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MINIMIZING A DIFFERENTIABLE FUNCTION
OVER A DIFFERENTIAL MANIFOLD

by

Daniel GABAY

ABSTRACT

We present in this paper numerical methods for optimization problems cons-
trained by nonlinear equalities. In the first part we define intrinsically
the gradient field of the objective function on the constraint manifold and
analyze descent methods along geodesics, including the gradient projection
and reduced gradient methods for special choices of coordinate systems. In
particular we generalize the Quasi-Newton methods and establish their super-—
linear convergence.

In the second part we present an efficient approximation of the Quasi-
Newton method along geodesics where the feasibility of successive iterates
is improved instead of being enforced. The method uses an exact penalty
function and converges globally and superlinearly. Its relation with multi-
pliers methods and recursive quadratic programming methods is investigated,

and its advantages evidenced.

RESUME

On présente dans ce rapport des méthodes numériques pour les problémes
d'optimisation sous contraintes d'égalité non-linéaires. Dans la premiére
partie on définit intrinséquement le champ de gradient de la fonction ob-
jectif sur la variété définie par les contraintes et on analyse des méthodes
de descente le long de géodésiques ; elles incluent les méthodes classiques
du gradient projeté et du gradient réduit qui correspondent & des choix par-
ticuliers de systémes de coordonnées. On généralise notamment les méthodes
quasi-Newtoniennes dont on &€tablit la convergence superlinéaire.

Dans la seconde partie on présente une approximation efficace de la méthode
quasi-Newtonienne le long de géodésiques ol 1'admissibilité des itérés successifs

est seulement améliorée au lieu d'@tre strictement imposée. La méthode utilise



une fonction de pénalisation exacte et comnverge globalement avec une vitesse
superlinéaire. On étudie aussi les relations entre cette nouvelle méthode et
les méthodes de multiplicateurs ainsi que les méthodes utilisant des program-

mes quadratiques récursifs mettant ainsi ses avantages en évidence.
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MINIMIZING A DIFFERENTIABLE FUNCTION
OVER A DIFFERENTIAL MANIFOLD
PART I : DESCENT METHODS ALONG GEODESICS

AND PRACTICAL IMPLEMENTATION®

. Daniel GABAY
Laboratoire d'Analyse Numérique, Université P. et M. Curie (PARIS VI)

and

Institut National de Recherche en Informatique et Automatique
Domaine de Voluceau, 78150 Le Chesnay (France)

ABSTRACT

To generalize the descent methods of unconstrained optimization to the cons~
trained case, we define intrisically the gradient field of the objective
function on the constraint manifold and analyze descent methods along
geodesics, including the gradient projection and reduced gradient methods
for special choices of coordinate systems. In particular we generalize

the Quasi-Newton methods and establish their superlinear convergence ; we
show that they only require the updating of a reduced size matrix. In prac-
tise the geodesic search is approximated by a tangent step followed by a
constraints restoration or by a simple arc search again followed by a

restoration step.

* presented at the IOth International Symposium on Mathematical Programming,

Montré&al, August 1979,




1 - INTRODUCTION

This paper shares with a previous article by the author together with
D. Luenberger (Ref. 1) the purpose of extending the well~known gradient-related
methods for the unconstrained minimization of a real-valued function on IR® to

the nonlinearly constrained problem
(1.1) Min {£(x) | x e R" : e, (x) =0 ,i=1,2,...,m},

where m < n, f and c; are real-valued functions on R" and assumed to be €°
differentiable (g 22 unless otherwise specified). Denoting by ¢ the map from
R™ into R™ of component ;s we also assume that the following regularity
assumption holds : 0 is a regular value of the map c, i.e. the Jacobian

¢' (x) e¢iGRn,lRm) of ¢ at x is of full rank m for all x ¢ C = c-I(O).

In (Ref. 1) this program was fullfilled in the following way. The regularity

assumption implies that there exists an m x m submatrix of the Jacobian matrix

ac.
Ax of ¢ at x ¢ C which is non-singular; say B = (3?3)’ i,je€I = {1,...,m} and let
J = N-I. - J

. Ic:le.ntifle-n with R® x R & and set x = (xI, XJ)a Ax = [B,D].
According to the implicit function theorem, there exist a neighborhood
Ux =WxVofx= (xI, xJ) in R™ x R™ ™ and a £° map wx : V + W such that
yr = wx(yJ) if and only if c(yI, yJ) = 0. The restriction of f to Ux ncC

can thus be represented by a €% real-valued function Q:Vc R*™ 5 R defined by
X
(1.2) P,.(2) = £(y (2), 2).

Suppose now that x" ¢ C is a local minimizer of f on C in the neighborhood
*

g
of the (unconstrained) minimization problem on the open set V

* * k., * * s s .
Ux nCof x. Thenmx = (xI, xJ) with x wx(xJ) and x; is a local minimizer

(1.3) Min Qx(z).
zeV

Applying the gradient-related methods to the unconstrained reduced problem
(1.3) we construct a sequence of approximations {zk} converging to x; defined

iteratively by

(1.4) z =z 4+ tk pk,



where pk is a descent direction based on gk the gradient of ¢ at zk, and tk
a stepsize selected by a line search of the functiom j(t) = ¢ (z + t pk) for

t > 0. In the original SpacelRp jteration (1.4) corresponds to the scheme

k+1 k k

k+1 k+1
(1.5 b) xg w(xJ ).

The gradient of‘¢x can be expressed in terms of the original data of the problem

k k T .~

(1.6) g = v, fx) - D (B T

)T v, £ (x5

and is called the reduced gradient for the partition:.. N =1 & J ; the stepsize

=R must be selected by a search along the arc of curve starting from xk given by
k k k k
(1.7) x(t)=(w(xJ+tp),xJ+tp)

to produce a sufficient decrease of the objective function. With this framework,
Gabay and Luenberger proposed idealized methods based on the reduced gradient
extending the steepest descent method, Newton's method and a Qua51—Newton
method and analyzed their convergence propertles. Notlce that if x" ¢ U knC
it is still possible to find a new approximation xk+1 accordlng to (1. 5) by
restricting the search along the curve (1.7) to an interval [0,t] such that

k 1 ‘e U kN C; at xk+1 a new partition N =1 & J can be constructed and an

iterate xK is eventually reached such that x" € UxK nC.

This framework exploits the fact that the constrained set C is locally
diffeomorphic to an open set V of the Euclidean spaceanwm and that the
corresponding pieces of IR® ™ can be "glued together" by diffeomorphisms. This
informal description characterizes C as a differential submanifold of R®. The

n - m coordinates z are said to form a local coordinate system of the manifold C

around x.

In this paper we generalize the approach of (Ref. 1) by defining directly
descent methods for the minimization of the real-valued function f over the
differential manifold C, independently of the choice of coordinate systems. In
order to define the gradient (field) of £ on C we must endow C with a

Riemannian structure (we similarly use implicitly the Euclidean structure of R"

to deflne gradient-related methods for unconstrained mlnlmlzatlon) Such methods

k k+1
consist in generating from an approximation x 2 new iterate x on the geodesic
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curve starting from xk and tangent to a direction defined by the gradient of £
on C at xk. This approach was inaugurated by Luenberger (Ref. 2) to study the
convergence of Rosen's Gradient Projection method (Ref. 3); in (Ref. 2) the
Riemannian structure on C is the one induced by the Euclidean structure of R”.
In order to define a family of methods which includes both the Gradient
Projection and the Reduced Gradient method we define in this paper descent
methods for a general Riemannian structure on C; our approach is inspired by the
recent work of Lichnewski (Ref. 4) where a gradient and a conjugate-gradient

methods along gecdesics are analyzed.

In Section 2 we precisely show that, under the regularity assumption,
C = c-l(O) is a differential manifold and introduce a nonlinear change of
coordinates in R® which is useful for the practical implementation of our
methods. We also give an estimate of the diameter of the neighborhood UX nC
on which a coordinate system around x can be defined. Section 3 is of a tuturial
nature and presents important results on the Geometry of a Riemannian manifold
which are used in our analysis. Section 4 constitutes the core of the paper.
We first establish optimality conditions in term of the restriction of £ to the
manifold C and show their relatioms with the traditiomal Lagrange multipliers
rules. We then define the gradient field of f on C and show how it depends upon
the Riemannian metric; we thus defined the reduced gradient in a local coordinate
system which yields Abadie's reduced gradient used in (Ref. 1) and Rosen's
projected gradient as special cases. We then define the steepest descent method,
the Newton's method and Quasi-Newton methods along geodesics and analyse their
convergence properties. In section 5 these methods are specified in the frame-
work of a coordinate system. The analysis of sectiom 2 then provides a practical
scheme for the implementation of the algorithms which can be interpreted as the
sequential tangent-restoration approach introduced by Rosen (Ref. 3) and used by
Abadie, Guigou (Ref. 5), Miele and al. (Ref. 6). We give in particular two
efficient versions of a Quasi-Newton method for constrained minimization based
on a Generalized Broyden-Fletcher-Goldfarb-Shamno update formula. Finally in
Section 6 we indicate how our approach can be used to handle problems with

inequality constraints.



2 - THE CONSTRAINED SET AS A MANTFOLD

In this paragraph we study the properties of the constrained set
C = c-l(O), defined by the map ¢ : R" > R (m £ n) assumed to be g°
differentiable (o = 2). Recall that 0 is a regular value of c¢ iff
c'(x) € é‘ﬁﬂRn, lRm) is of full rank m for all x ¢ C.

THEOREM 2.1 Let ¢ : R" +R" (@ <n) be a & map such that 0 is a regular value

of ¢. Then the set C = c-](O) is an (n - m) dimensional submanifold of R"
of class?7! K

Proof : To prove this result, often referred to as the regular value theorem,
we follow Milnor (Ref. 7) and introduce a nonlinear change of coordinates
in [Rn which will be useful for our analysis.

Fix a point x ¢ C; thus c(x) = 0. Since 0 is a regular value of c, the
derivative c¢'(x) ¢ a?f(an, lRm) must map R" _g_r_xt_orRm. The nullspace JTc' (x)]
is therefore an (n - m) dimensional subspace of R". Now choose a linear map

y Zx ea‘f(JRn, IRn-m) that is nomsingular on this subspace, i.e. such that.

(2.1) uV[Zx] n #Tc'(x)] = {0}.

Define the mapping s, ¢ R® - R® x RS © by

c(y) a
(2.2) sx(y) =<Z (y_x)> for all y e R .
X .
Notice that sx(x) = 0 and that the derivative s}'{(x_)_ € 30Rn, an), given by
the formula

' (x) (y)

(2.3) s}'{(x) ) =.< > for all y ¢ IRn,

Zx(y)

is non singular by (2.1).

The inverse function theorem implies that s, maps some neighborhood UX of x
in R" diffeomorphically onto a neighborhood W x V of 0 in R® x R™ . Under
the change Of, coordinates Sy the set C is transformed locally in the

(n-m) dimensional subspace {0} x RY ™ of R” since s, maps Ux ncC
diffeormorphically onto {0} x V. The map Zx defines by restriction a

coordinate system of C around x on the coordinate domain Ux n C and the

components (zl""’zn—m) of the image z = Zx(y-x) of y e U nC are called the

local coordinates of y. The inverse diffeomorphism s;1 allows to define a



local (non linear) ﬁafametrization ex V> Ux n C of C around x by

(2.4) y =8 (2) = s;] ©, z).

Thus C is an (n-m) dimensional manifold. Provided the map Z is chosen as a
o-1
g ° differentiable function of X, the change from local coordlnates around X

to local coordinates around x' (such that U nU.,nC # @), defined by

Zx, (e} ex : ZX(UX n UX' neg) =~ zxv(Ux n va n C),

is eo—éifferentiable and the manifold C is of class 8“71 | |

Since we are mainly interested by computational procedures we may wish to
specify further the choice of the map Zk defining the coordinate system of C.
Let us denote by Ax'the m x n Jacobian matrix of ¢ at x, while we keep Zx to
denote the (n-m) x n matrix representing the linear map Zx' The Jacobian matrix

of the map S is the n x n matrix Sx given in partitioned form by

Ax
(2.5) s, = [ ) ]

X

Notice that the regularity assumption implies that rank (Ax) =m for all

X ¢ C. Recall that a right inverse M for a & x n matrix M of full rapk £ S n

is a n x £ matrix of full rank £ such that

Such an inverse exists but is not unique. The following result relates the choice
of Zx (and Z;) to a particular choice of a right inverse A; of Ax in order to

. -1 . .
express the inverse Sx is a simple form.

PROPOSITION 2.1 Let A; be a right inverse for Ax' Then there exists an

(n=m) x n matrix Zx of full rank (n-m) and a right inverse Z; satisfying

(2.6) Z . A_ =0 s A_.Z_ =0

such that the matrix Sx given by (2.5) is non-singular and its inverse is
Eiﬁen by
=[a,21 . &

(2.7) X x’ Tx
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Proof : A necessary and sufficient condition for the non-singularity of S, is

(2.8) @) adla) = (0.
Since A is of full ramk m,W’(A ) is a subspace of R® of dimension n - m.
It follows from (2.8) thatJ/'(Z ) must be a complement of uV(A )} in RY, i.e.
an m-dimensional subspace; hence Z must be of full rank (n-m) The rlght

inverse Ax being of rank m, its columns span a subspace R(A ) of R" of

dimension m such that
H) o R = 0}
by definition of a right inverse. Hencerjf(zx) =R(A;), yielding
z .A =0,
X X
A similar argument shows that &(Z;) =c]ZAx), i.e. A z_ =0.
Formula (2.7) is established by observing that
y ='A; a+ Z; 2
satisfies the equation

e ()

m n-m . . . . .
for all a ¢ R, z ¢IR and is the unique solution since Sx is non

singular. N
Define the n x n matrix Px by
(2.9) Px =I1-4 Ax'

It is the matrix of a projection onto J/(Ax) since A P_= 0 and the matrices

Z, .and Z; defined by Proposition 2.1 satisfy

(2.10) Z_ .2 =P_.



Example 2.1 : (Partitioned Right Inverse). After possibly a permutation of

columns, the matrix A can be partitioned into
(2.11) AX = [B,D] ,

such that B is an m x m non-singular matrix. It is easy to verify that

(2.12) A =
x 0
is a right inverse for Ax and that
_ -8
(2.13) z, = (o, In-m] > 2, = . ]
n-m

satisfy proposition 2.1. In this case the local coordinate system around x is
formed by some (n-m) coordinates iann-m; it is the system used by Gabay-

Luenberger (Ref. 1).

From a computational view point this choice requires the inversion of the
m X m matrix B which can be performed by Gaussian elimination with partial
pivoting in the order of m /3 multiplications; but the partition selected may

produce a ill-conditioned matrix B even though Ax is not ill-conditioned. B

Example 2.2 : (QR pseudo-inverse) A classical choice for a right inverse of A

is the Penrose pseudo-inverse A , which in the case of a full rank matrix A can

be expressed as

+ T T, =1
(2.14) Ax Ax (AX Ax)

Notice that the matrix Px'defined by (2.9) is now

T,-1
Px I A (Ax Ax) Ak’

the orthogonal projector onto cM%Ax) in the Euclidian spacean. Relations (2.6)

are satisfied by choosing'zx such that cAﬁ(Zx) is the orthogonal complement of
‘JP(AX) inR" and taking for Z; its pseudo-inverse. An equivalent characterization

of Z 1is
X

T, _
(2.15) ) (z,) = J/’(Ax)



and a particularly conmvenient choice satisfying (2.15) conmsists in taking for
columns of Zi an orthonormal-basis of oV(Ax); in this case notice that
Z; = Zi and hence
(2.16) 2.2 = 1

From a computational viewpoint, notice that the formula (2.14) involves
the inverse of a matrix of condition number UK(A)] and should be avoided in
practice. Besides,while it is theoretically possible to generate the columns of
Z by Gram—Schmidt orthogonalization method, such a procedure is numerically
unstable. It is however possible to obtain A and Z in a numerically efficient

way once Ax is factorized as
(2.17) Ax = A Q,

where Q is an (n x m) orthogonal matrix (Q QT = QT Q=1I) and A an (m x )

matrix of the form
A = [L, 0]

with L (m x m) lower triangular. This "Q-R decomposition" can be carried out.in

a numerically stable way using Householder's transformations with approximately

(n - m/3) m2 multiplications (see e.g. Stewart (Ref. 8)).

