N
N

N

HAL

open science

Programming environments based on structured
editors: the Mentor experience

Véronique Donzeau-Gouge, Gérard Huet, Bernard Lang, Gilles Kahn

» To cite this version:

Véronique Donzeau-Gouge, Gérard Huet, Bernard Lang, Gilles Kahn. Programming environments
based on structured editors: the Mentor experience. [Research Report] RR-0026, INRIA. 1980. inria-

00076535

HAL Id: inria-00076535
https://inria.hal.science/inria-00076535
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00076535
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 26

e
“Jjét’\,f&& ;

i

aca

!
i

PROGRAMMING ENVIRONMENTS
BASED ON
STRUCTURED EDITORS:

THE MENTOR EXPERIENCE

Véronique DONZEAU-GOUGE
Gérard HUET

Gilles KAHN ;

Bernard LANG

Juillet 1980

mmim@ﬁmm@ﬂm"mmmwmmmﬁmmm%

i

PROGRAMMING ENVIRONMENTS BASED ON STRUCTURED EDITORS :

THE MENTOR EXPERIENCE

Véronique DONZEAU-GOUGE, G&rard HUET, Gilles KAHN and Bernard LANG

Nous analysons dans cette note l'expérience acquise avec le .systéme

de manipulation de programmes MENTOR, en mettant 1l'accent sur les points

.

suivants
- les principales décisions prises lors de la conception de MENTOR
-~ notre expérience dans la construction et 1'utilisation d'un
environnement de programmation PASCAL comstruit & partir de
MENTOR ;
- notre conception de ce que devrait &tre un environnement de
programmation complet.
Abstract :

We discuss in this note our experience with the MENTOR program

manipulation system, from the following points of view :

- the main design decisions we made in MENTOR ;
-~ our experience with building and using a PASCAL programming
environment based on MENTOR ;

- our vision of a complete programming environment.

.
s

Programming Environments Based on Structured Editors:
' The MENTOR Experience

Véronique Donseau-Gouge, Gérard Huet, Gilles Kahn and Bernard Lang

Abstract

We discuss in this note our experience with the MENTOR program manipulation
system, from the following points of view: :

o The main design decisions we made in MENTOR,;

e Our experience with building and using a PASCAL programming environmen$
based on MENTOR; '

e Our vision of a complete programming environment.

1. A MENTOR primer

MENTOR is a processor designed to manipulate structured data. This data is
represented as operator-operand irees, generally called abstract syntax trees. MENTOR
is driven by the tree manipulation language MENTOL..

1.1 Abstract Syntax

Abstract syntax trees are structured as sorted algebras; for a given language, we
declare a set of sorts, and a set of operators with sorted operands. Operators may be
declared with a fized arity, or may be associative operators with a variable number of
arguments, used to represent lists. We must also specify a parser, which, given a sort,
maps a concrete syntax string into the corresponding abstract syntax tree, and some

" standard inverse mapping, the prettyprinting unparser.

For instance, in MENTOR-PASCAL, typical sorts are ezp, stat, varbl, ident, const,
lezp, istat. Every meaningful PASCAL construct corresponds to an operator. Typical
operators are if, ass, call, lstat, gtr, mult, index, with soris as follows:

o if: exp X stat X stat— stal.

¢ ass: varbl X ezp— stat.

o call: sdent X lexp— siat.

o lstat: stat X statX--- X stat— lstat.
¢ lexp: ezp Xezp X -+ X ezp—lezp.

o gtr: exp X ezp—ezp.

o mult: ezp X ezp—ezp.

e index: ident X iezp—ezp.

Also, all identifiers and constants are nullary operators, of sort respectively tdent
and const. Finally, our sorts are ordered; for instance, identCvarblC ezp, constCezp
and lstatCstat. In any argument place of sort o, all operators returning sort dCeo
are authorized.

