 and 5, prove arithmetic properties, then in-
troduce list-of-integers with constructors Null
and List, etc...

The Appendix presents examples of proofs and
disproving using the method above. All our examples
satisfy the hypotheses of lemmas 4 and 5 above, as
the reader may readily check. However, in the cur-
rent implementation these conditions are not checked
automatically. We plan to implement fully the method
above, using for the termination tests recent criteria
developed by Plaisted17, Dershowitz4, and Kamin &
Lévy12

6. Extension to Commutative-Associative Operators

The theory above can be extended without difficulty
to the generalization of the Knuth-Bendix completion
algorithm to the case where certain function sym-
ols are assumed to be commutative and associative
14,16. These operators must be placed in \(D\). For these
operators, the notion of a complete set of tuples of ar-
Aumentgs extends naturally to the notion of a complete
set of multisets of arguments.

In the Appendix we apply this technique to proofs
of simple arithmetic identities. In particular, we show
that the sum of the first \(n\) odd integers is \(n^2\), and that
the sum of the first \(n\) integers is \(\frac{n(n+1)}{2}\).

It appears possible too to introduce commutative-
associative constructors. This would allow proofs of
recursive programs over data types such as multisets.
However, lemma 7 must be changed accordingly; that
is, an equation \(C(M_1, \ldots, M_n) = C(N_1, \ldots, N_n)\), with
\(C \in C\) and \(C\) commutative-associative, does not neces-
sarily imply pairwise equality of the arguments \(M_i\) and
\(N_i\). It rather implies one out of the possibly several
solutions to the corresponding multiset equation. This
would complicate the general organization of the meth-
od, since the proofs would have to split according to
the various cases. We have not yet implemented this
mechanism in our proof system.
Conclusion

We have presented in this paper a very simple method to construct proofs by structural induction. The method is based on a straightforward modification of the Knuth-Bendix completion algorithm, and does not require an equality axiomatization. The method is simple to implement, and when it applies the proofs obtained are surprisingly short. For instance, given the two recursive definitions of the concatenation of lists, we can prove the associativity of concatenation by simply checking that this set of three equations, considered as rewrite rules, forms a canonical set.

Experimental evidence with an implementation of our method suggests that it is powerful enough to apply to the usual proofs of correctness of algebraic data types implementation, and proofs of simple primitive recursive programs computing on data types such as integers, lists and trees. We know how to handle simple fragments of arithmetic, and thus generate automatically proofs of standard summation identities.

The method has many limitations however. The requirement on finite termination, while natural for recursive definitions (or recursive programs, provided we restrict ourselves to programs that always terminate), may be impossible to enforce for complex combinations oflemmas. We do not know how to handle permutative equations, except for commutative-associative laws. Even when we know how to give an orientation to all the generated equations so that finite termination holds, the completion process may loop. It may however be possible to recognize easy patterns of such loopings, and avoid these by appropriate "meta-rules", such as the generalization technique of Boyer and Moore. Finally, most nontrivial program proofs involve a fair amount of propositional calculus (such as cases analysis). Such reasoning is better dealt with as a separate top-level proof system rather than by equational encoding.