Partition Q into

[Ql ]
(2.18) Q =
Qy

where dl and Q2 are respectively m x n and (n - m) X n submatrices of Q.

The pseudo-inverse (2.14) can now be efficiently computed according to
+ _ o .-
(2.19) A Q, L,

while the columns of Qg form an orthonormal basis of Jf(Ax); hence

- T
(2.20). Zx Q2 R Zx Q,
. T . -
satisfy the conditions of Propositiomn 2.1. Notice again that Z_~ Z_ = 1. B



Remark 2.1. The singular value decomposition is commonly used to compute the
pseudo-inverse of a matrix but requires more computational effort than the
Q-R decomposition (see Steward (Ref. 8)). It is useful however when the matrix

is not of full rank a situation that we have excluded by hypothesis. N

Remark 2.2. We must observe that if the map ¢ is a 80 differentiable, the map Zx
satisfying Proposition 2.1 can only be chosen'ﬁo-] differentiable with respect
to x. The resulting coordinate systems on C give only a 80-] differential
structure to the submanifold. Since ¢2 2, C will still be a differential
manifold. W

We conclude this subsection by giving an estimate of the coordinate domain
U# n C in terms of the map c. Take Ux < B(x,a), the open ball in R” of centre x

and radius a > 0; let B =||A;” , £ =|lz;H ,

y; = Max Max [ @G|
XeB(x,a) Iyl =1

where ||.| stands for the %, norm; let

1/2 .

THEOREM 2.2. The local parametrization ex’defined by (2.4) around x maps
diffeormorphically the neighborhood B(0, 1/(2 y£)) of the origin in R ™

onto a neighborhood Ux n C of x in C where U, < B(x, 1/(8y)). &

Proof : The map S, given by (2.2) defines, by restriction, a diffeomorphism
of U, n C onto a neighborhood V of the origin:iannﬁm. To get an estimate
of U%, we look for an estimate of V such that given z ¢ V, there exists a
unique y € C such that sx(y) = ( 0,2),
Let ||z|]| = p . Proposition 2.1 shows that we can look for

(2.21) y=x+2 z+ AW,

. m
with w ¢ R such that

(2.22) h(w) = c(x + z; z + A; w) =0,
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We shall show that if p < 1/(2 Byg) there exists a unique solutiom of (2.22)
in B(0,1/(2 BZY)) by a constructive proof.

Consider the iteration

(2.23) I k=0,1,...

. o m . e
starting from w = 0 ¢ R . We construct a majorizing Sequence {tk} of non

negative real numbers, i.e. such that

@20 ¥Els g for all k.

Applying Taylor formula to the map ¢ around x we obtain

]
(2.25) Wl e —‘/ (1=t) c"(x + t Z_ z + t AL W) (2. z+ A )
a X X ‘ X p 4

- -k
(Zx z+ A W ) dt;
define the sequence {tk} by the iteration

=X 2 =
(2.26) tk+1 =3 (8 tk + ng)n k. 0,‘1,...,

starting from t_= 0. If ||wkH < t*, (2.25) shows that ||wk+ln < &'

and by induction {tk} is actually a majorizing sequence. It is easy to

show that 1if

1
2.2 .
( 7) p = 2 BYE ’

the sequence {tk} is monotonically increasing and comverges to

1/2
(2.28) Fod -8y - (1-28v80)
P 82Y

H
k . . *
hence, w remains in B(O, tp) for all k.

. k+ k . .
Consider now w L. w , which can be written

k=1

(2.29) RN S S A TC A Al

@ = (0] - )+ [T - Bt (0) JE= 1.
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Assuming the induction hypothesis (trivially satisfied for k = 1)

k k-1
(2.30) Hw = w St Tty

we obtain, with the use of Taylor formula, the estimate

(2.31) I wk|ls 12(—[ tsz(t:k - tk_])2 + 2 g tremy (B = Epoy)

+28vp (g, - t,_)]

_Y ’ 2 _ 2. L
. k+1 k _
which proves that (2.30) holds for all k and that |[[w = - w | ~0
since ty /’t:; hence the convergence of the sequence {wk} defined by

(2.23) to w such that ||w|| < t:, unique solution of the equation (2.22) in
B(0, t:*) where tg*is the other fixed point of (2.26) given by

(2.32) t** = 1 - BYED + (1 - 2 BYED)]/Z
P 82y .

Notice that for the boundary value p

t*,
2 5

1/ (2 8YE), £3% = €2 = 1/(2 8%).
Then for any z ¢ B(0, 1/(2 Byf )) there exists a unique solution w of (2.22)

in B(0, 1/(2 8%y)) and ||y - x|| = llz, z + a_wl < 1/8y . &

Remark 2.3. The iteration (2.23) can be interpreted as a secant(or modified

Newton) method for solving the equation (2.21) where the Jacobian h'(wk) is
approximated by the identity matrix.
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3 - THE GEOMETRY OF THE CONSTRAINED MANIFOLD

3.1. = A Riemannian structure on C

Given a point x ¢ C we define the tangent space Tx to the manifold C at x

as the (n-m) dimensional subspace of R™
n
3.1) T, ==N?Ax) {veR" | A v=0}

1f we choose the local coordinate system defined in the neighborhood
Ux n Cof x in C by

(3.2) z(y) = Zx(y - X) for vy e Ux n C,

we have, as noticed in the proof of Proposition 2.1.,¢”1Ax) =5R(Z;) and

(3.3) T, = {Z; p | peR¥™ cR™.

The equivalence of (3.3) with (3.1) shows that this last definition is
independent of the coordinate system (see e.g. Guillemif, Pollack (Ref. 9))

It is c;nvenlent to endow T with a positive bilinear form
Yy : Tx X TX + R, called the Rlemannlan metric. The form Yy is a smooth function
of x and defines a Riemannian structure y on C. A natural choice conglsts in
taking

E n
(3.4) Y (VoW) = <v, w> Vv, wel cR

where < , > denotes the ordinary scalar product oan yi is called the
Riemannian metrlc on C induced by the Euclidean structure of R®. In the local
coordinate system (3.2), the induced metric can be expressed as

vp, q e RTT

E - - T -
Yo (2 Py 2, @) = <Py 20 - Iy Py
which coincides with the ordinary scalar product oann iff Z . Z; =T

(see example 2.2. for such a case). It may be convenlent to dlrectly define

the form in the local coordinate system by

(3.5) Yx(zx P Zx Q) = <p, ¢ _ Vp, 9 €R .
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Notice that Yﬁ can be viewed as the Riemannian metric on C induced by a scalar
product in R® defined locally around x by
<, w>, =<5 v, S w»_ V v, w e R
s s % b4 x n H 3
X
where S, is the matrix defined by (2.5). A general Riemannian structure on C can

be defined in a local coordinate system around x by
(3.6) Y @, zl Q) = <p, G_ ¢>

%, x x 7k T Tk YV o-m’
where Gx = (gij) is a positive definite symmetric matrix of dimension n - m,
smooth function of x. (The terminology smooth is used here and in the following
for continuously differentiable to a sufficiently large order for all formulae

to have sense).

3.2, -~ Covariant Differentiation and Geodesics

We define a vector field V on the submanifold C of R™ as a smooth map
V; C +R" such that V(x) € Tx for all x.

Let x ¢ C. Given a vector v ¢ Tx and a vector field W on C, we define a

new vector Dv W e Tx’ called the covariant derivative of W along v; the

application t (W) : T_~ T_ defined by

(3.7) TX(W)(V) =D W

must satisfy

(3.8a) rx(W)(aI v, *a, v2) =0 rx(W)(vl) +a, rx(W)(vz)
(3.8b) Tx(fW)(V) = f£(x) tx(W)(v) + £1(x) (v) W(x)

where f is any real-valued smooth function on C, and specifies an affine

connexion on C at x. Let now V and W be vector fields on C; we define the field

DVW, the covariant derivative of W with respect to V on C, by its values

(3.9) DVW(x) = DV(W) where v = V(x) ¢ Tx

The affine connexion is thus specified globally on C (see Milnor (Ref. 10)).
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Given the local coordinate system (3.2) around %, the column vectors

e, (i=1,..., n-m) of the matrix Z; form a basis of Tx inIR®. The ﬁ'c-l maps

Ei . ¢ >R" such that Ei(x) = e, are vector fields and are said to form the
associated base fields around X. Properties (3.8) show that the affine connexion
on C is determined by the fields DE Ej. It is costumary to express these vector

fields in the base fields as *

- n—-m k
(3.10) D, E, = I T, E.
i k=1 J

. k . "
The (n-m)3 real=valued smooth functioms rij determine the connexion around

%« and are called the coefficients of the comnexion.

A parametrized curve in C is a smooth map x(.) from the real numbers into

¢ cR®. The velocity vector field % is defined by
(3.11) x(e) = () e T for all t ¢ R
: dt x(t)

A vector field V on C defines, by restriction, a vector field v(.) along the

curve x(.) which assigns to each t e€I[R a tangent vector

.

(3.12) ©oy(t) = V(x(t)) € Tx(t)'

The vector field v(.) is said to be a parallel vector field along the curve x(.)

if its covariant derivative, denoted %%, is identically zero, i.e.
. Dv
(3.13) T ° D* v=20.

Using the local coordinate system (3.2) around a point x of the curve and the

associated base fields Ei’ the vector field v(.) can be uniquely expressed as

n-m
ve I v, Ei where v, are smooth real-valued functions onlR, while the velocity
i=]
n-m dz
field X = T Ei where zi(t) = z[x(t)] . It follows from (3.7) (3.8) (3.9)
i=1

(3.10) (3.13) that the functioms v, must satisfy the system of linear differential

equations
dv n-m 4z,
: k i Lk
(3.14) e ; ?:1‘35_ rij vj 0 k=1,2,...,nm
3

and we have the following existence and uniqueness result (see also Hicks
(Ref. 11)).
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PROPOSITION 3.1. Let x(.) be a parametrized curve in C defined on [0,T]. For each

. . . . . . ) (.
vector v in Tx there is a unique parallel vector field v(.) along x( )

(o)
R t . . t -
such that v(¢) = v. The map 7 : Tx(o) - Tx(t) defined by 7/ (v(0)) = v(t)
is a linear isomorphism called parallel translation along x(.) from x(o) to

x(t). [ |

The following result is a fundamental tool in Riemannian geometry (see
Milnor (Ref. 10)).

PROPOSITION 3.2. There exists a unique (symmetric) connexion on a Riemannian

manifold such that parallel translation preserves the Riemannian metric. B

In a system of local coordinates {zi}the coefficient functions T?j defining

the connexion are uniquely determined by the symmetric matrix function G defining

the Riemannian metric in (3.6) and satisfy for i,j,k = 1,2,..., n-m
9g. 3g. °g: .
k 1 ik ik 1y, ,.—1
(3.15) r.. =%t =5 ( + - ) G )
ij . 2 azi sz az2 Lk

called the second Christoffel identity. Notice that F?i = T?i for all i,j,

which indicates that the conmnexion is symmetric. Notice also that if G(x) remains
ko _

constant (for instance if G(x) = 1), rij = 0.

A parametrized curve x of C is called a geodesic if its velocity field x is

parallel along x, i.e. %% = 0., In terms of the local coordinate system (3.2)

the local coordinate functions z = (zk) k=1,...,0~m, must satisfy the system

of second order differential equations

d z, K dzi dz.
(3.16) oz L i@ Tt o
t 1,]
dz
derived from (3.14) with Ve =T From now on we consider C endowed with a

Riemannian metric and work with the unique connexion compatible with it, i.e.
the coefficients of which satisfy the second Christoffel identity. The following
result about the solutions of (3.16) establishes the equivalence of our

definition of geodesics with the elementary one (curves of minimal lengths).

PROPOSITION 3.3. Let W be a connected compact subset of C in R". Given x ¢ W

and p € Tx’ there exists a unique geodesic curve x(.) such that x(o) = x,

%(o) = p; the map x is either defined for all t ¢ R and takes its value in W,

or defined on the interval [-I, T] and x(T) (or x(-T)) belongs to the boundary

of W. Any two points of W can be joined by a unique geodesic which minimizes the

arc length between the points. N
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See Milnor (Ref. 10) or Bishop, Crittenden (Ref. 11) for a proof. The geodesic

curve will be denoted
(3.17) x(t) = expx(tp)

and the local coordinate system exp;1 : Ux nC=>Vc '1‘x len-m called normal
coordinates around x.Observe that in such coordinates the geodesic is locally
the parametrized line interval {tp | t e(- ¢, + €)}. Finally notice that if in a
local coordinate system the Riemannian metric is defined by a constant metric G,
the local coordinate functions z = (Zk) k= 1,...,n-m defining the geodesic
around x satisfy the second order differential equation

2

d zk

dt

=0 i=1,2,...,0m

since r?j = 0; hence z(t) = tp and the local coordinate system is normal.

4 - DESCENT METHODS ALONG GEODESICS

4.1, - Optimaiity conditions

We turn now to the solution of the nonlinear programming problem (1.1) which

we now write
.1 Min {f(x) | x € C},

i.e. the problem of minimizing the differentiable real-valued function f on the

differential manifold C endowed with a smooth Riemannian structure Y.

Civen x ¢ C we define the derivative on C of f at x as the linear form on

n
Tx’ Dcf(x) : Tx < iR~ -IR, such that

4.2) DCf(x)(v) = £'(x)(v) for all v ¢ Tx’
where f'(x) is the ordinary derivative at x of £ considered as a function on R".

We can now state a first—order necessary optimality condition for problem

&.1.



- 17 =

THEOREM 4.1 Let % ¢ C be a local minimum of f on the Riemannian manifold C. Then

(4.3) DE(x) =0 . ]
Proof : Since x" is a local minimum of £ on C

(4.4) £(x) 2 f(x*)‘ VxeUxnC

E]

where Ux*is a neighborhood of x" in IR®. According to Proposition 3.3 (4.4) is

equivalent to
(4.5) £(x(t)) 2 £x7)

for any geodesic curve x(.) starting from x and all t e(- €, + €). Applying

the mean value theorem to the function f © x between O and t, (4.5) yields

(4.6) f'(x*) x(o) = f'(x*) .v20 Vv e Tx*;

hence

* _
= v
Dcf(x Yy (v) 0 vV € Tx*
by.applying (4.6) to both vand-v. R

Conversely, every point x* € C such that DCf(x*) = 0 is called a critical

point of f£.

Given v ¢ T let V be a smooth vector field on C such that V(x) = v. Define

*I:hei'-’c’.-1 differentiable real-valued function Vf : C +IR by

4.7) VE(x) = Dcf(x)(v).

Since ¢ = 2 this function has a derivative on C at x,DC VE(x) € L(TX,IR)

* - . . . ‘o
If x is a critical point, we define the Hessian of f on C, as the bilinear

form HE(x™) : T #x Tk*# IR given by
(4.8) HEG™) (v,w) = D, VEG) (0) Vv, we T,
This form is well-defined (i.e. independent of the choice of the vector

field V) and symmetric (See Milnor (Ref. 10)). This definition holds only

at a critical point.
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. . . . . *O ..
A critical point x* is said to be non~degenerated iff Hf(x ) is non-
P g

degenerated, i.e. HE(x") (v,v) = 0 implies v = 0. In the following we
assume that all the critical points of £ on C are non-degenerated; f is

called a Morse function on C (see Milnor (Ref. 10)). It follows that the

critical points are isolated. We can then give a second-order optimality
condition in stronger terms than usually expressed (see e.g. Luenberger
(Ref. 13)).