E_xainple

The following PASCAL program :

1f X>0 then P{X,alY,Z])
ales begin

Y:=Y»2;

X:=0

end

parses into (and is the unpassing of) the following abstract synbax bree:

i
,,/‘/ / \\\
— - —
gt{\ call Istat
// AN / \ N
X o P lexp aas 898

4 index Y mult % 0
/
/N /
A lexp ¥
7\
T 2

1.2 MENTOL, 3 tree manipulation language

The user communicates with MENTOR through an interpreter for a specialized
tree manipulation language, MENTOL. Values in MENTOL are abstract syntax trees
(abbreviated ast from now on) and locations in these trees , abbreviated ioe. MENTOL
commands are themselves ast’s in MENTOR-MENTOL. MENTOL variables, called
markers, may be assigned loes. A loc expression is oblained by composing a base marker -
with displacement operators such as U,L,R for up,left,right, or Sn, with n an integer, for
n-th son. For instance, if marker @TOP marks the top of the above PASCAL: tree, @TOP
S2 S1 marks the location of identifier P. The current marker, @K, may be abbreviated
by the empty string for convenience. The MENTOL assignment statement, of the form
locl:loe2, is used to move around in trees, and remember places. For instance, :@TOP
S2 S1 would assign the current marker to the location of P in the tree above.

The command loc Pn prints on the console the result of unparsing the ast at loc,
down to a level of detail specified by integer n. For instance, @TOP P2 would print:

if 8 then § else ...

Note that list nodes are abbreviated by ..., and cther nodes by #. The command
@TOP P3 would give you some more detail:

2

it ¥>0 then POX,ALY,Z]1)
else begin

$:3

end

The standard prettyprinting effected by MENTOR puts PASCAL reserved words
in lower case, identifiers in upper case, and indicates the tree structure by indentation.
When the level of detail is unspecified, you get a standard abbreviation that in most
cases fits in one screen. For instance, @TOP P would produce the text above in full
The reverse operation of P is &, which is an ezpression denoting the result of parsing a
string of characters read on the input device.

An essential feature of MENTOL is pattern-matching. A pattern or schema, is any
ast containing special terminal nodes called metavariables. A schema matches any tree
which is an instance of the pattern, replacing metavariables by appropriate subtrees. A
given metavariable may appear only once in a given pattern. Metavariables are unparsed
as special identifiers, whose name starts with 2 dollar sign. Schemas may be constructed
by commands, or may be input through the parser. When the syntax tables for a
given language are lcaded, MENTOR constructs a set of predefined schemas, one for
each operator. These elementary schemas consist of just the given operator, applied
to metavariables; they are accessible through a marker named by the operator. For
instance, in MENTOR-PASCAL, we would have: '

PAGTR P, SEXPLOSEXP2

The find ezpression loc F' pat denotes the first location in the subiree marked by
loc which is an instance of the pattern pai (assuming preorder traversal.) if the subtree
does not contain any such instance, the special value fail is returned. Another find
expression, with F replaced by FF, does not limit the search to the subiree marked
by loc; that is, the search is continued in preorder beyond loc {this ic lhe search one
ordinarily does in the listing of a program, starting from a given point.) When pattern-
matching is successiul, the markers with same name as the metavariables of the schema
are assigned to the corresponding location in the object tree. For instance, with the -
above example:

*E@TOP F GGTR P,
X>0

?EEXP1 P,

X

Let us now explain briefly the main commands and control strnctores in MENTOL.
When a loc expression is used as a command, it abbreviates the operation «f arsigning to
the base marker of loc the result of evaluating loc. For insbance, i the example above,
a more typical operation would be to use the current marker as foliows

?:@TOP; FAGTR; P,
x>0

48]

Note the sequencer semicolon. A sequence of commands is made into a command
{abbreviated com) by enclosing it between parentheses (these are not mandatory at top
level.) Any command may be iterated n times by postfizing it with integer n. A star
means iterate until failure; for instance, U* brings the current marker to the top of the
tree it was pointing into. A primitive conditional statement is provided: ’coml,com2
executes eoml if the previous command succeeded, otherwise it executes com2. The
command $n exits from n levels of grouping; $-n is the same, but returns failure. There
are various other control statements such as a case statement, which we shall not discuss
here. The interested reader is referred to MENTOR's manual{2]. Let us now turn {0
the commands that modify asts.

