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RESUME

En utilisant des €équations de transformation diies a Mangasarian, on
montre que ‘les chemins de presque complémentarité sur certains polytopes
convexes, peuvent €tre interprétés comme des chemins d'homotopie d'une
fonction non linéaire, en choisissant convenablement le point initial de
la fonction d'homotopie. Pour une classe spéciale de matrices, ol le point
initial est facilement identifié, on présente un algorithme de presque
complémentarité par pivotage. L'utilisation d'une variable artificielle
crée un chemin d'homotopie qui est précisément le chemin suivi par la
méthode de Lemke.

ABSTRACT

Using transformation equations of Mangasarian, it is shown that
almost éomplementarity paths on certain convex polytopes can be inter-
preted as a homotopy path of a nonlinear function. For a special class
of matrices, for which the initial point is easily identified, an almost
complementary pivoting algorithm is presented. The use of an artificial
variabie creates a homotopy path which is precisely the path followed by
Lemke's method.
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I. INTRODUCTION |

The complementary pivoting algorithm of Carlton Lemke for resolving,
under certain circumstances, the linear complementarity problem, is a tech-
nique familiar to mathematical programmers. In recent years, it has been
studied extensively and has been shown to converge (or to "process" the
problem) in various special cases, i.e., for certain classes of matrices.
For relevant results and related bibliography see references (s]-[15], [17],
(24], (261, [28], [31]-[4o0], [k42], [L3].

Lemke's algorithm is a pivotal method which traces a particular
path of edges on a convex polytope. Along quite different lines, homotopy
methods (derived from méthods of continuation) for solving systems of
nonlinear equations have been under extensive study for the past three or
four years. On homotopy and related work, see, for example, references
(1)-[L], (161, [18]-[23], [25], (27], [29], [30], [41], [4k], [45]. Homo-
topy methods are known to have robust convergence properties and are known
for example to succeed in many instances when classical Newton or quasi-
Newton methods fail. Convergence theorems for such methods tend to be
"global" in nature and often, in contrast to Newton-type theorems, require
the starting point to be sufficiently far from a solution [22], [27].
In this paper a fundamental result of Mangasarian is used to show how these dif-
ferent streams of current interest can be related; Observed relations are first
exploited for a very special class of linear complementarity problems and then ex-

tended to the general LCP. Several of the existence results obtained herein appear



to be new, at least in form. However, the wealth of past work in this
area makes it clear that such results should be taken as highly tentative
with regard to the question of whether or not they can be subsumed by what
is already known.

The paper is organized as follows. In Section ITa relation between
homotopy and almost complementary paths is established and a new almost
complementary pivoting algorithm is given for matrices containing a column
whose off-diagonal elements all have the same nonzero sign. Lemke's method
for matrices with a positive column is subsumed by the method described
herein and an example is given for which the latter succeeds but Lemke's
method with an.artificial variable terminates without discovering the solu-
tion. In Section III existence results are given for this class of matrices
(at least one column whose off-diagonal elements have the same nonzero sign).
Theorems 1, 2 and 3 describe some members of the class Q (a Q-matrix is
a matrix M such that the linear complementarity problem has a solution
for any q). Theorem 4 gives a general existence result for matrices
having an off-diagonal constant signed column and, for such matrices, Corollary
2 describes some members of the class Q. In Section IV the development is
related to Lemke's method using an artificial variable for arbitrary

matrices M. Theorems 5 and 6 give additional results on Q matrices.



II. A RELATION BETWEEN HOMOTOPY AND AIMOST COMPLEMENTARY PATHS

Consider the Linear Complementarity Problem:
(LCP) Find z € R® )
2>0, w=q+Mz2>0, <z,w>=0

where q 1is a specified n-vector, M is a real n X n matrix, and
<.,.> denotes the Euclidean inner product. The problem throughout will
be assumed to be nondegenerate in the sense that every solution to

w=gq + Mz has at least n nonzero components. The im@ortance of (LCP)
stems in part from the fact that it is a canonical form fgr some other
problems in engineering plasticity, optimization theory, in game theory,
fixed point problems, and'for economic equilibrium con&itions (not neces-
sarily derived from an underlying optimization model--for example, in
spatial equilibrium models). The above problem (LCP) is a special case

of the nonlinear complementarity problem:
(NLCP) Find 2z € R® )

z >0, F(z) >0, <z, F(z)>=0

where F: R® +R" is a specified function. This is a more general canonical
form (e.g., first-order optimality conditions for a general nonlinear program
fall into this form) and is equivalent to the problem of variational inequali-
ties in R®. If one defines F(z) = q + Mz then the problem (NLCP) obviously
reduces to (LCP).