THEOREM 4.2 A goint x* € C is a strict local minimum of a Morse function f on

the Riemannian manifold C if and only if x" is a critical point of f and

. "N . .
the Hessian form Hf(x ) is positive definite. W

Proof : Let x(.) be the geodesic curve starting from x* with tangent v and V
the unique parallel vector field along x(.) such that V(x*) = v. Applying
Taylor formula to the P differentiable function fox : IR >R yields

(4.9) £Lx(e)] - £G™) = D EG™) (W)E + % DLVE (x (6t)) (V(x (1))t

with 8 €(0,1). If x* is a local minimum, the first member of-the-
right hand side vanishes by Theorem 4.1 while the second member must be
non negative; by continuity Hf(x*)(v,v) 20 Vve Tx*and since f is a Morse
function strict inequality holds for all v # 0 and x 1is a strict local
minimum. Conversely if x* is a critical point such that HE(x™) is positive
definite the left hand side of (4.9) remains strictly positive for all t # 0
sufficiently small and all v # 0 ¢ Tx*which shows that x  is a strict local
minimum. W
Remark 4.1 (Gemeric properties). Morse functioms form an open dense subset of
the space of #° real-valued functions on C for 2 < ¢ s+ «=(see Hirsch (Ref. 14))
for a precise definition of the topology). In other words, by a "slight
perturbation" it is always possible to emsure that f is a Morse function. Such

a property is said to be gemeric (See Golubitsky, Guillemin (Ref. 15)).

Incidentally the other assumption we made, namely O is a regular value of
the ¥9 map C : RY > R" is also generic for 1 < g £ + =. In terms of differential
topology, the assumption amounts to said that c is transverse to O on the
manifold C (¢ 4 {0}). The genericity of the assumption follows from the
transversality theorem (See é.g. (Ref. 14)).

These remarks show that our assumptions hold for "most™ o problems (1.1). B
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Remark 4.2 The proofs of theorems 4.1 and 4.2 use explicitly the Riemannian
structure of C since they introduce geodesics. They generalize similar results
for the unconstrained case which actually make use of the Euclidean structure of
IR®. Such results hold however on a manifold without a Riemannian structure and
can be established using a‘'local coordinate system and showing they are

independent of its choice. W

Remark 4.3 The reader may at this point wonder how these results relate to the

classical formulation of the optimality conditions for problem (1.1) in terms of

Lagrange multipliers. The first order optimality condition (4.3) is equivalent to
’ ' *

(4.9) f'x)(v) = <vf(x ), v> = 0 Vve Tx*

by definition of the gradient Vf of f in the Euclidean spaceIRn; condition (4.9)

expresses that Vf(x*) is orthogonal to Tx* hence belongs to %(A;l;*). Thus there

exists 1" ¢lR™ such that

(4.10) VE(x™) + ve(x) . A

the classical form for the first-order optimality condition in term of the

Lagrangian’

.11 L(x, A) = £(x) + <, c(x)>m

Given x ¢ C, let

(4.12) @) = = (e . e vem? vE@);

clearly Vx ez, \x)) € Tx and 1* = A(x") satisfies (4.10). At the critical

. *
point x

(%]

(4.13) HE(x") (v,v) =V z(x*, k*)(v,v) Vve Tx*

XX
and the second-order optimality condition of theorem 4.2 can be stated in term
of the positive definiteness of the restriction to T *of the Hessian of the

Lagrangian Vix 2(x*, 2%). (See Luenberger (Ref. 13)).m
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4.2. - Gradient of a function on C

Let y the Riemannian structure on C. We define the gradient on C of f at x

as the tangent vector Vz £(x) € Tx such that
Y =
(4.14) Yy (VC £(x), v) Dcf(x)(v) for all v e T_.

The vector vz £(x) clearly depends upon the Riemannian metric.

Notice that vé f is a vector field on C called the gradient field.

In the local coordinate system around X
(4.15) z(y) = Zx(y - X) for all y € U, nc,

there are two natural Rlemannlan metrics as discussed in section 3. 1

If we use the metric y defined in (3.5) as the scalar product lan we obtain
yA - 2 . A ~-T n-m
(4.16) VC f(x) Zx 8 with - Zx vE(x) €R

while if we use the metric Yi induced by the scalar product inIR" defined in

o
a

(3.4) we obtain

E - E . E_ =T ==1 Z
(4.17) e f(x) = Zx gy with 8, = (Zx Zx)- gy

We call g and gE respectively the reduced gradient and the Euclidean reduced

gradlent they coincide obviously iff Z T Z; I, which gives an argument in
favor of the coordinate system presented in Example 2.2. The terminology reduced
gradient introduced by Abadie (Ref. 5) expresses the reduction of dimension
achieved by considering vectors lan and is employed here in a more general
sense than in Gabay-Luenberger (Ref. 1) where only the partitiomed coordinate

system of Example 2.1 was considered. Notice that
E E
(4.18) Ve £(x) = P_ vE(x),

. . n E
where PE is the orthogonal projector onto T in the Euclidean space R ; VC £(x)

will be called the (Euclidean) projected gradlent following Rosen (Ref. 3). The

vector VC f(x) can also be interpreted as the orthogonal progectlon of V£ onto

Tx but with respect to the scalar product

(4.19) <<y, w>> = <SX v, Sx w> s

with Sx defined by (2.5).
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Remark 4.4 Another argument in favor of the local coordinate system defined in
Example 2.2 arise from the relationship between the projected gradient Vg £(x)
and the gradient e 2(x, A(x)) of the Lagrangian. Both vectors are in Ty provided
A(x) is given by (4.12) which can be expressed (and computed) in term of the

pseudo-inverse (2.19) of A = Vc(x)T,

(4.20) ) = - A VEG).

We then have

(4.21) vg £(x) = Pi vf(x) =V ix, A(x),

formula used by Luenberger (Ref. 2 ) to define the gradient of f under constraints

(see also Hestenes (Ref. 16)).
If we use a general right inverse A; and define
-T
(4.22) u(x) = - Ay VE(x),

then by (2.10)

' | I A 2
(4.23) . Vx 2(x, u(x)) = Zx Zx vE(x) = Zx gy

which differs from Vé f(x) and actually does not belong to 'I‘x except. if
Z; = Z:, i.e. if the columns of Zi are orthonormal. W

4.3, - Steepest Descent Method along geodesics

. .. n . . . .
To find a local minimum onIR of a continuously differentiable function £,
the steepest descent method generates, starting from an initial estimate ko,

successive approximations according to the iteration
(4.24) B A SN k=0,1,...,
k . . . . .. k
where p= is the direction which minimizes <Vf(x"), p>_ / lpll o2 Damely

(4.25) P = - V),

called the direction of steepest descent, and the stepsize t, is a positive

scalar selected for instance as the first local minimum on /R of the function
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. k . . .
j(e) = f(xk + t p); we say that t, is determined by a exact line search and

denote the solution by

(4.26) - Argmin (£G5S + t p™) | £ 2 0}

x
This method can be generalized to find a local minimum of £ on a Riemannian
manifold C. The direction of steepest descent for f on C at xk is given by

(4.27) P = - V) £(x5),

/2

which minimizes ¥y k(Vg f(xk), P) /Hp“Y for all p e T K ( leLY = (v k(p,p))] ).
X X x

Proposition 3.3 shows that the geodesics of C play the role of the straight lines

. - . . . .
inIR"; we thus define the steepest descent method along geodesics as the iteration

k+l _ k
(4.28) X = expxk (tk P>

where pk is defined by (4.27) and the stepsize e is determined by an exact

geodesic search,

(4.29) e

o

= Argmin {£(exp | (t pk)) | £ eR').
- X ¢

Algorithm (4.27) (4.28) (4.29) has been first introduced and analyzed by
Luenberger (Ref. 2) who explicitly used the Riemannian structure YE on C induced
by the Euclidean structure of IR®. As noticed in (4.18) Vﬁ f(xk) is then the

orthogonal projection the gradient Vf(xk) on T K hence the terminology : gradient
X

projection method along geodesics. In his paper, Luenberger established the
global convergence of the algorithm to a critical point of f on C and estimated
the speed of convergence in the neighborhood of a critical point which is a
strict local minimum. Lichnewski (Ref. 4) has recently proposed the algorithm
(4.27) (4.28) (4.29) for a general Riemannian manifold and established similar

results; he also studied a conjugate—-gradient version of it.

We give a global convergence theorem which generalizes the classical results
for the method inIR" (see Polak (Ref. 17), Ortega-Rheinboldt (Ref. 18)). We
first &eed to introduce the following notation : let W, denote the connected

k
component containing x° of the level set {x ¢ C | £(x) < f(xk)}.
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THEOREM 4.3 Assume that f is continuously differentiable and that W is compact.

‘Then the sequence {x } constructed by the steepest descent method along
geodesics (4.27) (4.28) (4.29) is well defined; it is either finite,
terminating at a critical point, or is infinite and there is a subsequence
converging to a critical point. If the critical values of f are distinct the

k .. .
whole sequence {x } converges to a critical point. R

Proof : The compactness of W implies the compactness of the closed subsets Wy
. ke, . . . k . ..
- vsince the sequence {f(x )} is monoton€¢ and non increasing. If x is a critical
. k . . .
point, p = 0 and the algorithm does not generate new approximations;

introducing a stopping test it can be terminated at iteration k. Assume now

that xk is not a critical point : hence
Y ook ke Yy oo k. oy ., k
(4.30) Y g £G)s ) Y (Vo £(xD), Vo £G7)) < 0.
pd X
. . k . k
Denote the arc of geodesic starting from yx with tangent p by
k
(4.31) x(t) = exp, (tp),
X
and introduce the function j : IR" +IR defined by
(4.32) j(e) = £lx(t)].
Let t = lim sup J where the set J is defined by
. . . . k
= {t >0 | x(t) is defined and j(t) < j(o) = £(x)};

by (4.30) the set J is not empty and since wk is compact, Proposition 3.3
implies that either t = + « and x(t) ¢ Wy for all t ¢ [0, + =)or

t is finite, f[x(t)] = f(x ) and x(t) € W for all t e [0,t].

In both cases the stepsize rule (4.29) is well defined : t € (0,t).

Observe that tk satisfies

’ t
(4.36) 36 =1 (O £, v Ke") - Y 1 £y, o5 -

t .
where nok (pk) is the vector of T K+ 1 obtained from pk by parallel translation

k e+

along the curve x(.) from x to x (see proposition 3.1); the second
equality of (4.34) results from the definition of the geodesic x(.).

Observe also that given a (0, 10 the equation
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0,.Y ky _ Y k k
(4.35) Y k(Wt(VC £(x(E))), P ) = oy k(VC £(x), P )
b X
has a smallest solution T (O, tk) and
0,.Y k Y k k
% k(ﬂt(Vc f(x(t)), Pp) <a-yxk(vc £(x), p) for all t e [0, £).
Applying the mean value theorem we obtain the estimate

cEYy - ) < EG@) - 2@ <= o ][9] £6) 2
v

The sequence {f(x )} is monotone decreasing and is bounded from below since
the continuous function £ atﬁalns its minimum on the compact W ; hence it

*
converges to a limit. Let {x *} a subsequence of {x } converging to X € W .

Suppose that %x* is not a critical point, 1.e. \\V f(x )H . = § > 03
*

The continuity of the Riemannian metric y and of the gradient field Vé £
k.
implies that |‘V€ £(x l)HY > §/2 for all i > I; hence
k. k.+! k.
e S N R I R RN

+ k., : .
which contradicts the fact that {f(x %)} converges to £(x ). Thus x is a

critical point.

Finally suppose that x* and x** are distinct accumulation points of the
sequence {x } in W, x* and x are critical points of f. Since {f(x )}
converges we must have fx’) = f(x ), which is impossible if the critical

values of f are distinct. B

Remark 4.5. The proof shows that theorem 4.3 holds if we replace the step51ze
rule (4.29) by rule (4.34) or rule (4.35) or the following rule:find £ = 2
where t is an initial guess and £ isthe smallest integer satisfying for a given
a € (0, 1&,

k Y koy 2
(4.36) £(x(r)) < £(x) — oty ]]vc £ || y
By analogy with stepsize selection rules for unconstrained minimization we

call (4.34), (4.35) and (4.36) respectively the Curry, Altman and Armijo
principles (see Ortega-Rheinhold (Ref. 18)). W
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Remark 4.6. A convergence result similar to theorem 4.3 is established by
Lichnewski (Ref. &) for a 82 function f. We prefer to establish the result
assuming only Eﬂ differentiability to extend the classical convergence theory

of steepest descent methods to the constrained situation. In his paper Lichnewski
introduces a special procedure to handle the case where the algorithm reaches a

neighborhood of a critical point which is a saddle-point and not a local

minimum; he generates in this case a new direction of descent which can be

called a direction of negative curvature using the terminology recently

introduced by Mc Cormick (Ref. 19), Moré-Soremnsen (Ref. 20) for the unconstrained
case. It is then possible to show that the modified algorithm generates a
sequence converging always to a local minimum if f is a Morse function and has

distinct critical values, which is true for "most" 82 functions (see Remark

4.1y, B
We finally give an estimate of the speed of convergence.

THEOREM 4.4, Assume that f is a €° Morse function on the Riemannian manifold C

with o 2 3. Suppose ‘that the steepest descent method along geodesics

(4.27) (4.28) (4.29) generates a sequence {xk} converging to a critical

. * . . . e
point X in C such that the Hessian form Hf(x*) satisfies

(4.37) o ||v]| 3*.3'Hf(x*)(b,v) < M|lv|| 3* for all v ¢ T_*, where m and
M are two positive scalars. Then the sequence {xk} is linearly convergent
and

k+1 * 2
(4.38) Lim f(x~ ) - f(x) s(M my 5

kot f(xk) - f(x*) M+ nm

See Lichnewski (Réf. 4) for a proof (or Luenberger (Ref. 2) for the special
case of the Riemannian metric induced by the Euclidean structure ofan).
This result extends the estimate of rate of convergence for the steepest
~descent method in R" (See Luenberger (Ref. 13)). See also Gabay-Luenberger
(Ref. 1) where this estimate was obtained for the special normal coordinate

system described in Example 2.1.

Notice that the steepest descent method depends upon the Riemannian metric
on C as well as the scalars m, M defined by (4.57) and giving the estimate

of the speed of convergence.
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4.4. - Newton's Method along geodesics

Let X" be a local unconstrained minimum of a 2° function £ (o = 3) such
that the Hessian form sz(x*) is positive definite and let U Dbe a neighborhood
of x~ such that, for all x ¢ U*,sz(x) is positive definite. Starting from
x° e U, Newton's method for unconstrained minimization generates a sequence

. . * . . .
of approximatioms of x according to the iteration

1

xk+] = xk - (Fk)- Vf(xk),

where Fk denotes the (non singular) symmetric matrix defining the Hessian form
sz(xk); provided U_ is sufficientl& small the iterates remain' in U_ and the
sequence {xk} is well-defined and converges to %" with a quadratic rate of

convergence (see e.g. Ortega-Rheinboldt (Ref. 18)).

The extension of Newton's method to the minimization on a manifold C presents
a major difficulty since it is not possible to define the Hessian form of £ on
C outside of a critical point (see Section 4.1). We can however define at a non-
critical point x € C 2 quadratic form on the tangent space Tx by exploiting the

Riemannian structure of the manifold C.