Appendix

The following is the image of a computer session run on SRI's KL10 using the VLISP interpreter developed at Université de Vincennes. User input appears after question marks. When in doubt, the system asks the user the orientation of equation $M = N$ with the prompt COMMAND ? to which one answers y (resp. n) to get the rewrite rule $M \rightarrow N$ (resp. $N \rightarrow M$). Comments are inclosed between semi-colons.

```
\begin{verbatim}
We start with a simple axiomatization of list structures:
\begin{verbatim}
+ (initialization)
List of constructors + (NULL CONS)
List of AC operators + O
List of infix operators + O
List of data-files + (1lep)
Mode (Free/Const/Auto) + const
\end{verbatim}
\begin{verbatim}
We enter the definitions of append and reverse:
+ (complete append)
\end{verbatim}
\begin{verbatim}
Given set of equations: APPAREV

APPEND(NULL, x) = x
APPEND(CONS(x, y), z) = CONS(x, APPEND(y, z))
REV(NULL) = NULL
REV(CONS(x, y)) = CONS(REV(y), APPEND(x, NULL))
\end{verbatim}
\begin{verbatim}
R1 : APPEND(NULL, x) \rightarrow x \hspace{1cm} \text{Given}
R2 : APPEND(CONS(x, y), z) \rightarrow CONS(x, APPEND(y, z)) \hspace{1cm} \text{Given}
R3 : REV(NULL) \rightarrow NULL \hspace{1cm} \text{Given}
R4 : REV(CONS(x, y)) \rightarrow APPEND(REV(y), CONS(x, NULL)) \hspace{1cm} \text{Given}
\end{verbatim}
\begin{verbatim}
\text{Command y}
\end{verbatim}
\begin{verbatim}
\text{Complete Set: +APPAREV}
\text{Unification time: 113ms}
\text{Rewriting time: 260ms}
\begin{verbatim}
we now prove rev(rev(x))=x;
+ (prove rev.rev)
\end{verbatim}
\begin{verbatim}
Given set of equations: REV.REV

REV(REV(x)) = x
\end{verbatim}
\begin{verbatim}
R5 : REV(REV(x)) \rightarrow x \hspace{1cm} \text{Given}
R6 : REV(APPEND(REV(x), CONS(y, NULL))) \rightarrow CONS(y, x)
\hspace{1cm} \text{From R5 and R4}
R7 : REV(APPEND(x, CONS(y, NULL))) \rightarrow CONS(y, REV(x))
\hspace{1cm} \text{From R6 and R5}
\end{verbatim}
\begin{verbatim}
R5 deleted
Rewrite rules : R7 R5 for left part
\end{verbatim}
\begin{verbatim}
\text{Complete Set: +REV.REV}
\text{Unification time: 410ms}
\text{Rewriting time: 1003ms}
\begin{verbatim}
+ (show rev.rev)
\end{verbatim}
\end{verbatim}
\end{verbatim}
```
REV

APPEND(NULL, x) → x
APPEND(CONS(x, y), z) → CONS(x, APPEND(y, z))
REV(NULL) → NULL
REV(CONS(x, y)) → APPEND(REV(y), CONS(x, NULL))
REV(REV(x)) → x
REV(APPEND(x, CONS(y, NULL))) → CONS(y, REV(x))

; Let us now consider a new function brev.
; In pseudo-LISP notation, we would program:
brev(x) = if null(x) then nil
; else cons(car(brev(cdr(x))));
brev(CONS(x, y)) = brev(cdr(brev(cdr(x))));

We shall here define brev with the help of auxiliary functions brev1 and brev2, such that:
brev1(x, y) = cons(brev1(brev1(x, y)));
brev2(x, y) = cons(brev2(brev2(x, y)));

Note that our "programs" are closer to Burstall's
HOPE than to LISP;
?(complete *rev.* brev)

; brev is actually still another reverse function,
; as we now show:
; ? (prove rev.brev)

Given set of equations: REV. BREV

BREV(NULL) = NULL
BREV(CONS(x, y)) = CONS(BREV1(x, y), BREV2(x, y))
BREV1(x, NULL) = x
BREV1(x, CONS(y, z)) = BREV1(y, x)
BREV2(x, NULL) = NULL
BREV2(x, CONS(y, z)) = BREV2(CONS(x, BREV2(y, z)))

RT : BREV(NULL) → NULL

R9 : BREV1(x, NULL) → x

BREV1(x, CONS(y, z)) = BREV1(y, x)

R10 : BREV1(x, CONS(y, z)) → BREV1(y, x)

R12 : BREV2(x, CONS(y, z)) → BREV2(x, BREV1(y, z));
BREV2(x, NULL) = NULL

Complete Set: *BREV

Unification time: 0.765 sec
Rewriting time: 0.485 sec

? (show *brev)
R19 : APPEND(x, CONS(y, NULL)) → CONS(BREV1(y, REV(x)), BREV2(y, REV(x)))

R6 deleted
Rewrite rules : R19 R16 R17 R18 for left part
R15 deleted
Rewrite rules : R19 R5 R5 for left part