The change command, locl C ast2, replaces the subtree marked by loel with the
tree ast2. Like in Algol 60, a form of coercion is provided: When the second argument of
the change command is some location expression loe2, it denotes a copy of the subtree
marked by loc2. Various list manipulation commands, such as inser’ (I) and delete (D),
are provided. loel X loc2 exchanges the subtrees at loel and loc2 (provided they are
disjoint). All these operations maintain the correctness of sorts. Rather than giving an
exhaustive list, let us give a few examples:

?:QTOP,
82 X 83,
?e2 81 1 B3,
T83 C &, .
[BTAT] :Z:=0;, %colon ie prompt for parsing;nots the gort remindsr
P81 X 82,
ERROR: YRONG BYNTAX TYPE
TP,
if X>0 then

bogin

Y =Y223,

Px,AlY,2));

=0
end slse Z:=0

Let us finally explain an essential command: eval; E ast returns a copy of the tree
ast, in which metavariables are instantiated according to the current environment. The
eval command, together with pattern-matching, permits to implemeni sasily program
transformations that can be described as tree rewriting systems. [or instance, assume
we wan! to transform the operator > in the PASCAL exemple abeve into the operator
> ==. Assuming the current marker is initially positioned at TOP, the simnplest way of
doing this in MENTOL is as follows:

PFRGTR; CEQGER; P,
&o>=0 .
POGES P, #Thia works bhecause mabavarieblos masch

SEXPL>=SEXPZ

We have not explained so far how we dealt with comments, and more generally with
pragmats and assertions. We have designed a general mechanism thai iakes comments
into account as a particular case of various possible annotations, meaningfuily related -

4

to program constructs. The idea is to attach attributes to any node of an ast. These
attributes are themselves asts in their own language. The loc expressions are extended
§0 as to access the various attribules of a given node and to get back from an ast to
the ast node it annotates, if any. For instance, in MENTOR-PASCAL, two attributes
are reserved for ordinary comments: the so-called prefix and postfix comments. These
simple comments have a rather poor structure: they may be just lists of lines. We
also use comments in PASCAL abstract syntax; for instance, when we optimise some
portion of program, we keep the initial version of the construct as a comment. The
system is extensible; for instance, we may declare a new abstract syntax for assertions,
and annotate various constructs with them, write in MENTOL a verification condition
generator that will compute from these assertions, etc.

If MENTOL consisted only in the features mentioned so far, the reader would
question our calling it a programming language, and would probably argue that is
is nothing more than an editor command language. What makes MENTOL a full-
fledged (although not general-purpose) programming language is the possibility to write
MENTOL procedures. We permit three kinds of procedure parameters:

a) locs passed by value;
b) locs passed by reference;
c) coms passed by name. :

For instance a standard predefined procedure is FORALL, which takes two argu-
ments: a pattern, and s command. For every instance of the pattern, starting from
the current marker and with a preorder tree traversal, it executes its second argurnent.
Various utilities procedures are predefined, $o generate new identifiers,and provide coer-
cions mechanisms such as between identifiers, strings and comment lines. Finally stand-
ard system procedures are provided for file manipulation, interactive help and debugging,
etc.

This procedure encapsulation mechanism is essential to MENTOR.. It allows the
designer of a programming environment to provide the user with poweriul program
manipulations in terms of the logical constructs of the specific programming language
manipulated. These manipulations can be heavily context dependent, and may use
semantic knowledge of the programming constructs, as opposed to the purely structural
context-free manipulations of the MENTOL primitives. Finally, it allows to build
extensible systems, in which the user constructs and maintaine hiz own environment
of procedures.

1.3 A PASCAL Programming Environment Based on MENTOR

MENTOR is a general system to manipulate structured infoerination. However from
the start we intended as its main application the realization of zn inleractive program-
ming environment in which a programmer may design, implement, document, debug,
test, validate, maintain and transport his programs. Furthermore we intended this en-
vironment o be realistic enough to help in implementing large soft-ware cevelopments,
and provide a programming team with tools for speciflying a design, enfercing a programs-
ming methodology and verifying interfaces. Our intention when we staried the project,

5

“at the end of 1974, was to try and bridge the gap between on the one hand existing
programming tools such as debugging compilers, and on the other hand the vast amount
of theoretical research on semantics of programming languages. At the same time, we
did not want to commit ourselves to any currently proposed programming methodology
(top-down design, structured programming, etc.) or formalism (first-order assertions,
Hoare rules, modal logic), for which a wide consensus did not exist. Rather, we wanted
our system to be general enough to accomodate these various formalisms and provide
tools to implement the proposed methodologies. We chose to implement a PASCAL en-
vironment around the MENTOR system for several reasons. Most importantly, we had
chosen PASCAL as our system implementation language, and we wanted to implement
first the tools we needed ourselves in our development effort. We bootstrapped as soon
as the core of the system was implemented, and this may be one of the most important
practical decisions that forced us to focus on pragmatic issues.