Let v ¢ ’I’x and consider the geodesic curve x(.) starting from x and

tangent to Vv,
(4.39) x(t) = expx(tv).

We proceed like for the definition of the Hessian but let now V be the
parallel vector field along the curve x(.) such that V(o) = v; it is unique by

Proposition 3.1. Define the 2° function j : R +[R by

(4.40) j(e) = £(x(t)).

By definition of the gradient of £ on C with respect to the Riemannian

metric vy we have
(4.41) 3R = vy gy (o £G(E)), V(E)

and

D VA.f

ey o C DV
JU(E) = gy gre GUED S VO vy (TR, G lE))
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D V£ ,
(4.42) = ey oo ®(0), VO,

sinceV is a parallel vector field. We define F(x) : Tx X Tx - R by
(4.43) F(x) (v,v) = j"(0) = 'yx(DV VCf, v) for all v ¢ Tx'

The covariantderivative Dv ch of the gradient field ch along the vector v 1is

linear in v (see (3.8a)); hence F(x) is a quadratic form. The regularity of the

solution (4.39) of the differential equations (3.15) defining the geodesic with
respect to the initial conditions implies that F is 80-2 differentiable with
respect to x. Notice that at a critical point x*, F(x*) coincides with the

Hessian form defined by (4.8)

(b.4d) F(x") (v, v) = HEGx™) (v, v) for all v e T_x.

Define the map Fx : Tx - Tx by

(4.45) F(x) (v, v) = Yy (Fx v, V) for all v ¢ Tx H

notice that Fx is simply the Riemannian connexion of the gradient field at x,
(4.46) F,o= T, (ch),

It is a linear isomorphism of 'I'x and is self adjoint (with respect to the

Riemannian metric Yx); denote by (Fx)—] its inverse (defined on Tx)'

Let x be a non degenerated local minimum of £ on C; by theorem 4.2 the
Hessian Hf(x*) is positive definite. Identity (4.44) together with the continuity
of F show that there exists a neighborhood U_n C of x" in C such that F(x) is

positive definite for all x € U _n C. Starting from x° e u ncC Newton's method

. . . . -k .
along geodesics generates the sequence of successive approximations{x } according

to the iteration.

k+1 k
(4.47) X = exp . r)H,
X
where the "Newton's direction” pk € T, is given by
kK _ o=l k
(4.48) p = (Fk) ch(x ).

The method is well-defined provided U, n C is chosen small enough so that the
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sequence {xk} remains in this neighborhood, and {xk} converges to x  quadratically.

THEOREM 4.5. Assume that £ is a 8° Morse function on the Riemannian manifold C

. * . s .
with ¢ 2 3. Let x be a local minimum of £ on C. Then there exists a

neighborhood U n C of x* in C such that if x° e U _.n C the Newton's method

along geodesics generates a sequence {Xk} inU nC converging to x  and

there exists a constant K such that

(4.49) s x*) s R85, x*))2 for all k = 0,1,...,

where 6(.,.) stands for the Riemannian distance. | |

Proof : Given x € C and v ¢ T define the 2°"! function 0 : R +R by
(4.50) @ (€)= Yy(ey (Vo £(x(t)), W(E)),

where W(t) is a parallel vector field along the curve x(.) given by (4.39).
Notice that

' =
(4.51) 0'(E) = Yy(ey Fyqry V(B WO,
where V(t) is the parallel vector field along x(.) such that V(o) = v.

Consider first the geodesic curve x(.) starting at xk and tangent to pk
given by (4.48). Taylor's formula for the functiom @(t),
@(1) =) + @' (o) + /‘[ga' (t) - @' ()] dt, yields

)

!
(4.52) ¢ ey GEETH, WO = [y o 20 -
X o X

t o]
LY ka nt] v(t), w(1)) ds,

since Fx is 80-2 differentiable on U* A C we obtain the estimate

A

k
k+1 L ky 2 L 2
(4.53) lve e Dl 52 o™l N s——ZmZ |9 of (= )HY ,

ifl‘(Fx)_IH < 1/m for allx e U _n C.

* . .
Consider now the minimal geodesic joining xk+1 and x , which exists by

Proposition 3.3; we can find qk+] € Ty such that the curve
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k+1

x(t) = exp ., (tq )
X

k+1

satisfies x(o) = x and x(1) = x". For this choice of x(.), Taylor's

formula for the function ¢ yields
(4.54) Y g EGD, W) =0 =y (7, £, W 0)) +
1
/’ Yx(t) (Fx(t) Q(t), W' (t)) dt;

(o]

assuming that m ||v|| 2 < Y F v, V) S M ”vl|$ for all x ¢ U_n C
Y

we obtain the estimate

k+! . k+1 k+]
4,55 v < i .
(4.55) I A I

Combining (4.53) and (4.55) for k and k-1 and noticing that
6(xk+l, x) =||qk+]H , Ve obtain

(4.56) s, 5%y < L = (s (xX, x*))2

2m

which shows the quadratic convergence of {xk} to x° provided

6(xb x*) ; 2 m3‘ a .
? T LM

4.5. = Quasi Newton Methods along Geodesics

It is possible to modify Newton's method along geodesics in order to have
a globally convergent method, i.e. a method which comstructs a sequence {xk}
converging to a critical point x”" from any initial approximation x° € C. The
modified method consists in generating the sequence {xk} according to the
iteration

k+1 k
(4.57) X = expxk (tk P,

where pk is a descent direction defined by

k

_ -1
(4.58) p = (Gk)

k
ch(x ),

and the stepsize L is chosen according to Armijo principle (4.36), i.e. given

e ¢ (0, l) let t, = Z-Q with 2 the smallest integer such that



(4.59) flexp 270 P s £G5) - 27V y (e, )7 TEED).
X X

The method (4.57) (4.58) (4.59) generalizes to the constrained case the variable

. . n
metric methods 1n IR .

We now specify how the operator Gk of'Tk must be chosen in order that pk
approximates the Newton direction (4.48). Observe that (4.52) yields for Newton's

method the equation
(4.60 voeaSty = nlr, £G5Y) g LX) at
=60 c o C o Te Tx(t) "o P )
Define the linear operator Fk+l : Tk+1 - Tk+1 by

1
- 1 t
(b-61) et j; e Feqey M1 9F

Equation (4.60) can be rewritten as

(4.62) ° VC f(xk+l) - ﬂ;(VC f(xk)) = f£+1 v; (pk) H

it is thus natural in order to approach Newton's method to require that the

operator'Gk+] satisfies the Qﬁasi—Newton equation for constrained minimization
. t t
k+1 k k k k
(4.63) chf(x ) T VC f(x) = Gk+l T (tk P>

where we have slightly modified (4.62) to take into account the presence of the
stepzise B (we recall that L £y denote the parallel translation along the

k+1

curve x(t) = exp k(tp ) from x(O) xk to x(t ) = ). Many .updating formulae

for Gk can be proposed which satisfy the Quasx—Newton equation and generalize
to the constrained case the comstellation of Quasi-Newton methods for the
minimization of f onIR™ (See the excellent survey by Dennis-Moré (Ref. 21)). We
can specialize further the choice of the updating scheme by requiring some
additional properties.-For instance we want that pk be always a descent direction
in order to find an admissible stepsize t satisfying (4.59); hence the updating
formula should generates from a positive definite operator Gk on T, 2 new
operator Gk 1 which is positive definite on Tk+1 In order to approximate
properly the self adgoxnt operator (F ) ', we can insist on having self adjoint
operators (G ) ; hence the updating formula should preserve the symmetry of the
operators (G ) 1. These two requirements in addition to the Quasi-Newton equation
(4.63) are satlsfxed by a family of rank-two updating formula. Because of the

recognized superiority of the Broyden-Fletcher-Goldfarb-Shanno updating scheme
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e . . RN, .1 . . .
for minimization in iR, we establish the corresponding formula for the constralned

case. Denoting

t
K K K
(4.64) st = (tk P) € Tk+1’
(4.65) Koy g™ - &g £G5) e T
: y c To ‘¢t € Ly

we define the operator Gk+1 : Tk+1 - T.k+l by

v*,p)
k  Yk+1Y P k
+ y

(4.66) Gypy P =GP - T G, s ( m k)
Ye1VV 2 8

for all p e T

k+1?
~ tk o
with Gk =T Gk "tk‘ If Gk 1s positive definite on Tk’ Gk+1 1s positive defxnm;e
on Tk+l 1ff
k k
(4.67) Y+ 1 (y', s) >0;

we call (4.66) the Generalized BFGS update formula for constrained minimization.

Notice that the computation of Gkrl requires only first-order information, .

k+1

namely the gradient at xk and x , a definite advantage over the operator F

used in Newton's method which involves second order information. To prove thz
global convergence of the method (4.57)(4.58)(4.59) with update (4.66) we must
extend the very technical analysis of the BFGS method by Powell (Ref. 22) to the
constrained case. This can be achieved provided there exists a constant M such

that the inequality
k _k k k
(4.68) Yk+1(}' » ¥) SMy G, s
holds for all k ; we must also observe that the stepsize rule (4.59) implies

t
k+1 k k ' k k
(4.69) ka(VC f(x ), T, P ) 2 a yk(vc f(§ Y, p )

with 0 < a < a' < 1. We can then establish a result similar to the one of Powell.
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THEOREM 4.6. Assume that f is a‘Zc Morse function (with distinct critical values)

on the Riemannian manifold C with ¢ 2 2 and that the level set W is compact.

Let G be any p051t1ve definite self adjoint operator on T . Suppose that

the sequence {x } constructed by the Quasi-Newton method along geodesics
(4.57) (4.58) (4.59) with update (4.66) satisfies (4.68). Then the sequence

k . . .. .
{x "} either terminates at or converges to a critical point. N

The superiority of this Quasi-Newton method along geodesics over the

steepest descent method along geodesics of section 4.3 is evidenced by the

following result on its speed of convergence.

THEOREM 4.7. Assume that f is a %o Morse function on the Riemannian manifold C

with ¢ 22. If the sequence {;k} constructed by the Quasi-Newton method

along geodesics converges to a critical point X" such that the Hessian form

Hf(x ) is positive definite, then the sequence {x } is super11nearly

convergent, i.e.

kel x
(4.69) lip & X)o0 . m
' ke S(x , X )

Proof : We simply outline the argument. Extending to the constrained case

+co
‘Powell's technique (Ref. 22) we first show -that I G(Xk,°x*) is bounded.
k=0

We then use estimates of the type of Dennis-Moré (Ref. 23) to show that

K
e, -FIp

(4.70) lin —lX Y
ke {lp ]

Y
This implies that after a finite number of iterations the stepsize

(4.71) T = !

satisfies the test (4.59) provideda <-% and the limit (4.69) holds. W
Remark 4.7. Condition (4.70) expresses that-the direction pk given by (4.58)
asymptotically approach the Newton direction (4.48). N

Remark 4.8. We could similarly define a Generalized Davidon-Fletcher-Powell
update; but the stepsize 5% of the corresponding Quasi-Newton method along
geodesics must then be chosen by an exact geodesic search (4.29) in order to

show the global and superlinear convergence. R
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5. = PRACTICAL IMPLEMENTATION

5.1. - Coordinate System

In practice the manifold C must be described by an atlas of local coordinate
systems. Let xk the current of any of the methods presented in Section 4 and let
Ak be the m x n Jacobian matrix of the map ¢ defining C. In the neighborhood

Uk n C of xk in C we use the local coordinate system
(5.1) z (x) =2 (x- xk)
. k k 4

where Zk is a (n-m) Xn matrix of right inverse Z , both chosen in term of

Ak and its right inverse A; as described in Proposition 2.1, namely

(5.2) z, A; = 0 , A z; = 0.

Let By ¢ VecRPT Uk n C denote the corresponding local parametrization of C

around xk defined in (2.4) such that

(5.3) ek(zk(x)) =x for all x’in C;

e
*

notice that ¢, (0) = xk. Theorem 2.2 shows that"g, is defined on the neighborhood
k nem k
V = B(0, 1/(2ByE)) of the origin:. in IR . In the local coordinate system (5.1)

the tangent space ’I'k to C at xk can be represented by Si(Zk),
: - n-m
(5.4) T = {Zk Q| qgelR T},
and a natural choice for the Riemannian metric at xk is
- Tty = ' ' n-m
(5.5) Yk(zk q, Zk q') <q, q >n_m for all q, q'e R

As noticed in Section 3.2, the coordinate system (5.1) is a normal coordinate
system-with respect to the Riemannian metric (5.5) and the geodesic curve x(.)
k

starting from xk and tangent to vk = Z; q € Tk is simply

(5.6) x(t) = 8, (t qk) H 1

notice that if []qu am = % the function x(t) is only defined for t e [t, tJ
with
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5.7) T=1/ @%fya.

‘We can now describe the various descent methods of section 4 in the coordinate
system (5.1). According to (4.16) the gradient of:fon C at xk can be expressed in

term of the reduced gradient

(5.8) g =2 vE (x5 .

A%Q%The descent directions pk defined by (4.25), (4.48), (4.58) can be represented

by the general formula

5.9) o = - 2n B g,

where Hk is a symmetric matrix of dimension (n-m); the direction of steepest

descent corresponds to Hk I, the Newton's direction to Hk (F ) -1 ZT and

the Quasi-Newton direction to Hk = Zk (Gk)..l Zi. According to (5.6) the typlcal

iteration is

(5.10) & a6 (B (- B g)

where the stepsize Ek must now be selected on the inperval [o, E]. Since

—IlHk g H goes to 0, the upper bound t given by (5.7) increases and after a
flnlte number of iterations tk coincides with the stepsize T defined by any of
the selection rules (4.29), (4.34), (4.35) or (4.36).

Remark 5.1 We can introduce a preconditionning constant matrix D of dlmen51on

(n-m) and define the Riemannian metric by yk(zk q, Zk q') = <q, 5 (D+D )q'> I

Remark 5.2 In the Riemannian metric (5.5) the parallel translation

~

x

k k k . k- k .
TV of the vector v = Z ¢ T is the vector ¥ =2, ., 4 « Tier’ the

Quasi-Newton equation (4. 63) thus becomes in the coordinate system (5.1)

' -1k
(5.11) R I

with sk = - tk Hk g , and the Generalized BFGS update formula (4. 66) induces the
rank-two update formula for the (n-m) x (n-m) symmetric matrix Hk
k kT

- - (y") H; s (s ) Hk
. ] )
(5.12) By " TTEE -1 ¥

<y ,8 > <s Hk s >
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Notice that the sequence of matrices Hk satisfies the formula

(5.13) = (1 - _s_k(yk)T) (1 - yk(sk)T . Sk(sk)T
<y ,s8 > <y ,s8 > <y ,8 >

5.2. - The Tangent=-Restoration Approach

The constructive proof of Theorem 2.2 provides us with a practical scheme

k+1
to compute x as

ktl _ o~ k. _ ko~ - kK, -~ k
(5.14) X = ek(tk P) =x t Zk Hk g + Ak v,

k+1

where wk ¢ IR® is chosen such that x € C. Formula (5.14) can be interpreted

geometrically in the following way : xk+] is obtained by a tangent step from

xk to §k = xk - Ek Z Hk gk in the affine tangent space xk + T

k+1

followed by a

k
. Following (2.23), the

restoration step Ak w  to enforce feasibility of x
. . . . k .. k,i
restoration step 1s determined by taking w as the limit of the sequence w ’

k,

starting from w ’° = 0, defined iteratively by

k,i+1
w

(5.15) =wk’l—c(;g'k+A.;wk’l) i=0,1, ...

since E£|ka” s 1/(2 Byg) the sequence {wk’l} has a limit wk.