Complete Set : *REV, BREV
Unification time: 1684ms
Rewriting time: 6433ms

*REV, BREV

APPEND(NULL, x) → x
APPEND(CONS(x, y), z) → CONS(x, APPEND(y, z))
REV(NULL) → NULL
REV(REV(z)) → x
BREV1(x, NULL) → x
BREV1(x, CONS(y, z)) → BREV1(y, z)
BREV2(x, NULL) → NULL
BREV2(x) → REV(x)
BREV2(x, CONS(y, z)) → CONS(BREV1(x, REV(BREV2(y, z)))
BREV2(x, REV(BREV2(y, z)))
REV(CONS(x, y)) → CONS(BREV1(x, y), BREV2(x, y))
BREV1(BREV1(x, y), BREV2(x, y)) → x
BREV2(BREV1(x, y), BREV2(x, y)) → y
APPEND(x, CONS(y, NULL)) → CONS(BREV1(y, REV(x)), BREV2(y, REV(x)))

; note the use of our induction rule in the proof above, in generating R17 and R18.
Let us now play with "distributive cons":
T (prove dcons)

Given set of equations: DCONS
DCONS(NULL, x) = NULL
DCONS(CONS(x, y), z) = CONS(CONS(x, y), DCONS(x, z))

R1 : DCONS(NULL, x) → NULL

R2 : DCONS(CONS(x, y), z) → CONS(CONS(x, y), DCONS(x, z))

Complete Set : *DCONS
Unification time: 60ms
Rewriting time: 15ms

; we now express VM in terms of iterate;
T (prove vm:iterate)

Given set of equations: VM.ITERATE
VM(x, y) = ITERATE(x, x)

Command T y

R6 : VM(NULL) → NULL

R7 : VM(CONS(x, y), DCONS(x, VM(y)))

Complete Set : *VM
Unification time: 99ms
Rewriting time: 73ms

T (show *vm)

Given set of equations: VM

VM(NULL) = NULL
VM(CONS(x, y), DCONS(x, VM(y)))

R6 : VM(NULL) → NULL

R7 : VM(CONS(x, y), DCONS(x, VM(y)))

Complete Set : *VM
Unification time: 155ms
Rewriting time: 395ms

; we now enter the definition of VM, a function that repeats a vector as a matrix;
T (complete iterate vm)

Given set of equations: VM

VM(x) = ITERATE(x, x)

Command T y

R6 : VM(x) → ITERATE(x, x)

R7 deleted
Rewrite rules : R8 R3 for left part
R7 deleted
Rewrite rules : R8 R4 for left part
R8 R5 for right part
Complete Set: *VM.ITERATE

Unification time: 147ms
Rewriting time: 273ms

; we now enter a new function ITVM, together with
; append:
; (complete *vm.iterate itvm)

Given set of equations: ITVM

ITVM(NULL, x, y) = y
ITVM(CONS(x, y), z, u) = ITVM(y, z, CONS(x, u))
APPEND(NULL, x) = x
APPEND(CONS(x, y), z) = CONS(x, APPEND(y, z))

Given

RT : ITVM(NULL, x, y) → y

Command ? y

RB : ITVM(CONS(x, y), z, u) = ITVM(y, z, CONS(x, u))

Given

Command ? y

R8 : ITVM(CONS(x, y), z, u) = ITVM(y, z, CONS(x, u))

Given

R9 : APPEND(NULL, x) = x

Given

R10 : APPEND(CONS(x, y), z) = CONS(x, APPEND(y, z))

Given

Complete Set: *ITVM

Unification time: 378ms
Rewriting time: 532ms

; we now express ITVM in terms of iterate;
; (show *itvm)

*ITVM

DCONS(x, NULL) = NULL
DCONS(x, CONS(y, z)) = CONS(CONS(x, y), DCONS(x, z))
ITERATE(NULL, x) = NULL
ITERATE(CONS(x, y), z) = CONS(x, ITERATE(y, z))
DCONS(x, ITERATE(y, z)) = ITERATE(y, CONS(x, z))
VM(x) = ITERATE(x, x)
ITVM(NULL, x, y) = y
ITVM(CONS(x, y), z, u) = ITVM(y, z, CONS(x, u))
APPEND(NULL, x) = x
APPEND(CONS(x, y), z) = CONS(x, APPEND(y, z))