The first step in this effort was the design of a structured editor for PASCAL pro-
grams, implemented in MENTOR-PASCAL. That is, we wrote 2 number of MENTOL
procedures that are the main user commands to construct and modify PASCAL pro-
grams and their documentation. Some of these procedures are used {o move in the ast
of the program according to higher-level concepts. For instance, FPROC is used to
move to the top of a procedure; it first asks the user the name of this procedure. VAR
goes to the immediately surrounding variable declaration part, ete. Other MENTOL
procedures effect simple program transformations. For instance, LABEL is used to label
a statement. It requests the label name from the user, verifies that this label is neither
declared nor used in the current environment, declares it, and finally labels the statement
pointed to by the current marker. All these manipulations are transparent to the user,
as long as no error condition occurs.

We then turned our effort to implementing tools for the normalization and documen-
tation of PASCAL programs. Normalizsing programs consists of arranging them in a
standard, more readeable form, while preserving semantic equivalence. For instance,
declarations may be rearranged so that logically related items be declared in the same
area. Various cleaning-up operations are performed, to get rid of unnecessary structures
(empty statements, compound statements, etc.) This is especially important when a
series of program transformations have been applied mechanically, since ofien they are
easier to program with redundant structure. Of course none of these simplifications
should get rid of comments. Automatic documentation consists of generating comments
automatically at various standard places in the program, generating scope structures,
cross-reference tables, etc. Some of these may involve complicated computations on the
program. The basic philosophy is that all generated documentation is itsell structured,
s0 that it can be used by further processes. We do not elaborate further on normalization
and documentation of programs in MENTOR, and refer the interested reader to [6].

Another area we started to investigate was an approach to debugging by source-
level program manipulation. The idea is that, instead of giving you run-time debugging
tools that have a more or less satisfactory user interface, we shall provide you with
special versions of your source program, with user interfaces built-in. You can compile
and run these special versions using your standard production compiler. For instance, a

6

procedure PROFILE allows you to compute an execution profile of your program as &
side-effect of your main computation. We think this area is worthy of more research.

The effort of designing and implementing 2 bona fide programming environment
based on MENTOR-PASCAL is still going on. Rather than listing in painstaking detail
all that is available to the user in the current state of the system, let us discuss what
is our idea of a satisfactory environment, and what problems we are encountering in its
implementation.

The main philosophy of our programming environment is to build specialized inter-
preters, that help the programmer by doing various computations and rearrangements
on his programs. All these interpreters communicate, between themselves as well as with
the user, through the abstract syntax of PASCAL and its annotations. The development
of a program is conceived as a multi-pass activity, each processor using as assumptions
the normalization and computations effected by the previous passes. For instance, the
“correction” of a piece of program may be progressively checked/debugged according to
the following scenario:

e As soon as the program is input, it is correct as far as its context-free structure
is concerned, and this will be inforced by MENTOR's typing mechanism during any
further transformation.

» Then a “scoper” processes the program, checking for existence of declarations for
the various identifiers used in the program. This pass may be described as “computing
the lambda-calculus skeleton” of the program. .

o When all names are linked to their proper declaration, it is easy to write a
type-checker, that will check for the correct typing of all the programming language
operations. This step is conceptually, and indeed in our scenario, implemented as, a
non-standard interpretation of the programming language constructs. A complete set
of MENT OL procedures for PASCAL scope and type checking has been developed, and
used to develop type-preserving manipulations in MENTOR-PASCAL|7|.