~

The (approximate) geodesic search for the stepsize t, can then be

performed using a finite number of values for the parameter t and computing the

restoration step by (5.15) from the finite number of points
~ k - k
(5.16) x(t) = x t Zk Hk g

in the affine tangent space. The values for the parameter t can be obtained,
starting from an initial guess in [0, t] , by an interpolation scheme (e.g.
golden section, see Polak (Ref. 17)) to approximate the exact line search (4.29)

or by successive halving to satisfy Armijo's rule (4.36).

For the steepest descent method (Hk = I) it is shown in Gabay-Luenberger
(Ref. 1) that an efficient .initial guess can be obtained by the first local
minimum on [0, t] of the Lagrangian function z(§(t), uk) defined in (4.11) where
uk = - A;va(xk) is the approximate Lagrange multiplier (4.22); the resulting

approximation of the idealized steepest descent method comverges linearly with
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the optimal rate given by (4.38) in Theorem &4.4. A still simpler procedure is

presented in Gabay (Ref. 24) and yields the same rate of convergence property.

For the Quasi-Newton method ‘(I-I_k given by update formula (5.12)) an obvious
initial guess is Min(l, E). By Theorem 4.7, after a finite number of iterations,
the stepsize Ek = | satisfies Armijo's rule (4.36) and the method converges

superlinearly.

5.3. - Efficient Quasi-Newton methods for Constrained Minimization

We finally present the practical implementations of the Quasi-Newton method
in the Tangent-Restoration approach for the specific coordinate systems

envisaged in Examples 2.1 and 2.2.

(3.17) REDUCED QUASI-NEWTON METHOD. leen €1s € > O (tolerance parameters),

r > 0 (estimate of 1/2 ByE), a ¢ (0, —0, k e C, Hk a definite positive

symmetric matrix of dimension (n-m)

i) Partition the Jacobian matrix Ak = [B, DJ; compute B_l;
ii) ~ Compute the reduced gradient gk = VJ f(xk) - DT(B_I)T VI f(xk);

K ~ K . ~ .
iii) Iif He Il = e, then STOP, else t =|!Hk g |l .t let t = Min(l, t);
. ~ k 1 k,0
iv) Tangent step : x(t) =x =t H g s w o= 03

. . ~ B k,i
V) Restoration step : while |[e(x(t) + v Ol > €, do (5.15);
~ I
x(t) = x(t) + w3
0

. k+1 .

vi) 1f (f(x(t)) f(x Y=ot <g » B o8 >) then x = x(t), update

Hk according to (5.12); else assign -to t and go to step iv.

We prefer to update Hk according to (5.12) rather than Hk directly
according to (5.13) because the first scheme is numerically more "stable'. To
compute the tangent direction Hk gk we then must solve a linear system; since the
matrix of this system differs only by a rank-two correction from the one used in
the previous iteration, the system can be solved in the order of (n-m)

multiplications (see Gill-Murray (Ref. 25)).
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A similar Reduced Quasi-Newton method was presented in Gabay-Luenberger
(Ref. 1) using a Generalized Davidon-Fletcher-Powell update formula; it was
however acknowledged that its performance was theoretically impaired by the
approximate character of the linesearch in step vi. The Generalized BFGS update
offers the superiority of not requiring exact linesearches (Theorem 4.7), which

makes its choice particularly relevant for algorithm (5.17).

We now turn to the coordinate system defined in Example 2.2 which is a
normal coordinate system with respect to the Riemannian metric on C induced by
. n . . . :
the Euclidean structure of IR°. It allows to define a computationally efficient

Quasi-Newton version of the gradient projection method.

(5.18) PROJECTED QUASI-NEWTON METHOD. Given €1r €95 Ty Q, xk e C, H;l
defined as in (5.17)
. QI
i) Factorize the Jacobian matrix Ax = [L,0]Q : partition Q = 1

Q

., . . k k
ii) Compute the Euclidean reduced gradient g = Q2 vE(x);
. .. k ~ k . ~
iii) if |lg || < e, then STOP, else t =HHk g || . Tt; let t = Min(1, t);
iv) Tangent step : ;(t) = xk -t Qz Hk gk ; wk’o =0 ;

-1

v) Restoration step : while ||c(x(t) + Qf L wk’lSH > e, do (5.15);

x(t) =’;(t) + Qf L-] wk’l;

vi) If (f(x(t)) < f(xk) -qa t <gk, Hk gk>) then xk+l = x(t), update
-1 . . t .
Hk according to (5.12); else assign 5 tot and go to step iv,

This method generalizes to nonlinear equality constrained problems the
Gill-Murray (Ref. 26) version of Goldfarb's method for linearly comstrained
problem (Ref. 27). Notice that it requires again the updating of the matrix H;l
of dimension (n-m) only. The difference between (5.17) and (5.18) lies mainly
in their steps i; as noticed in section 2 the inversion by Gaussian elimination
of the basic matrix B requires of the order of m3/3 multiplications while the
QR decomposition of Ak can be obtained with approximately (n—%) m2 multiplications.
However the conditioning of the matrices H_ generated by (5.18) is generally
better than the one of the matrices generated by (5.17) (which may be severely

affected by the chosen partition of Ak).
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Remark 5.3 : Methods (5.17) and (5.18) involve three scalar parameters T,€;,€,-
The estimate T is introduced to guarantee that the restoration steps (v) provide
a feasible point x(t). In practice an exact value of T is unknown ; we generally
start with a guessed approxXimation which is altered to a smaller value if the
restoration phase fails in the process of iterations.

The idealized descent methods along geodesics correspond to the choice
€, =€, 0. They involve a (generally infinite) sequence of iterations requiring in
their restoration step an infinite number of ipner iterations. The positive tole-
rance parameters €£,,€, are thus introduced to obtain implementéble algorithms.
" which, hopefully, terminate in a finite number of iterations and provide with an
approximate solution. We must observe that the iterates xk are then approximately
feasible only (i.e. Hc(xk)ll <e,), a situation which cannot be handled directly
by our convergence theorems. Mukai and Polak (Ref, 30) have given a framework to
establish convergence using such approximation schemes ; they essentially require
that the parameﬁers €y+€, be adapted carefully in the process of iterations to
eventually reach an approximate solution. We descriﬁe an alternative approach in
the second part of this paper where we propose a formally similar method defined

for non-feasible points. ™

Remark 5.4 (A simple Arc Search) : In (Ref, 1) we proposed, for the implementation

of the Reduced Newton's Method, to perforﬁ the approximation of the arc of geodesic
k
(5.19) x(t) = exp _k (tp )

using the second-order information available ; the sequential tangent restoration
approach is then replaced by an approximate search along a parabola tangent to
Z;pk at xk, followed by a restoratiom.

A similar device can be proposed in the framework of the Quasi-Newton method
along geodesics, involving only éirst-order information. Suppose, for simplicity,
that xk is close enough to a solution so that t=l is a reasonable initial guess
for the approximate search along the geodesic given by (5.19). Let pk=-Hkgk and
qk eRP, the feasibility correction, be given by

(5.20) &< = -c(xk-*Z;pk)

and consider the simple arc of curve

k

2
(5.21) 2(t) = x5 + tZ;pk + -tz—Aqu for t e[0,1] 3

. . k -k
formula (5.21) defines an arc of parabola starting from x and tangent to ka .




The points x(t) for t >0 do not in general belong to C but can be viewed as an

approximation of the geodesic obtained by performing only one step of the resto-

ration phase (v).
We thus search the parabola (5.21) for the first t=2-£ , £=0,1,... satis-

fying

(5.22) £(x(t)) Sf(xk) + at <8k:Pk> 3

a restoration is then performed like in (v) and the new iterate defined like in
(vi). This approach presents the advantage of requiring less restoration phases

within an iteration. m

Remark 5.5. In two recent papers (Ref. 28, 29) Tanabe has proposed and analyzed
a continuous version of respectively the projected and the reduced Quasi-Newton
method. He however requires the updating of a full n x n non symmetric matrix,

which is performed by Broyden's rank—one formula. B

6. - PROBLEMS WITH INEQUALITY CONSTRAINTS

We consider now nonlinear programs where appear nonlinear inequality
constraints. For simplicity we assume that no equality constraints are present,

the problem isthen given as

(6.1) Min (£(x) | x e®" 5. t. c (x) 50 i=1, ..., P},
where f and c, are €9 real-valued functions on R". The constrained set
(6.2) C={x eR" | c,x) 50 i=1, ..., p}

can be embedded in a submanifold oflRn+p in the following way. Define for

i=1, ..., p the %% functions g; : R™P > R by
2 n P
(6.3) gi(x, z) = Ci(x) + oz for all x e R, z ¢ R",
where z; is the i-th component of z, and consider the set G = g-l(O) C,Rn*P_

Given X ¢ C the index set of active constraints at x is the subset of

P= {1, ... p} defined by

(6.4) I(x) = {ieP | c;(x) = 0};
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thus the corresponding point (x,z) ¢ G is such that z, = 0 for 1 ¢ I(x),
vhile z, #0 for i € P = I(x). Let m(x) denote the cardinality of I(x).
The Jacobian matrix of the map g is a px (n+p) matrix Jx 2 partitioned as

’

(6.5) Ty o= A 8,0

where A.x is the p x n Jacobian matrix of the map ¢ at x and A, is apxp

diagonal matrix of diagomal entries 2 z;. Assume that for all x ¢ C the gradients

of the m(x) active comstraints Yc. (x) for i ¢ I(x) are linearly independent. Then

the matrix J 2 is of full ramk p and by Theorem 2.1 the set G is a 2 differential

submanifold oflRn P of dimension n.

Problem (6.1) is thus equivalent to

(6.6) Min £(x),

(%,2)€G
minimization of the ©C differentiable function f over the differential manifold
G of class o. Notice however that the problem is now formulated in the'enlarged
space!R P. A naive approach known in the mathematical programming litterature

as the active constraints strategy, con51sts in considering at each point x € C

only the active constraints and implementing the previous descent methods in a

local coordinate system around x of the (variable) submanifold
(6.7) C(x) = {x e R | c;(x) =0 ie I(x)}.

It turns out however that such a coordinate systeﬁ cannot be used as a (partial)
coordinate system for G around the corresponding point (x,z); in fact there
exist in general points y in a neighborhood of x in C(x) such that ci(y) > 0
for some i, i.e. vy ¢ C. In order to apply efficiently the descent methods
presented in this paper to problem (6.1) throught formulation (6.6) we must
design convenient local coordinate systems of G which exploit the separable

structure of the functions g;-

Another approach would consist in adapting directly our methods to the

manifold with boundary C of R® by considering for instance local coordinate

systems mapping a neighborhood Ux n C onto a meighborhood of the origin in a

finite dimensional halfspace (See Hirch (Ref. 14§ 1.4).
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7. CONCLUSIONS.

In this paper we have developed two distinct themes, a theoretic set—up
using the geometry of manifolds and a computation-oriented analysis, and shown
how they could be usefully interrelated. We have presented a geometric framework
for studving nonlinear programming problems which has enabled us to generalize‘
in an intrinsic manner the analysis and methods of unconstrained minimization to
the constrained case. We have then specified the degrees of freedom of this gene-
ral set-up to our advantage, using the theoretic approach as a guideline for the
conception of efficient methods from the computational viewpoint.

We have in particular defined a family of descent me-
thods along geodesics and presented their practical implementation. Such methods
include most known primal methods for nonlinear programming and some new super-
linear converging algorithms. They generate a sequence of feasible points, which
requires at least conceptually, to solve a system of m nonlinear equations at
each iteration. This inconvenience will be overcome in the second part of this

paper.
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ABSTRACT

We present a globally and superlinearly converging method for
equality-constrained optimization requiring the updating of a reduced size
matrix approximating a restriction of the Hessian of the Lagrangian, Each
iterate is obtained by a search slong a simple curve defined by a Quasi~-
Newton direction and a feasibility improving direction ; an exact penalty
function is used to determine the stepsize. The method can be viewed ag an
efficient approximation to the Quasi-Newton along geodesics of (Ref . 1) where
feasibility was enforced at each step, Its relation with multipliers methods

and recursive quadratic programming methods is also investigated,
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I. INTRODUCTION

In a previous paper (Ref.1) Wwe have studied a class of descent

methods for the solution of the problem
(1.1) Min {£(z) | x €®" s.t. o (z) =0 for i=1,.,.,n}

where the successive iterates xk remain on the constraint manifold C = 0-1(0).
This class of methods includes most of the primal methods available today
(e,g. gradient projection , reduced gradient methods). In particular, the
framework adopted allows to define Quasi-Newton methods for the solution
of (1.1) which require only the updating of an (n-m)-dimensional positive
definifte symmetric matrixz approximating the Hessian of f on the manifold C
at the minimum x* ; such a method is shown to be superlinearly convergent,
It fequires however to search for an approximate local minimum of f along
geodesic curves of the manifold C, endowed With g Riemannian metric, It is
conceptually possible to achieve this scheme by two-phased iterations : a
tangent step in the tangent space to C followed by a restoration phase to
enforce the cohstraints. The resulting algorithm may be viewed as a sequen-
ce of solutions of m nonlinear equations, themselves performed iteratively
(by a modified Newton's method ) ; for large problems, like the optimal
control of a nonlinear discrete time (implicit) dynamic system over a
large number of periods, this second phase may réquire a much larger com-

putational effort than the first phase.

In a practical implementation the restoration phase can only be performed
approximately ; the convergence theory becomes much more complex and
requires the introduction of adaptive parameters for precision (see Mukai-

Polak (Ref.2)).

It has been recognized since a long time that the constrained
problem (1,1) could be solved by successive unconstrained minimizations
of an augmented performance criteria, The penalty approack consists of

successive minimizations of the functional




(1.2) p(zor,) =£(x) +f'12{‘ [leG) 12

for a monotanically increasing sequence of positive parameters rk-» + o 3
the resulting problems become increasingly ill-conditioned, which severely
impairs the efficient minimization of (1,2), For this reason, the method
of multipliers is preferred, At each iteration the augmented Lagrangian
functional

(1.3) pxaSr ) = £(x) + aelz)> +'r—]; e@)]|? ,

k

obtained by adding a penalty term to the ordinary Lagrangian function

(1.4) 25 =£(x) + ez

is minimized and the parameters Ak (and rk) updated, The resulting algorithm
nay be viewed as a dual method and, under some regularity assumptions
(Ref,3), it may be shown to converge to a solution x* without increasing

rk to + «>(see the excellent survey by Bertsekas (Ref.4)).