Given set of equations: ITVM.ITERATE

ITVM(x, y, z) = APPEND(ITERATE(x, y), z)

Given

ITVM(x, y, z) = APPEND(ITERATE(x, y), z)

Command ? y

R11 : ITVM(x, y, z) → APPEND(ITERATE(x, y), z)

RT deleted

Rewrite rules: R11 R3 R9 for left part
R8 replaced by:
CONS(x, APPEND(ITERATE(y, x), z)) →
APPEND(ITERATE(x, y), CONS(x, z))

Rewrite rules: R11 R4 R10 for left part
R11 for right part

R12 : APPEND(ITERATE(x, y), CONS(y, z)) →
CONS(y, APPEND(ITERATE(x, y), z))

From R8

Given set of equations: VM.ITVM

APPEND(x, NULL) = x
VM(x) = ITVM(x, x, NULL)

Given

Complete Set: *VM.ITVM

Unification time: 121ms
Rewriting time: 205ms

; we now express ITVM in terms of iterate;
; (show *vm.itvm)

*VM.ITVM

DCONS(x, NULL) = NULL
DCONS(x, CONS(y, z)) = CONS(CONS(x, y), DCONS(x, z))
ITERATE(NULL, x) = NULL
ITERATE(CONS(x, y), z) = CONS(x, ITERATE(y, z))
DCONS(x, ITERATE(y, z)) = ITERATE(y, CONS(x, z))
VM(x) = ITERATE(x, x)
APPEND(NULL, x) = x
APPEND(CONS(x, y), z) = CONS(x, APPEND(y, z))
ITVM(x, y, z) = APPEND(ITERATE(x, y), z)
APPEND(ITERATE(x, y), CONS(y, z)) →
CONS(y, APPEND(ITERATE(x, y), z))
APPEND(x, NULL) → x

We thank Patrick Greussay for suggesting the example above.
Let us now give an example of disproof;
; (show *rev)
*REV

APPEND(NULL, x) → x
APPEND(CONS(x, y), z) → CONS(z, APPEND(y, x))
REV(NULL) → NULL
REV(CONS(x, y)) → APPEND(REV(y), CONS(x, NULL))

↑ (complete *rev wrong)

Given set of equations: WRONG

REV(x) = APPEND(x, x)

Given

Command ↑ y

R5 : REV(x) → APPEND(x, x)

Rewrite rules:

R5 R1 for left part

R4 replaced by:

CONS(x, APPEND(y, CONS(x, y))) =

APPEND(APPEND(y, y), CONS(x, NULL))

Rewrite rules:

R5 R2 for left part

R5 R3 for right part

R6 : APPEND(APPEND(x, x), CONS(y, NULL)) → CONS(y, APPEND(x, CONS(x, y)))

From R4

NULL = CONS(x, NULL)

From R6 and R1

**** FAILED ****

List of constructors ↑ (O, B)
List of AC operators ↑ (+, *)
List of infix operators ↑ (+, *)
List of data-files ↑ (arith)

Inside-Out Reductions ↑ y

↑ (complete sum.of.odds)

Given set of equations: SUM.OF.ODDS

1 = B(0)
2 = B(1)
n+0 = n
n+B(m) = B(n+m)
n*0 = 0
n*B(m) = (n*m)+n
n*0 = 1
n*B(m) = n*(n|m)
SIGMA(0) = 0
SIGMA(B(n)) = SIGMA(n)+((2*n)+1)

R1 : 1 → B(0)

Given

R2 : 2 → B(B(0))

Given

R3 : n+0 → n

Given

R4 : n+B(m) → B(n+m)

Given

R5 : n+0 → 0

Given

n*B(n) = (n*m)+n

Command ↑ y

R6 : n*B(m) → (n*m)+n

R7 : n*O → B(0)

Given

n*B(n) = n*(n|m)

Command ↑ y

R8 : n*B(m) → n*(n|m)

R9 : SIGMA(0) → 0

Given

R10 : SIGMA(B(n)) → B(SIGMA(n)+n+m)