o At this stage it is natural to check for run-time errors, termination, aliases. Here
we need much more semantic information. Most of the checks mentioned are undecidable
in general, but easy sufficient conditions are reasonable to implement. These checks can
be realized by the combination of specialized data-flow analysis routines and a general
symbolic interpreter. A set of MENTOL procedures that check aliasing in PASCAL and
its application to proving sufficient conditions for a procedure to be free of side-effects
is described in [9].

o The hardest part of program verification remains: checking that the program
actually corresponds to what the programmer expected. The traditional approach would
be to implement a debugging interpreter, which would execute directly from the abstract
syntax and various other structures (symbol tables) constructed by the above processes.
A more formal approach would request from the user {o state formal specifications, such
as first-order assertions, and to check the adequacy of the program with respect to its
specifications. For instance, verification conditions may be generated through symbolic
execution, and then input to a theorem prover. The formulas generated, as well as
the proof trees, would of course be in turn ast’s manipulable by MENTOR; the user
could therefore monitor the proof with the same tools he is using for manipulating his

7

programs. This semi-automated approach would alleviate the difficulty of having to
implement a completely automatic theorem prover, a task which is still beyond the state
of the art. Another rigorous approach would be to process in MENTOR a complete
description of the semantics of the programming language, using for instance semantic
equations, and use it to translate a program into its denotation. This allows us to get
away from the idiosyncrasies of the particular programming language used and limit the
proofs to identities between mathematically well-understood concepts. Such a grandiose
meta-system could be conceived as essentially combining the capabilities of the SIs[8|
and LCF|[5] systems within MENTOR.

A similar scenario can easily be designed for program optimization: local optimisa-
tions are performed by program transformations, then more global optimizations are
effected at the source level after doing the necessary computations by MENTOL pro-
cedures. The program is then cornpiled in an object code which has its own abstract
syntax. Final optimizations are performed by transformations on the object code.

The general strategy behind a programming environment as sketched above is to
effect successive refinements on the original program, by going {rom the simpler, better
understood tasks, to the more sophisticated and costly verifications. However, only a
small fraction of the above ambitious plan has been actually impiemented in MENT OR-
PASCAL. There are mostly two reasons for this, which are actually complementary
aspects of the same phenomenon:

1) Even the easiest and most naiural program transformations are hard %o imple-
ment in 3 totally safe way in the current state of baroqueness of programming languages.
Forinstance, it is impossible in PASCAL to separate scope-checking from type-checking
because of the with construct. The lack of orthogonality of the language makes it a
complex and costly process to do but the most trivial program transformations. For
instance, replacing tail recursions by gotos in recursive procedures with call-by-value
arguments represents about 200 lines of MENTOL procedures. Again, the assumption
must be made (and checked) that no with statement occurs.

2) The more mundane transformations have proved to be challenging »nd interest-
. ing research problems. Their careful implementation is often crucial, since many com-
putations involved turn out to be very time consuming. An especiaily interesting area of
applications is the transport of programs. Our largest application so far was to transport
MENTOR from its original IRIS 80 implementation to its PDP 10 version. This is per-
formed in a completely mechanical manner by a set of MENTOR procedures. This way
any new release of MENTOR can be foilowed (after a few hours of somputation) by a
release of a totally compatible PDP 10 release.

The conclusion we draw from this state of affairs is that no really satisfactory
programming environment will exist for ugly languages. On the other hand, if is clear
that purely applicative languages are not about to be widely accepted; in the real world
of programming, complex data structures with sharing and complex conbrol structures
and parameter passing mechanisms are the rule rather than the exception. We are not
arguing in favor of simplistic toy-programming languages, but the point is rather that
the study of program transformations provides interesting guidelines for the design of
future programming languages. As might be expected, these desiym criteria are closely

8

related to those based on semantic considerations[10]. We have good hope that the state
of affairs will improve with the advent of new programming languages whose design will
have benefited from programming languages semantics research and experience gained
with systems such as MENTOR. A positive step in this direction has been taken with
the ADA language development, since the design of the language included a formal
semantics definition. It is interesting to note that this formal semantics is based on a
MENTOR-compatible abstract syntax definition.