Primél methods and multipliers methods require practically a
sequence of (approximate) solutions of respectively a system of m nonlinear
equations and an n-dimensional minimization problem, To overcome this in-
convenience a class of methods has recently attracked much attention
(Ref . 5.6.7,8.9) : it can be viewed as a family of methods to solve the
system of (n+4m) equations arising from the first order optimality condi-

tions for problem (1.1) :

* *
v
X 2(x )

(1.5)  walz ") = .
c(x )

i}
o

Notice that the augmented Lagrangian £(x,\,r) could also be used, It is
possible to express both Newton and Quasi-Newton iterations for the so-
lution of (1.5) as

(1.6) ::]’H'1 =xk + 1t dk



where the direction dk is solution of the guadratic programming problem (Q.P.)
(1.7 mn fha,ma +<e(2),0] 4 e B st o) 4[7e() 1 a = 0] ;

Mk is the Hessian with respect to x of the Lagrangian function or an ap-

proximation based upon a Quasi-Newton update formula, The stepsize t S

i
k
introduced to guarantee the global convergence of the method ; it can be
selected to achieve at each iteration a sufficient decrease of the (non-

differentiable) exact penalty function

n :
(1.8) o(xir) = £(x) +r 3 |e(z)|

i= -
" as suggested by Han (Ref.10). If, after a finite number of iterations, the
stepsize tk can be chosen equal to 1, then the Quasi-Newton method (1.6)
has a superlinear rate of convergence (Refs. 8,9). Notice that in contrast
with the superlinearly convergent Quasi-Newton method presented in (Ref.1),
" Han-Powell method requires the updating of an n-dimensional positive defi-
nite matrix Mk, Although such Quasi-Newton methods involve a sequence of
solutions of Q,P,, their advantage over the primal methods and multipliers
methods lies in the key property that the Q.P. can be solved efficiently

in a finite number of iterations,

In this paper we propose a Quasi-Newton method which offers the
nice features of both the Han-Powell method and the Quasi-Newton method of
(Ref.1). It consists of a sequence of quadratic programs (1.7) where the
matrix Mk is of rank (n-m) and can be expressed and updated in terms of an
(nem)-dimensional Positive definite symmetric matrix Ek and its update
Ek+1' defined by the generalized Broyden-Fletcher-Colfarb-shanno formula
of (Ref.1)

: () SCR AR

(1.9) = (1 - JE (I1-—) + .
B .oy H oE o> PENCR




k
where yk =g + - gk N
k
=t & o

gk and gk+1 being the reduced gradients defined now at the non-feasible
points xk and xk+1, This new method.:can thus be interpreted as a generali-
zation of the Quasi-Newton method of (Ref.1) to non-feasible points and
with partial restoration (one step of the modified Newton's method for the
solution of the constraint equations), Geometrically each iteration can be
viewed as a cdmbinafion of a step in the tangent space to the manifold

dk = o (c(xk)), "parallel" to C = c-1(0). and a partial restoration step
to improve (and no more enforce) feasibility ., This method pre-
gsents some similarities with the combined gradient-restoration algorithm
experienced by Miele et al;.(Ref.11) and with the Quasi-Newton Peasibility

Improving GRG method mentioned by Tanabe (Ref.12).

In section 2 we state regularity assumptions on problem (1.1)
and review the optimality conditions in terms of the ordinary and augmented
' Lagrangian functiona;s. A family of Quasi-Newton directions is presented
in Section 3 as solutions of quadratic programming. problems, We also show
the relation between such Quasi-~Newton methods and multipliers methods,
The rate of convergence of algorithm (1.6) (with t, = 1) is investigafed
in Section 4 ; the two-steps superlinear convergence result of Powell
(Ref.9) is shown to hold for the Quasi-Newton method defined by a sequence
of matrices Mk of rank (n—m), Superlinear convergence is also established
for a simply modified algorithm, Finally in Section 5 we review methods

for selecting the stepsize,



2, ASSUMPTIONS AND OPTIMALITY CONDITIONS
We consider the nonlinear programming problem
(2.1) Min {f(z) | z RS c(z) = 0}

where f : Rn - R and ¢ :]Rn ->:Rm (n< n) are c° differentiable functions
(6= 2), In addition we assume that the map ¢ is a submersion, i.e, for
all x € the Jacobian map cf(z) € & ( K°, ") is of full rank m, The
regular value theorem (see Milnor (Ref.13)) implies that the set ¢, = c~1(w)
is a differential manifold of class C° for all w EIR ; thus any p01nt

X EIR belongs to a differential manifold cc(x) and it is possible to define

'l‘X the tangent space to C o(x ) at x

(2.2) =1y e® | ' (x)(y) =0} .

Remark 2.1, This( assumption on ¢'is stwonger that the regularity assumption

introduced in (Ref.1), namely 0 is & regular value of ¢, Under the last
assumption there may exist ~points x GIR - C 1(O) where the Jacobian map
'(x) is not surjective ; such po:.nts are called critical po:.nts of c,

However, if ¢ is a e’ differentiable map with
o > n-nm ,

the Morse-Sard theorem (see e.g. (Ref,14)) establishes that the image by ¢
of the critical points is a set of measure zero in IRm ; hence CW is a dif-

ferential manifold for "almost" every w EIRm. .

. *
We recall that it is possible to caracterize a solution x of
problem (2,1) in terms of the Lagrangian functional £ : R~ XIR™ —IR defined
by -

(3.3)  a(za) = 2(x) + A, olz)>

(see e.g. Luenberger (Ref.15) for the proofs of the following classical results) .




*
PROPQSITION 2,1, (First-order optimality condition), If x is g local mini-
*
mum of (2.1) there exists a vector of lLagrange multipliers A Gﬂfn such that
* *
(x ,\ ) is a critical point of the lagrangian functional (2.3), =

. . . s *
An equivalent formulation of this condition characterizes (x ,x*)

as a solution of the system of (n+m) equations :

]
[w]

(2.40) %7 2lxa) = ve(x) +ve(x)

(2.40) 9. £(z) =c(x)

A

W
o

Assuming that the functions f and c¢ are C° differentiable with ¢ = 2,
it is possible to define the Hessian with respect to x of the Lagrangian
functional

(2.5) W an) = Vo) + T Pe)

XX 1=1

*
and derive second-order characterizations of a solution X ,

*
PROPOSITION 2.2, (second—~order necessary optimality condition), Ifx is a

. . * m * ¥
local minimum of (2,1) there exists a A €IR such that (x sA ) is & cri-

* *
tical point of #(x,\) and the restriction of the Hessian form Vix 2z )

to the tangent space T is positive semi-definite, ®
*
X

PROPOSITION 2,3, (Second-order sufficient optimality condition). Assume that

* *
(x oA ) is a critical point of the lagrangian functional and that

* %*
(2.6) L AW > 0 forall VET, ., VFO
X

* * .
(where L(x A ) denotes the n X n symmetric matrix of the guadratic form

* * *
V§xz(x 7)), Then x is an isolated local minimum of f on the manifold

c=c1(0). =

Condition (2.6) allows to distinguish among the critical pairs

* ¥ *
(x ,\ ) which candidates x are actually isolated local minimum of problem




(2.1). Notice that the difference between the necessary and sufficient
second-order optimality conditions vanishes if the Lagrangian functional
has no degenerated critical points ; this is the case if the restriction of

f to the submanifold C is a Morse function (see (Ref.1)).

We now establish a result which will be used several times in

our analysis,

PROPOSITION 2,4, Assume that ¢ is a submersion and that the restriction to
the tangent space Tx of the n X n matrix N& is positive definite, Then, the

(n+m) x (n+m) matrix D(X,Mx) defined by .
T
N A&
(.2 .7) D(XnMx) = s

A O “

where Ax denotes the Jacobign matrix of the map c¢ at X, is non-singular, ®

Proof : Let z = (y.u) EZRP+m such that D(x,Mi).z = 0, By (2.7) we have

T
(2.8) Wy +4 b =0 ,
(2.9) Ay =0 .

Equation (2.,9) implies that y € T_ and (2.8) yields

T
(2.10) <3y M y> =<y, 4 W

= *(AxY|H> =0 .

Since M_is positive definite on T , (2.10) implies y = 0 and (2.8) reduces

to

(2.11) Aiu = 0,

which has for unique solution pu = 0 since Ay is of full rank m, .



* *
COROLLARY 2.5, Assume that (x ,\ ) satisfies the second-order sufficient
optimality condition, Then the Hessian matrix of £(x,\) with respect to x

* *
and A at (x ,\ ) is non-singular, &

Proof : The Hessian matrix of ¢£(z,\) with respect to x and A is

T
L(z,n) A

(2.12) = D(x,L(z.\))

the result follows from Proposition 2,4 since ¢ is a submersion by assump-

tion, 8

We conclude this section by a review of optimality conditions

in terms of the augmented Lagrangian £ : IRn x]Rm X Rt —-+IR defined by

2
(2.13)  #lxhar) = 2(zan) +5 [ fe)]]%.
* ¥ ’
1f (x ,\ ) is a critical point of the ordinary Lagrangian £{x,\)

it is also a critical point of the augmented Lagrangian (with respect to x

and A) for any r > O since

* * * * * * *
(2.14a) Vx 2(x o\ ,r) v 2(x N +re(x ) =V_ L(x A ) =0

* * +* %*
(2.14p) v, £2(x A ,r) v, £z A )=0.

The Hessian of the augmented Lagrangian is given by
T
(2.15) Vzn 2(Z\,r) = Vix (xnre(x)) + 1 Ve(x).[Ve(x)] ;

hence, denoting by Lr (x,\) the matrix of the quadratic from Vixﬂ(x,y.r).
<v.Lr(x.>\)v> = <v,oL(z,a+ re(x) v> for all v € T

and the second-order optimality conditions (Propositions 2,2 and 2,3) can

be equivalently expressed in term of the augmented Lagrangian functional

(2.13).



The key benefit of introducing this augmented functional lies in -
the following now classical result (see e.g. (Ref.4)).

* .
PROPOSITION 2,6, Assume that (x*,x ) satisfies the second—order sufficient

*
optimality condition, Then there exists 2 scalar r = 0 such that the (nxn)

* * ¥*
symmetric matrix I%(x Py ) is positive definite for all r=1r , 2

The continuity of sz(x) and Vzci(x) for i = 1,...,n guarantees
that the matrix Lr(x.x) remains .positive definite in a neighborhood
B(x*,a1) X B(x*,ez) of the critical point (x*,\*) which can thus be
characterized as a (local) saddle-~point of the (1ocally) convex~concave
function Z(x,y.r). This is the basis for the interpretation of the multi-
pliers method as a duality scheme, In particular we have

*

* * *
(2.16) £(x ,\ ,r) = Min L(Z,)\ ,r) for allr=1 .

X€ B(X*.€1)

A somewhat similar result holds for the (non—differentiable)

exact penalty function & : Rn ><]R+ - IR defined by
. m ° *
(2.17)  o(xer) =1(z) +2 5 |e, (x)]
i=1

* *
Let (x ,\ ) satisfies the second-order sufficient optimality

condition and let 4 € T ,, sufficiently smell, such that
X

2=+ an”) = 2z A+ <a,n(x"+ o )a> 2 4z ") .
Noticing that
é(xf.r) =f(x*) = o= )

we have

* o * * *
o(x +d,r) = oz +dn") + T [r|ci(x + d),-xi ci(x +d)]
i=1

> @(x*,r) »




- 10 =
provided
* *
(2.18) r=2r = Max I)» l ;
) i
i
hence
% ¥*
(2.19) @z ,r) = Min o(x + d,r) for all r2 r

de B(0,e, INT_*
1 X
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3. A CLASS OF QUASI-NEWTON DIRECTIONS

3.1. A Quadratic Programming Problem,

The family of Newton and Quasi-Newton methods for solving the
system of (n+m) equations arising from the first-order optimality conditions
(2,4) generates iteratively a sequence of approximate solutions {(xk,hk)}
according to

(3 1 ) T k49 k

Mk Ak X - X sz(xk,xk)

k+1 k ‘ C(Xk)

Ak 0 A - A

where Ak denotes the Jacobian matrix of the map c at xk and the nxn matrix
Mk is the Hessian matrix of the Lagrangian with respect to x, L(xk.xk).
(in Newton's method) or an approximation of it (in Quasi-Newton methods),
The choice Mk = L(xk,xk), which requires the computation of second deri-
vatives of f and ¢, has first been presented by Wilson (Ref.16) and the
convergence properties of the method established by Robinson (Ref.6). To
avoid the need for second-order derivatives Garcia-Palomares and Mangasarian
(Ref .7) have introduced an approximation Mk of L(xk,kk) 6btéined by updating
a large (n+m) x (n+m) matrix at each iteration and requiring only first-
order information, The wasteful character of this procedure has been evi-
denced by Han (Ref.8) who proposed to update directly the nxn matrix M

k
by a Quasi-Newton update formula,

Qur aim in this paper is to go a _step further, namely to show
that it is only necessary to update a reduced matrix of dimension (n—m) X (n—m),
as in the Quasi-Newton methods along geodesics proposed in (Ref.1). Before
Wwe present our method, we provide a general analysis of method (3,1) and

show the convenience of requiring that the restriction of Mk to the tangent
space Tk gz_xk be positive definite,

Using the notation
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the definition (3.1) of the Quasi-Newton method yields the system of equa-

tions

(3.3a) ve () + M & 4 A;I; LI

(3.3) o) +ad = 0 ,

. . k a . * .
which characterizes (&k.x +1) as a solution of the guadratic programming

problem (Q.P.)

(5.4)  min {<ve(2),> +ama> | @ e ® st o(x)+ 4 d =0} ;

Thus method (3.1) can be viewed as consisting of solving a sequence of

Q.P. defined recursively ; since such problems can be efficiently solved

in a finite number of iterations, this approach presents a clear advantage

over primal methods, which require successive iterative solutions of sys-

tems of nonlinear equations, as well as over multiplier methods, which

require successive minimizations of the augmented Lagrangian, Powell (Ref , 9)

has, explored further this method and shown that difficulties may arise

" when the Q.P. has several solutions, However, in the present éase, we can

simply overcome this difficulty,

PROPQSITION %,1, If the restriction of the matrix Mk to the tangent space

k

T, at xk ig positive definite, the Q.P, (3,4) has a unigue solution, (-}

Proof : The first-order optimality conditions (3. 3) for problem (3. 4) form

a system of linear equations in (d,\) of matrix D(x Mk) defined by (2.7).

Proposition 2.4 establishes that, under

our assumptions, D(x Mk) is non

singular ; hence (3.3) admits a unigque solution (g ,kk+1) The Hessian of

the Lagrangian functional associated to
(dk, k'H) satisfy also the second-order
dk actually achieves the minimum of the

(3.4) is simply the matrix Mk ; hence
sufficient optimality condition and

quadratic programming problem (3.4)_

* By a solution of the Q.P, we mean the
element and of the corresponding vector

to the constraints,

couple consisting of a minimizing

of Lagrgnge multipliers associated




- 13 -

3.2, A change of coordinates
In (Ref.1) we have found convenient to associate to the full rank

Jacobian map c'(x) € #£( R’ R°) of ¢ at x of matrix A, & linear map of

2( &, " m) defined by an (n-m) X n matrix Z_ such that
W(ZX) n W(Ax) =0 ;

the n X n matrix Sx defined by

A

(3.5) S
2
X

is non-singular and thus defines a change of coordinate in IRn, We recall

the following result established in (Ref.1, Prop. 2.1.).

PROPQSTTION 3,2, Assume that ¢ is a submersion. let A; be a right inverse
for A (i.e, Ah = Im), Then there exists a_ unique matrix z, of full
rank (n-m) with right inverse z; satisfying

(3.6) zx.A =0 4, A.Z = 0.

The matrix S defined by (2.5) is non-singular and its inverse is given by
—_—= -

(3.7) 8;1 = [a,27].

If cis a e’ map , A-x' Zx, Z; can be chosen as eo-1 differentisble functions

of X ipR-. W

This change of coordinate allows us to express the unique solution

of the Q.P. (3.4) in a form convenient for computations,

PROPOSITION 3,3, Assume that the restriction of the matrix M to the (n-m) |
dimension subspace {y € IR | &y = 0} is positive definite. Then
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-1
Mo AT 7m gt (1-z"m~ ) 4~
(3.8) =
A 0 Sl 2 (v m T

where H = (Z'-TMZ"')_‘I . "

Proof : We want to solve in (y,p) the system of equations

(3.92) My +4&u

1
o]
-

(3.9p) &y

il
=3

it is non-singular by Proposition 3,1 and thus has‘a unique solution,

Using the change of coordinate defined by 8;1 we can write
(3.10) y=4Aw +27z
il : n-m .
where w = Ay € R® and z = 2y € IR . Ecuations (3,6) (3.9b) and (3.10)

imply that w = h ; premultiplying (3;9a) by the non-singular matrix

(5;1)T yields the system of n equations in z,p :

(3.11a) u + e T

]
b
(1]

(3.11b) 77wz + 2 N

]
(o]
0R

The (n-m) X (n-m) matrix Z-TMZ- represents the restriction to the subspace
{y ¢ B*|ay =0} = {z7z]z ¢ """} ; by assumption it is positive definite,
hence invertible, Let H = (Z__TMZ-)_1 ; H is positive definite, Solving
(3.11b) for z and getting p from (3.11a) after substitution, we obtain
formula (3.8). ]

This formula generalizés the well~known formula for the inverse
in partitioned from (see e.g. (Ref.17)) valid only when M is non-singular,

It includes as a special case a formula used by Powell (Ref,18). Tapia
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(Ref ,19) valid only when M is non-singular, A more complex formula is given
by Tanabe (Ref.12) in term of a generalized inverse A of 4 (such that

A A=A = 4) but is of little value in practical computation ; assuming that
4 is of full rank the generalized inverse is also a right inverse and

Tanabe's formula should reduce to (3.8).