Given

Complete Set: *SUM.OF.ODDS

Unification time: 977ms
Rewriting time: 3166ms

↑ (prove identity)

Given set of equations: IDENTITY

SIGMA(n) = n+2

SIGMA(n) = n+n

Given

Command ↑ y

R11 : SIGMA(n) → n+n

Rewrite rules:

R11 R5 for left part

R10 deleted

Rewrite rules:

R11 R6 R4 R6 for left part

R11 for right part

Complete Set: *IDENTITY

Unification time: 50ms
Rewriting time: 742ms

↑ (show *identity)

*IDENTITY

1 → B(0)
2 → B(B(0))
n+0 → n
n*B(n) → B(n+m)
n*0 → 0
n*B(n) → (n*m)+n
n*0 → B(0)
n*B(n) → n*(n|m)
SIGMA(n) → n+n
; We are now interested in showing that
SUM(n) = n*(n+1)/2,
where SUM(n) denotes the sum of the first n integers:
SUM(n) = 1 + 2 + ... + n.
To achieve this aim, we introduce the HALF function.
Then we prove the following lemmas:
HALF(2n) = n + HALF(n).
And finally we prove the sumation identity:
SUM(n) = HALF(n*(n+1)).
We start with the following complete set:
R1: n=0 → n
R2: n*B(n) → B(n+1)
R3: n+0 = 0
R4: n*B(n) → (n+1)*n
R5: HALF(0) = 0
R6: HALF(B(0)) = 0
R7: HALF(B(B(n))) = B(HALF(n))
We first prove the lemma concerning HALF;
∨ (prove lemma HALF)

Given set of equations: LEMMA.HALF
HALF(n+n) = n+HALF(n)

Command ∀ y
R8: HALF(n+n) → n+HALF(n) Given

R9: HALF(n) → n

HALF(B(n+n)) = n+HALF(B(n))

Command ∀ y
R10: HALF(B(n+n)) → n+HALF(B(n))

R11: HALF(B(n+n)) → n

Complete Set: ∗LEMMA.HALF

Unification time: 2130ms
Rewriting time: 12942ms
R7, R9 and R11 are the usual properties of HALF.
R8 and R10 being generalizations of these properties.
Let us now introduce the definition of SUM;
∨ (complete lemma half def sum)

Given set of equations: DEF.SUM
SUM(0) = 0
SUM(B(n)) = SUM(n) + B(n)

R12: SUM(0) = 0

R13: SUM(B(n)) → B(SUM(n)+n)

Complete Set: ∗DEF.SUM

Unification time: 199ms
Rewriting time: 370ms

; We are now ready to prove the sumation identity:
∨ (prove proof sum)

Given set of equations: PROOF.SUM
SUM(n) = HALF(n*B(n))

Given
SUM(n) = HALF((n+1)*n)

Command ∀ y
R14: SUM(n) → HALF((n+1)*n)

R12 deleted
Rewrite rules: R14 R3 R1 R5 for left part
R13 deleted
Rewrite rules: R14 R4 R2 R4 R2 R8 R7 for left part
R14 for right part

Complete Set: ∗PROOF.SUM

Unification time: 49ms
Rewriting time: 1523ms

∨ (show ∗PROOF.SUM)

∗PROOF.SUM

n=0 → n
n*B(n) → B(n+1)
n=0 → 0
n*B(n) → (n+1)*n
HALF(0) = 0
HALF(B(0)) = 0
HALF(B(B(n))) = B(HALF(n))
HALF(n+n) = n+HALF(n)
HALF(n+n) = n
HALF(B(n+n)) → n+HALF(B(n))
HALF(B(n+n)) = n
SUM(n) → HALF((n+1)*n)

Acknowledgments
This research was carried out during a visit to the
Computer Science Laboratory of SRI International. We
had numerous discussions on the topic of inductive
proofs with Bob Boyer, Joe Goguen, Patrick Greussay,
J. Moore and Rob Shostak. We are very grateful to
Jérôme Chailloux for transporting VLISP on the K10
at SRI. We thank Stanford University for allowing
us to typeset this paper in TeX on the SAIL
computer.
References