2. The Main Design Decisions in MENTOR

2.1 The abstract syntax

The notion of abstract syntax is familiar to any compiler writer. It is a tree-like
representation of the structure of programs. Operators of the abstract syntax are the
basic building blocks of the language. We want to strongly emphasize that abstract
syntax is NOT parse trees. It is indeed very different conceptually, although our trees
can be obtained by collapsing and normalising parse trees. Here are a few important
differences:

1) Lists are represented as one list node, not as binary trees

2) The reserved words of the language occur as node labels, not as leaves

3) Non-terminals of the grammar do not generate nodes. Certain correspond to
sorts, others do not appear at all. For instance, an identifier may occur directly as
an expression, the intermediate levels of parsing such as simpleexp, factor, term being
collapsed.

4) Parentheses are NOT part of the structure, they are generated optionally by the
- unparser if the context requires it, because of precedence reasons for instance.

Point 3 is particularly important: every node of the abstract syntax leaves a con-
cretely visible mark in the print-out, and this is a big help for the user going up and
down the tree. Thit makes MENTOR significantly different from previous structured
editors such as Hansen's, where the user moved around in his program with the help of
gramimar menus.

Point 4 is important too. For the MENTOR user an exp is an axp. Precedence
relations are left for the unparser to worry about. For instance, with the example above:

PETOP F@MULT;BiC&J
[EXP] :Y+1;,

*U;P,
Y:i=(Y+1) 2

Similarly, the problem of PASCAL's dangling else completely vanishes:
9

*QTOP B2 &, %we change the then part of an if

[BTAT] : IF Y<X THEH Ri=Y;, ¥into 2 conditional statement
PQTOP P)
1T X>0 then

AT Y<X then X:=Y else %not® the extra elss generated
elos Z:=0

MENTOR trees are not LISP trees either. Even for the LISP language, the
coding of programe as binary trees with atom leaves is rather remote from the abstract
structure of the program. Also points 1 and 2 above apply. Our structure is much
richer structurally; for instance, in MENTOR-PASCAL, we have about 100 operators,
whereas LISP structures have only one (cons). For these reasons, we consider MENTOR
significantly different from say the INTERLISP editor.

So much for the choice of the general formalism of abstract syntax. Of course
for each particular language there is a certain degree of freedom in the design of the
patticular operators and sorts. As we mentioned above, it iz crucial that almost every
operator add some concrefe reprasentation to the unparsing of a piece of program. An
important, but not mandatory, requirement is that the unparsing of an operator should
not depend too much on the contexzt in which it occurs. This requirement is met by most
operators is MENTOR-PASCAL, except that certain nodes are sometimes surrounded
by parentheses according to the context. There are mostly two occurrences of this
phenomenon:: .

a) parentheses surrounding list nodes may change with the context. For instance,
an lstat is usually unparsed as a compound begin - end, except when appearing as
the loop of a repeat.

b) parentheses may be needed for precedence, or dangling structures such as shown
above for the else. Our unparser always generates the minimum number of parentheses
needed for a correct parsing. This is the only normalization {besides indentation of
course) that is completely automatic and over which the user has no control.

When designing an abstract syntax for a specific language, the following trade-off
occurs. Various constructs of the language may be represented by the same concrete
- strings. Now there is a choice as to whether you want to separate these two constucts
as two distinct operators, or if you want to merge them into one. The maximum
discrimination has the advantage that your structure will have a finer grain; for instance,
you will catch by the find command instances of one construct independently from
instances of the other. On the other hand, certain program transformations will be
harder, and the user has more constructs to learn. For instance, should parameter
declarations use the same construct as variable declarations? As might be expected,
referential transparency and orthogonalily are imporbant properties for a programming
language to possess for a completely satisfactory design of its abstract syntax. '

We feel that allowing arbitrary annotations of nodes by absiract syntax trees in
specialized languages was an important design decision. This makes our system open
ended to various developments, without interfering with the tcols already designed: a
given interpreter may have access to certain annotations, the others being invisible. For
instance, certain annotations are comments for the user to see. Others may be pragmats

10

for the compiler, specifications in some formal language for use by a verifier, data
structures for control flow analysis, original code commenting some optimised sections,
example runs, assertions for run-time checks, etc. It is important that there various
structures do not interfere with one another and with the program itself.