3.3. The Quasi-Newton Direction

It is legitimate at this point to define, as in (Ref.1), the

reduced gradient of f at the nonfeasible point x as the (n—m) dimensional

vector

(5.12)  e(x) =27 vs(z)

obviously‘the reduced gradient depends upon the change of coordinate defined

by S_. The Quasi-Newton direction defined as the solution d° of the Q.P. (3.4)
can be expressed using (3,8) as

k - k -T - k - k

d == - - :
(3.13) . B (e 220 M A ) - i o,
where the subscripts and superscripts k.in&icate that the respective matrices
and vectors are evaluated at the current iterate xk, Formula (3,13) indicates
that the Quasi-Newton direction dk is a combination of a direction in the

tangent sovace Tk to the submanifold qk = 0-1(ck) at xk and a direction poin-

ting toward the constraint menifold ¢ = ¢~ (0) (since -A; & can be viewed

as the first step of a Newton's method starting from xk to solve the system

of equations c(x) = 0),

Formula (3,13) defines a double family of Quasi-Newton directions,
On one hand it depends upon the choice of the change of coordinates Sx' i,e,
of the choice of the right inverse Ax of AX which then conditions the choi~
ces of Zx and Z; according to Proposition 3,2, Two convenient choices have

been considered in (Ref.1). The partitioned right inverse consists in par-

titioning of Ax as
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(3.14) & =[B, D] »

(where B is an m X m non singular matrix) and choosing respectively
B : -F ' 1

(3.15) & = yo2p=foa1 1 Z) = .
0 I

The QR right inverse consists in factorizing Ax as

Q
(3.16) &= [L. 0] 1 '

%

(where L is an m X m.lOWer triangular matrix and Q1 and Q2 are submatrices
of respective dimensions m and (n—m) of an orthogonal matrix) and choosing
respectively

(3.17) A = Q? L z = Q, z; = Qg .

On the other hand the Quasi Newton direction (3,13) depends upon
the scheme adopted to update the matrix Mk. Many update formulae are availa=-
ble since we do not require Mk to be symmetric (in fact the quadratic program~
ming problem (3.4) can be defined for a non symmetric Mk by substituting Mk
by'%(mk+ Mi) in its formulation, as noticed by Han (Ref.10)). However our
analysis requires that Mk remains positive definite on the (changing) subs-
pace T , A convenient scheme to achieve this property in a very simple way

k.
consists in considering matrices Mk satisfying

(3.18) M A =0 ;

in this case the Quasi-Newton direction is given by
k - k - k
(3.19) & =-2Z H g -4 C

while the corresponding Lagrange multipliers vector of the Q.F, (3.4) is
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(3.20) A =o ST we(dX)

Observe that the solution of (3.4) depends only upon Hk = (ZET Mk Z;)-1
and it is thus only necessary to update Gk = H£1 as a positive definite
symmetric matrix of dimension (n-m) approximating the restriction to the

tangent space of the Hessian of the Lagrangian,

By analogy with the reduced Quasi-Newton method of (Ref.1) we
can think of updating Gk by the Generalized Broyden-Fletcher-Goldfarb-

Shanno formula

T
y, (v.) e s (s%)"¢
(3.21) Gy = G + kkkk - kk k
¥ 18 > {s ’Gk s>
where °

(3.22a) sk =X - X ’

(3,22b) yk _ k¥  k

(we introduce the notation sk to allow for the possibility of introducing

a stepsize t, in the iteration = 2. tkdk),

However there is no guarantee in the new method that
k k
¥y » 82> > 0

which is a necessary and sufficient condition for G to be positive defi-

k+1
nite if Qk is, We must therefore modify the update formula (3,21) using a

device suggested by Powell (Ref,ZO) :

zk(zk)T Gksk(sk)TGk
(3.23) ¢, =6 + —— - ——= |
k41 gk <zk,sk> <sk.G sk>

where
(3.248) 2¥ = &, a (1-ek)<3k =

and Qk is a scalar between 0 and 1 chosen according to"
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1 if <yk.sk> 2 o<sk.Gksk> ’
(3.240) ¢ = (oore o o
S othervise ,
k k k k
<s ,Gks LY 18 >

with o € (0, é) (Powell suggests to use ¢ =0.2).

Notice that E_ = G;1 can then be updated directly according %o

kX, k\T k, k\T k, k\T

(5.25) A I N LA L
3.25 = I- s I- + ]

LI o s B o 5> oE &y

although we do not recommend the use of this formula in practical computa~

tions for its potential numerical unstability,

3.4, Relation with multipliers methods:

We could also define Newton and Quasi-Newton methods for solving
the system of (n+m)vequations arising from the first-order optimality

conditions expressed in term of the augmented Lagrangign -

1]
(@]

]

(3.26a) Vx £(xshor) =9 £(z,\) + 1 ve(x) ox) N

[

(3.260) v £(x,\,r) = c(x) =0,

e k k
This scheme leads to the iterative definition of a sequence {(y ou )} ac-

cording to
T k+1 kK kK k T,k
Nooo& | |Y -7 v a(y aw)er o c(y)
(3-27) + =0 ’
k41 k k
a0 b o= u ey )

where Nk is an approximation of the Hessian matrix of the augmented Lagrangian

given by (2.15) ; it is thus legitimate to define

.(3.28) =N 4T AEAK



- 19 -

where Mk is an approximation of the Hessian matrix of the ordinary Lagrangian,
Formula (3.8) can again be used to compute the solution of (3,27), Noticing
that (3.6) implies

o S

20 N Z =2, Moz =H' o,

c L . k k k .k

it is easy to show that, starting from (v o) = (5.0%), method (3.27)
generates the same iterate xk+1 as method (3.1), i,e,

(3.29) ¥ _oFoE oL z, Hk(gk - Z]ZT LAy ) - A &,

while the Lagrange multipliers pk+1 can be deduced from kk+1; solution of
(3-4): by -

(3.30) pk+1 = Akﬂ +r ck §

a result established in the particular case where Mk is non-singular by
Powell (Ref,18) and Tapia (Ref.19).

Suppose that (yk,xk) is in a small enough neighberhood of (x*,k*)
satisfying the second-order sufficient optimality condition and that r is
chosen large enough so that Nk given by (3.28) is positive definite, hence
invertible (this is possible by Proposition 2.6), The first block of equaw’

tions of (3,27) can be solved for (yk+1 - yk) and yields

CED IR e N; (ve(55) + ve(55) Wz o(55)) ;

equation (3,31) can be viewed as one step of a Quasi-Newton method starting

from y'k to solve the unconstrained (locally convex) minimization problem

(3 ~32) mn * 3(Y0pk+1 ’r) .

y € B(X 051)

Notice that the multipliers vector pk+1 is then given by

(3.33) W™ = e (g 0 AT Wi pEE)
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1f the minimization phase (3.%2) had been performed exactly at
the previous iteration, we would have V_ g(yk,uk,r) =0 and (3.33) would

reduce to

k+1

(3.34) W= (g 1 a)T S

Itération (3.34) can be viewed as the k-th step of a Quasi~Newton to maximize

*
the dual functional Tr : B(K .52) - TR associated to the augmented Lagrangian

(3.35) v & mn, o slywr)
NAS B(y :51)

. -1 T . . . 2 k k kyyv=-t T
- v = -
since Ak Nk Ak is an approximation to Wr(u ) Ak(Lr(y si )) Ak

(see e.g. (Ref.4)).

Thus method (3.27), which is related to our general Quasi-Newton
method (3.4) as exhibited by (3.29) (3.30), can be interpreted as a parti-

cular efficient implementation of a Quasi-Newton method for solving the dual

problem Max Tr(p), where the minimization phase (3.32) is performed only
doproximately by one step of a Quasi-Newton method, Such a method has been
called by Tapia (Ref.19) a diagonalized multipliers method ; a particular
implementation (corresponding to Mk = I) has been experimented by Miele

et al, (Ref.21). See also Tapia (Ref,22) for a related discussion,
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4, SUPERLINEAR CONVERGENCE

The object of this section is to show that the greatly simplifying
strategy (3.19), (3.20) requiring only the updating of a reduced (n-m)x(n—m)
matrix Gk (approximating the restriction to the tangent space of the Hessian
of the Lagrangian) still préserves the attractive superlinear rate of con-
vergence of the Quasi-Newton method of Han-Powell requiring the update of

the n¥n matrix Mk'

4,1, Iwo-steps Superlinear Convergence

We consider the iterative method

(4.1) xk+1 k k

where dk is the general Quasi-Newton direction defined in Section 3,3
_ - k -T - k -k

(4.2) & =-z E (g -2 M A& c)-4uc

with

(430) B =("m 22)"
(430) & =2 vl

(4.3¢) & = o) .

[e)
]

*
Assume that the sequence {xk} converges to a local minimum x of

*
f on C and let A he the corresponding Lagrange multipliers vector associa-
¥* *
ted to the constraint equations, Assume moreover that (z s A ) satisfies

the second-order optimality condition,

Assume also that the method uses a sequence of bounded matrices

Mk such that

(4.4) l<v, Mkv;>| <m v |‘2 for all v € R- and all k

and that the matrices Hk remain positive definite and such that
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(4.5) m, lp||? = <ps Bp> < m llp||° for all p ¢ B and all k,

The direction & is solution of the Q.P. (3.4) to which is associa-

1

ted a Lagrange multipliers vector AE ¢ ™ given (by application of (3.8))

by
(0.6) A oo 2w 2B e b 4 o)

" ,
PROPOSITION 4.1. li_{xk} - X the sequence of Lagrange multipliers {xk}

*
constructed by the successive Q,P, converges to A , ®

Proof : Since (dk. xk“) is the unique solution of Q.P, (3.4) it satisfies

(4.7) Mkdk + A;I; N L ve() = o,

. k * k . * ¥ . s . .
since {x°} »x , & =0 ; the pair (x ,A ) satisfies the first-order opti-

mality condition

(a.8) .ve(x) +ve(x W =o.

Subtracting (4.8) from (4.7), we obtain

B o £ OE ) L ul) - i)+ (o) - vl 2" <.
1 *

which by continuity of Vf and Ve and (4.4) yields A LT, m

* ¥
PROPOSITION 4.2, If (x ,A ) satisfies the second-order sufficient optimality

condition, there exists K1 > K,2 >0 such that

(0.9) gL 1T = (=" = D T

* * * .
Proof : By Corollary 2.5 the Hessian matrix D(x ,L(x »\)) of the Lagrangian

with respect to x and A at (x*,x*) is non-singular ; by continuity of the

second derivatives of f and ¢ the matrix D(x,L(x,\)) remains non-singular in

* k+1 *
a neighborhood B(z .51) X B(x*.ez). Suppose that = ¢ B(x*,s1) and A €B(z ,e

) s

2



*
Taylor expansion of vz(xk.xk“) around the critical point (x*,h ) yields
1 Kk *
k _k+ [ /% , k % * K %y %, k+ x5 L
VT ATT) = (e (=) LT b () AT (FTANT))) Jet_ k|t

(4.10)
¥ -z
D kvt ¥

t
-

([

where the matrix D is non singular. Hence

Caxt = (@), A L T, o)

(4.11) x = "

Using the expression (4.6) of }\kﬂ, we have

D - wz m g e (- B 0

(4.12) sz(xk,x

By proposition 3.2, A; and Z; are %! functiomsof x hence
*
bounded on B(x ,51) ; formulae (4.11) and (4.12) together with (4.4), (4.5)

yield (4.9). =

Under the same assumptions we obtain ‘the estimate of the norm

of the Quasi-Newton direction,

PROPOSITION 4,3, There exists K3 > K4 > 0 such that

(a.18) gL+ 11T [ < gl 1+ [1e]1].

We establish a bound on the constraints violation at each iteration.

K. >0 such that

PROPOSITION 4,4, There exists

(4.15) IIC(xk+ dk)H s K Hdk]lz . =

Proof : Since the functionals c, are C° differentiable with ¢ = 2 we have

Sup ||c‘.'(X).V||) 4+,
x € B(X*:€1) *

Y, = ( sup
vl =1
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. * . . k41
where m4 is a bound on B(x ,51) of the derivatives of L(.. ). Observe

‘from (4.2) that we can write

k -k k
& ==Z, P +q

where pk = Hkgk and qk = (Z;HKZ;;TME I)A; & is such that
k
(4.19) |11 < mg |11

Combining (4.16), (4.17), (4.18), (4.19) we obtain

K+1 -7 K41 K+ - T k1 ko1
e = 1z v e WD |+ | g, 2 7,2
~Tro k k4 -k K2 K
< [z [ )-n Jzp v+ x|
PROPOSITION 4.5, Assume that f and c gre C° differentigble with ¢ 2 3
then there exists KB. K7 > 0 such that
K+1 =T,k k+ly - ~17k k2 k
(4.20) ||| = || [g oG )z— B JP IES AN IS ST

.W_iﬂpk=-Hkgk. '
We are now in position to establish the two steps superlinear
convergence for the class of methods (4,1) (4.2), extending a result

established by Powell (Ref.9) for a particular implementation,

' *
THEOREM 4.1. Assume that f and ¢ are C° differentisble with o 2 3 and that

the general Quasi-Newton method (4,1) (4.2) renerates a seguence of approxi-

mate solutions {xk} together with Lagrange multipliers {hk} (given by (4.6))

such that {(xk,)\k)} convereces to (x¥,\") satisfies the second-order sufficient

ogtimalitx condition. Suppose that the method uses a seguence of bounded

matrices M_such that B = (z]';TMk zl'{)’1 is positive definite and satisfies

. 22T e - £ ' o] |
(4.21)  lim k =
M e TS

*¥ Tt is sufficient to assume that f and c are C—2 differentiable and have

Lipschitz continuous second derivatives,
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with p Hkg . Then the seguence {xk} is TWO-STEPS SUPERLINEARLY converging

ke %
[ - =7

Ke
[ - x|

Proof : Notice first by combining (4.14) and (4.9) that

X K
k * k k k k *
(a.23) 22 [ - =] < (12 2] = e s 2|1 1)
1 5
hence

K * K *
(a.24) 21 < ) s (e 2 2T

Xs ' X

Combining (4.9) (for index k+1), (4.15), (4.20) we obtain

k+1 _* ~T_, k k+iy ~ -1+ k k2 k
(a.25) |12 | =, LT a0 — 0% w165 o 16511 5

using (4.23) and (4,24) (for indeX k-—1) yields .
=T /- k k4l =~ =19 k
(426)'1'1—LL —5 f){xll[zkmxk'h )ik_Hk]pH +
=== % 2 ! =1 - =

XK.K X
g 145}« 2L |18
2

Taking the limit as k — 4 yields (4.22) given that {dk} -0 and (4.21) holds, ®

Theorem 4,1 shows that the two-steps superlinear convergence of the
general method (4.1) (4.2) depends only upon how the restriction of Mk to
the subspace T approximates the similar restriction of the Hessian of the

£

adequate glong the direction pk ; this result, mentioned by Powell for a par-

Lagrangian L(x , k+1), Actually it only requires that this approximation be
ticular method where the orthogonal restriction was envisaged, thus generalizes
a similar condit;on given by Dennis-More (Ref.23) for Quasi-Newton methods

for unconstrained minimization,
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In other words it is not necessary in order to obtain two-step
superlinear convergence to update the full nxn matrix Mk’ In our general
framework, we are able to exploit fully this observation by considering
matrices Mk satisfying (3.18) as discussed in Section 3,3, A simply choice

consists in taking

(a.2) B =7, G 7y

where G is an (n—m)x(n—m) positive definite symmetric matrix updated accor-

ding to the modified generalized BFGS formula (3.23) ; notice that E, = gk
.and can be updated directly according to (3,25). It remains to show that
the update formula (3.23) verifies the Generalized Dennis-Moré condition (4.21)

which requires very technical estimates ; we shall not attempt to prove this
result in this paper (see Powell (Ref,9) where (4,21) is established for
the updating of Mk by a formula analogous to (3.23)). We shall refer to

such methods as Reduced Quasi-Newton Methods,

As discussed in Section 3,3, method (4,1) then uses the simplified.