It may be appropriate to discuss here why we decided to stick o trees, and not go
to more complicated graph structures, such as (shared) dags or control flow graphs. The
main reason is that we know how to keep the integrity of these context-free structures
in an incremental way. For instance, we could imagine keeping the programs correct
according to the full PASCAL syntaxz, including type checking for instance. DBut,
aside from the fact that it would be a lot more costly to maintain all the information
needed for checking this correctness during the edition of the program, this would have
the additicnal (and to our opinion insuperable) drawback that it would preclude the
development of programs but in the most awkward fashion.

2.2 MENTOL

MENTOL is our tree-manipulation language. The above description of its main
commands gives a flavor of MENTOL programming. The salient features of the language
are:

a) it is an interactive language, used for editing; but it may also be used to program
lenghty batch computations.

b} it is not applicative; MENTOL constructs divide into expressions, that are simply
evaluated for their result, and commands, which have various side effects.

c) it is a specialized language, for manipulating trees; it has no pretense of being
general-purpose, although it has rudimentary arithmetic capabilities.

d) it has reasonably good user interaction facilities: there are various debugging
aids such as a trace package, an interrupt facility, and the user may execute in coroutine
with programs, a very handy feature for “controlled” program manipulation.

e) MENTOL has its own abstract syntaxz. It is therefore possible to edit and develop
MENTOL programs under MENTOR. Actually a standard facility exists to go back and
forth between a PASCAL editing session and a MENTOL editing environment, in which
the (advanced) user may modify his PASCAL manipulation programs.

f) File manipulation primitives are provided. Several formats of files are known to
MENTOR: standard text files, that may be input {through parsing} and output (through
unparsing). Tree files, that keep asts from one session to the nexi without the need to
reparse. MENTOL files, containing MENTOL procedures, and a special case of which
is used as the initialisation file, loading a specific user’s editing prelude.

Pattern matching deserves a little discussion. As we already insisted, pattern
matching is a fundamental operation in MENTOL. The user may construct any tree
pattern, i.e. any ast with metavariables occurring anywhere. However, metavariables
may occur in only one occurrence. This condition is required because of the side-effects to
the corresponding markers. Note that this is not really a restriction, since a primitive is
provided for testing equality of trees. No list metavariables are provided at the moment,
because associative pattern matching is a complicated operation (a tree may match a

11

pattern in more than one way if such list variables are allowed), and because it was never
strongly felt as desirable, except probably for orthogonality. But we want to stress the
" considerable pattern matching capability we have in MENTOR, as opposed say to string
searching in a more conventional editor. Anybody who tries to trace uses of identifier I
in his program {as opposed to all occurrences of character I, in other identifiers, reserved
words, strings and comments!) will understand this point. Furthermore the MENTOL
pattern matching is fast, because types are used to focus the search on the relevant part
of the trees. For instance, MENTOR knows that in PASCAL statements are disjoint
from declarations, and may not occur in expressions. 1t will therefore focus the search
for a statement on a narrow region in the program tree (and of course comments will not
get in the way either). We may therefore argue that tree pattern matching is actually
faster than string pattern matching. We believe this is one of the main arguments for
having typed rather than untyped structures.

It is clear that MENTOL is not the last word in tree-manipulation languages.
However, we wanted to acquire a reasonable amount of experience with writing program
transformations in MENTOL before drawing definite conclusions about such languages.
All in all, MENTOL has well served its purpose: it is easy to learn, it is fairly easy to
debug, it is fast enough for editing. However long MENTOL procedures are hard to,
read, and a compiler is clearly needed for complicated transformations done in batch
mode.

2.3 A special word for screen editor fans.

One of the most commonly heard criticisms of MENTOR is that it should be
possible to edit programs on your screen in the same way as for instance with the EMACS
editor. We do not believe that this would be an easy task, and we do not even think
that such a facility is really desirable.

The first point concerns portability. In the initial MENTOR design, we had pianned
to define a screen as partitioned between several areas, and to have the text under the
current marker represented specially on the screen. We went as far as implementing
these displays, but then changed our minds, mostly because it was very hard to distribute
our system. We reverted to teletype-compatible output. MENTOR can be transported
to any machine with any interactive operating system (modulo the PASCAL transport
problems, of course). No special terminals are needed, but of course the system will be
more pleasant to use if the rate of transmission is higher, so that it is not too costly to
have the current marker expression printed often.

The second point concerns the difficulty to maintain two separate representations.
Remember, the text printed on your screen is nowhere kept; it is just computed on
demand by the prettyprinter. The ability to manipulate screen images would force us to
keep the printed text internally, and to try and link it to the corresponding ast. After
some modification is effected on the screen, the parser would have to be called in action
to validate the changes before updating the tree accordingly. The difficultics may not
be insurmountable, but it is not clear that the end result would be worth the effort.

12

Finally, a major drawback of mixing structured editing and display editing is that
the user would have to learn how to use two command languages instead of one. We
believe that most users would stick to either mode, but would not like mixing them.

Conclusion

MENTOR has been used for most of its own deveiopment and maintenance. Various
groups at INRIA use MENTOR ac their main programming too! for developing FASCAL
' programs. MENTOR has been distributed in various research and teaching institutions.
In particular, it is being used at Université de Toulouse for teaching programming in
PASCAL. Using MENTOR requires some training. It seems that in the average a
PASCAL programmer needs about a week to get accustomed to this new world of trees.
Past this period, few return to the standard tools.

It is our thesis that using an abstract manipulation system as the core of a progrars-
ming environment is a good paradigm. However, it is very important that the user may
correspond to the system through the concrete syntax he is used io: he shouid be able to
visualize his trees with unparsing, and conversely input his program lez$ with parsing.
The abstract syntax manipulation language should have a powerful procedure abstrac-
tion mechanism, permitting to extend the system at will with complicated semantic
checking, such as data flow analysis and ultimately formal proofs. It is important to be
able to manipulate structured annotations, linked to the structure of the program, but
conceived as separate entities and not as extensions to the user's programming language
syntax. We envision a satisfactory programming environment ae unifying uader a com-
mon set of tools the whole range of a programming team's activity: design, development,
documentation, debugging, maintenance and transport. However the long range goal of
software reliability will be attainable only when new programming languages, designed
along sound semantic principles, will be available.

Acknowiedgments

MENTOR was designed and implemented at IRIA by the authors of ihis paper.
Various other people have been invoived occasionally in the MENTOR project: V. Char,
J.J. Lévy, B. Mélese, E. Morcos-Oury, Y. Sugito.

References

1. Donseau-Gouge V., Huet G., Kahn G, Lang B. and Lévy JJ A Struciure wri-nied
Program Editor: a First Step Towards Computer Assisted Programmaing. inter-
national Computing Symposium 1975, Antibes, France. Also Rapport Laboria 114,
Avril 1975, IRIA.

2. Donzeau-Gouge V., Huet G., Kahn G. and Lang B. The MENTOR User s Maritiali.
Available from INRIA, Rocquencourt, France.

i3

3. Donzeau-Gouge V., Huet G., Kahn G. and Lang B. Introduction au systeme
MENTOR et a ses applications. Actes des Journees Francophones sur la Certifica-
tion du Logiciel, Gendve, Janvier 1879. '

4. Donzeau-Gouge V., Huet G., Kahn G. and Lang B. The MENTOR Program Mans-
pulation System. In preparation.

5, Gordon M., Milner R., and Wadsworth C. Edinburgh LCF. Report CSR-11-TT,
Computer Science Department, Edinburgh University, 1977.

6. Kahn G. Normalisation et documentation des programmes. Note technique, Mai
1978, IRIA.

7. Mélase B. Manipulation des programmes Pascal au niveau des concepts du langage.

 These de 32me cycle, Université d'Orsay, Juin 1980.

8. Mosses P. SIS - Semantics Implementation System. Reference Manual and User
Gutde. Report DAIMI MD-30, Computer Science Dept., Aarhus University, Aug.
1979.

9. Morcos-Oury E. Etude des ef fets de bord des appels de procedure et de fonctions
dans le langage PASCAL. Thése de 32me cycle, Université Paris XI, Oct. 1979.
10. Tennent R.D. Language Design Methods Based on Semantic Principles. Acta

Informatica 8 {1977), 97-112.

14

3