Quasi-Newton direction

k

- k - k
(4.28) & =-2Z_ B & -4 ¢
and generates Lagrange multipliers

(4.29) N oo T weG")

notice that only Hk is required in the computations,
Finally, Theorem 4,1 can be interpreted in the framework of mul-

tipliers methods proposed in Section 3.4. It establishes the two-steps

superlinear convergence of the diagonalized multipliers method where the

minimization of the augmented Lagrangian

(4.30)  Min /4(y.uk+1

y

01')
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is performed by one step of a Quasi-Newton method starting from xk and
using the approximate Hessian
rI 0
T

o nefanerdacd | s

and the multipliers are updated according to the formula

(4.32) & = A;T ve () +rck_

]

k k ~T k k
g + Trc —Ak Vx.g(x.}.l.pr).

Such a result extends the analysis of Byrd (Ref,24) who considered diagona-
lized methods using Newton steps for (4.30).

4,2, Superlinear Convergence of a Reduced Quasi-Newton Method with Feasibi-

lity Improvement .,

Going back to the proof of Theorem 4,1 we can observe that super-

linear convergence could be established had

o)1

li@m ————— =
ke ||z

To achieve this result we consider a modification of method (4.1) (4.2)

where the next iterate is now given by

(4.33) Xk+1 = Xk + dk + ek

k
where d is still defined by (4.2) and ek is an additional step to improve

the error on the constraints, defined by
k - ¥k Xk
(4.34) e =-4 c(x+d) ;

the additional step ek is incorporated only if it actually improves feasi-

bility, i.e. if given « € (0, g-).
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(4.35) | |c(xk+ & ek)l | = (1-a)|]| c(xk+ dk)| l
By (4.34) we conclude using (4.15) that
k 2
(436) 1=z, Ha Il
which show that (4.35) is eventually satisfied as & o 0.

We assume again that the sequence {xk} defined by (4.33) and the
associated sequence of Lagrange multipliers {)\k} (still defined by (4.6))
converge to (x*,)\*) satisfying the second-order sufficient optimality con-
ditions, We also assume that (4.4) and (4.5) still bold,

Propositions 4.1, 4.2, 4.3, 4.4 are obviously still valid together with
estimates- (4.9), (4.14), (4.15). Tt is easily verified, using (4.36) that
the estimate (4.20) of ||™"|| still hold,with possibly a larger constant

'
K6.

To establish the rate of tonvergence we need an estimate of Hc(xk+1)|l

for the new scheme, Taylor expansion of c(xk'H) leads -now to
. : : 4 ’
ez = ||c(xk+ )+ A & +f [of (x5+ &+ te5)= o1 (£F)] e at]| ;
0
hence, by the continuity of c",
(a31) 11 s gy [ ] 1]

THEOREM #,2, Assume that f and c ;al_'g_do differentisble with o= 3 and that
the MQDIFIED Quasi-Newton r;lethod (4,33) (4,2) (4.34) generates a sequence of
approximate solutions {xk} and a sequence of lagrange multipliers {kk} (defi~
ned by (4.6)) converging to (x*,)\*) satisfying the second-order sufficient

optimality condition,
Suppose that the method uses a seguence of bounded matrices Mk such that

- (z;T M z];)"1 is positive definite and satisfies
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£ = 4= | "XH
witk p = Ek gk, Then the ssguence {Yk} ig SUPZRLINEARLY convarzing to x*. 1.2
£+ *
== -z ]
(4.39)  lim ” = .
s |22
Proof : We still have
K K, .
(e00)  FH 15 <" s (&) s 2 1155 <))
1 2
for the modified method, however,
(o) [ 2| = [l s [ |1 P = x ) (165,

We thus obtain, using (4.25), (4.37), (4.40), (4.41)

=7 =T ke T ey - 1|
. 3 10 X
(4.02) —5——< ——, PR
1= =7 2 1= =5

o D e

Given (4,38) and the assumption that & - 0 (hence R 0), we

obtain (4.39). showing the superlinear convergence of the modified method, n

The comments following Theorem 4,1 are still in order =and lead
- =]

to the seme strategy : we only need to update an (n-m)x(n-m) pesitive

definite matrix Gk = H;1 according to (3.23).
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Notice that, starting from a feasible point = (i.e. & = 0),

method (4.43) is equivalent to the Quasi-Newton method along geodesics
of (Ref.1) where only one step of the restoration phase is performed (the

stepsize belng teken aé 1).

. N . - a - . / -
Examples of choice of Ak and Zk have been presented in (Ref .1) and
include ths partitioned right inverse formulae (3,15) and the §Q,R, rizkt

- . =

inverse formulae (3.17).
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5. STEPSIZE SELECTION

We now introduce a stepsize parameter t > 0 and consider for the
Reduced Quasi-Newton Method with Feasibility Improvement the parametrized
arc of parabola starting from xk and tangent to dk, formally similar to
the parabolic arc introduced in (Ref.1),

(5.1) x(t) = £ st d 4 t2 ek ,

where 4~ and & are respectively defined by (4.28) and (4.34) (if (4.35) is

satisfied),

Following Han (Ref.10) we choose the stepsize t, , defining the new

k
iterate

(5.2) P =x(t, ) ,

to achieve a sufficient decrease of the exact penalty function, analyzed

in section 2, .

(5.3) ®(x,r, ) = f(x) +r ;1 |e; ()] .
i=1

The non-decreasing sequence of penalty parameters is defined recursively by

(5.4) r . =Max {r

k
K +1 » Max |7‘i+1” ’

1

k

starting from ro > 0 ; the m-dimensional vector hk+1 is taken as the Lagrange

multipliers vector at the solution of the quadratic programming problem {3, 4)
and given by (4.29).

Instead of requiring tk to achieve an approximate minimization of
the form proposed in (Ref,10), we follow the spirit of Powell (Ref.20) and

select tk = 2~£ for the first index £ of the sequence {0,1,2,...} such that
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)

Kk K k
(5.5) @(X(tk).rk+1) < a(x .rk_H) - at, v(x*,q o

with ¢ € (0,4) and ¥(x,d,r) defined by

(5.6) ¥(x,d,r) =71 Zﬂ'l_) le; ()] - <ve(x),a> .

i=g
. k k k+ .
PROPOSITION 5.1, Given x , let d 'y A~ gnd r, . Dbe defined by (4.28), (4.29)
and (5.4) ; then
k .k
(5.7) ‘l’(x od ’rk+1) 20

k

: ) k . .
where equality holds iff (x LA +1) satisfies the first—order optimality

conditions (2,4). L

Proof : Notice that, using (4.28) and (4.29), formula (5.6) yields

m
)3 lci(xk)l - e )

k k k k
(5.8) ¥(x ,d ‘rk+1) =<g s BEg > +T, R

+1
inequality (5.7) results from the choice (5.4) of rk'.1 and the positive

definiteness of Hk, [ ]

The stepsize selection rule (5.5) thus insures a sufficient de-
crease of the exact penalty function from a non-critical iterate xk. The
convergence analysis of the algorithm must however distinguish between two

situations,

THEOREM 5.1. (@lobal Convergence) Assume that £ and ¢ are cp differentigble

with ¢ = 2 and that ¢ is a submersion, If the sequence {rk} defined by,(5,4)

increases infinitely, then the seguence {xk}, constructed by (5.1), (5.2)

(5.5)s has no accumulation point ; ;i_rk is increased only a finite number

of times according to (5,4), then any accumulation point of the sequence
k . k+
{X A }

satisfies the first-order optimality conditions. -

k
Proof : a) Suppose that r, - +o0as k » + o and that the sequence {x } has

. . * . * .
an accumulation point x , i,e, there exists a subsequence Xk > X as i = + oo,
i
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Define

(5.9)  r(x)= wx )] ,
1<is<nm

where )\(x) is the Lagrange multipliers vector, defined by
-7

(5.10) Ax) =- A" ve(x) |

Since r is a continuous function, given ¢ > 0 ,

* .
(5.11)  r = Max , r(x)< 4o,

x € B(x ,e)

. *
There also exists N > 0 such that x € B(x ,e) for all i = W,
i
Since T, 1s increased infinitely often according to (5.4), we must have

* -
(5.12) I'k.<r(xk.)5r { +o w2n ,
i i
which contradicts the fact that rk - 4 o0

b) Suppose now that Ty is increased finitely many times, i.,e, that

there exist r > 0 and an integer N such that
(5.13) = =r k=N

k+1

which implies that the Lagrange multipliers remain bounded :
k+1 . >
(5.14)  I7'|sr for i=1,...,m , k=¥,
* % . . k . kH
Let (x oA ) an accumulation point of the sequence {x sA } ; We assume for
* * *
simplicity that xk - X , Suppose that (x WA ) does not satisfy the first

order optimality conditions (2.4) ; then by Proposition 5,1

(5.15)  w(x ,d ) =850 .
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There exists N' = N such that
(5.16)  wf,aSr) > 2 Wz

We can evaluate ®(x(t),r)) along the parabolic arc (5.1) starting from

xk, k= N', for t € [0,1] :

(5.17) a(x(t),r)) = f(xk+ t a5+ tzek) +r ;} |ci(xk+ sd + tzek)l
i=1

. s k
Using the definitions (4,28) and (4,34) of dk and e , second-order Taylor

expansions of f and cy yield the majorization

(5.18)  @(x(t)sr) < o) - ¢ w(x,d% )+ t° o(x5,d5,e5,0) ,

k
where @(xk,d ,ek.r) is a positive bounded term since sz and Vzci are conti-

- *
nuous hence bounded on B(x &) @
k k k
(5.19) 0 < 8(x ,d ,e ,T)S M .,

There exists an integer L = 0 such that

--L< 1-a)b =L+

2 ' < oM <2

provided 0 < a < 1 and 5§ < 4M ; then t = 2_L is an admissible stepsize since

(5.20) ax(Y),r) s aolr) - o 27w ,d5r) .

Thus the selection rule (5_5) defines a sequence of stepsizes tk bounded

from below

By definition (5,2) of the new iterate Xk+1 , We have

(5.21) @ ,r) - o(x";x) s -at, o(E,E ) s~ 627,
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T . k .
which implies that &(x ,r) - - % , in contradiction with the continuity of
*
®(, »r) which guarantees that @(xk,r) -»a(x ,r).

*  *
Hence (x ,A ) must satisfy the first-order optimality conditions, n

We assume now that f and c, are c° differentiable functions with
02 3, The superlinear convergence established in Section 4 holds since we
can establish that the stepsize t, =1 satisfies (5.5) after a finite num-

ber of iterations,

PROPOSITION 5,2, There exists an integer N > O such that the stepsize tk =1

satisfies the selection rule (5.5) for k= N. m

Proof : Third-order Taylor expansion of f yields, using (4.36),

(5.22) f(xk+ s ek) = f(xk)+ <Vf(xk),dk> + <Vf(xk),ek>

+2 <l e o] |d]]).

Combining (4.36) and (4.37), we obtain

(5.23) Ha¥+$+£n|=mnfn5 :

hence

(5.24) @(Xk+ dk+ ek.r) = @(Xk.r) - Y(xk,dk,r) + <hk+1.c(xk+-dk)>
- @, () +o(]]d)7)

where we have made use of the definitions (4.34) and (4.29) of X and Ak+1,

Using the third-order Taylor expansions of C,a We obtain
k k k k
(5.25) a(x+ &+ oyr) = a(x",r) - ¥(,d5,0) + T <a, 00 W) e (||| 3)

With the expressions (5.8) of Y(xk,dk,r) and (4,28) of dk, we can rewrite
(5.25) as
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(5.26) o(x“+ d+ &yr)= 8(x,r)+ a v(F,d5,r) < =(4-a) ¥(£5,d5,r)

_L<p [Z L( k k+1?‘2 H;]pk > +O(I/dkll3)

!
/

with pk Hkg . Notice that if the sequence Hk generated by the algorithm
satisfies (4 38) the second term of the RMS 1s.0(l|d ll ) while, by (5 8).

k k
(5.21)  w(x,a%r) =0(||a"[|%) ;
hence, provided o < 12-. (5.26) shows that
(5.28)  o(F+ &+ 65,r) £ 3(F,r) = @ ¥(x",d5,r)

once||dk|| is sufficient small (i.e, after a finite number of iterations

*
since {xk} —»x satisfying the first-order optimality conditions), ®

We have thus established the global and superlinear convergence

of the Reduced Quasi-Newton Method with Feasibility Improvement which we

summarize as follows :

Given ik EIﬁn. Hk positive definite, A;. Z£ satisfying (3.6).

ae(oi%)l rk>0;

k k
i) compute the constraints residues : ¢ = c(x ) ;
- k
ii) compute the reduced gradient : gk = ZkT vE(x ) ;
. . - - k
iii) compute the Quasi-Newton direction ak = - Zk Hkgk - Ak c

iv) compute the feasibility improvement direction :
let £ =x° +d° and ek=-A;C(xk) ;

ie ||o(®+ )] > (1=0)]|c(2¥)|] then & ¢ 0 ;
v) penalty parameter :

- k
compute the Lagrange multipliers xk+1 = -AkT vi(x)

let T = Max {r

k+1 l
k+1

Max lx
i

k’
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vi) stepsize selection : let £ be the smallest integer such that

@(xk+ 2—zdk+-2—2£ k

)

- k k
) < @(xk,rk_H )- a2 z‘I’(X d T

Ty k+1

k+1 k

let x =x + 2-£dk + 2'2‘ek

6 , CONCLUSIONS

In this paper we have presented a superlinearly and globally con-
vergent algorithm for the minimization of a differentiable function over a
differential manifold, This method can be viewed as a particularly efficient
approximation of the Quasi-Newton method along geodesics presented in (Réf. 1)
where the feasibility of the successive iterates is not enforced, It is also
related to the class of diagonalized multipliers methods (Ref. 19) and to
the increasingly popular variable metric methods for constrained optimization
(Ref. 8, 9) but offers several advantages : from a computation viewpoint it
only requires to update a reduced-size approximate Hessian of the Lagrangian
(at the Montreal meeting, both Abadie and Tanabe presented algorithms with
a similar feature) ; on the theoretical side the method is guaranteed to
converge with a superlinear rate (a similar procedure was présented by Mayne
“and Polak (Ref, 25) at the Montreal meeting),
Additional analysis is needed to extend our method to mathematical programe-
ming problems with inequality constraints (see_Ref, 1 §.6 for a possible

approach),
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