It was shown in [34] by Mangasarian that the problem (NLCP) can be

converted to an equivalent problem of solving nonlinear equations. (For
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another interesting approach see [35], [36], [37].) Following Mangasarian,

one first defines, for example, the function G: R? + R® as follows:l

3

3
i I

+ 7, (2)3 - |F (2) - 2

i i=1, ..., n. (1)

Gi(z) =z

Then from the form of G it is easy to see that:
Lemma 1. For each i,

(1) ¢;(z) =0z

(ii) C—i(z) >02z;, >0 and F (z) > 0.

(iii) Gi(z) <0wz <0 or Fi(z) < 0.

The Mangaserian conclusion is immediate from (i): 2 is a solution to
(NLCP) = G(2) = 0. Another important fact is that if F(z) is 02 then
so is G(z).

The discovery of Mangasarian opened up the prospect of4solving
complementarity problems (nonlinear or linear) with methods used for non-
linear equations. Along this line, an interesting possibility is to in-
vestigate whether or not the powérful homotopy tool may shed any new light
on our knowledge, in particular about (LCP). This was discussed in an
interesting paper by Watson [44] but the approach herein is quite different
and leads to different results in terms of the path obtained and the exist-
ence of solutions.

For the following development an& homotopy function could be

considered. For specificity the Newton homotopy (associated with what is

sometimes called the "global Newton method") will be employed. Let Q be

lone could also use the simpler map G defined by Gi(z) = min {zi, Fi(z)}.

This is the simplest function of Mangasarian's class. Lemma I applies to
this G as well.
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& specified ¢® function where Q: R® » R®. Let 8 = {x € R®: det Q’(x) = O}.

Assume

(A1) S is a set of measure zero in R-.

(A2) Q(x) =0=1x £ S.

The ;ééond assumption (A2) is not generally required for convergence proofs
but is desirable from the computational point of view to guarantee a finite

path length. Now define the homotopy function

H(x,t,a): R* X R x R® - § + R®

as

B(x,t,a) = Q(x) - (1 - t)Q(a)

Then by a parametrized version of Sard's Theorem [4] it follows that, for
almost every a € R®, det Q’(a) # 0 and the function H,: R? x R ~ R?

given by
E (x,t) = Q(x) - (1 - t)Q(a) (2)

is transversal to zero and hence H;l(o) is a Cl one-dimensional menifold.
. Let Fa denote the component of this manifold containing the point
(x,t) = (a,0). This component ,» or often its projection into R%, is
loosely referred to as "the homotopy path." The homotopy method "follows"
(by using simplicial approximation or differential equation techniques) the
pathr I, hopefully to some point (x,1) for which it must be true, from
(2), that Q(x) = 0 (since Ha(x,l) = 0).
Now, focusing on (LCP) replace Q(z) by the ¢® function G(z)

specified by (1) where F(z) = q + Mz = w. Suppose that the initial point



a has the property that Gi(a) =0 for i# k. Then for i # k,

H,(z,t); = G;(z) - (1 - t)G;(a) = G,(2)

Hence,

Ha(z,t)i =0e Gi(z) =0

and for i =k,

Ha(z,t)k =0e Gk(z) = (1 - t)Gk(a) .

But for the problem (LCP) we have from Lemma 1

G, (z) =0ez >0, w >0, wiz, =0.
. =1l ey s
Thus on H_ (0) it is always true that
> =
z; 20, w, > 0, w;z; =0, i#k

This is the familiar k-almost complementary path of pivotal methods except

that z and W are now unrestricted in sign. This k-ac ©path is the

k k

projection of the homotopy path Fa into R®. The initial point a has
been chosen in such a way that H;l(o) is now no longer ct (recall that
Sard's Theorem only guarantees H;l(o) is a CF one-dimensional manifold

for almost every a € RY).

However, the projection into R® of Fa is a one-dimensional path
with no crossings. The path is a path of adjacent complementary edges of the
convex polytope

- n .
P, =1{z€R 32 20, q + (Mz), >0, 1i#Kk}.

Each corner on the path is an extreme point of this polytope. The
fact that the path is not Cl is not disturbing because it can be followed

by pivoting.



The above described connection with homotopy suggests many questions
and possible inquiries concerning, for example, transferability of known
homotopy convergence theo:ems. In this paper only one specific line of in-
quiry is pursued.

At the outset it is observed that for a special class of matrices
M there is an obvious way to find an initial point a as specified above.
Suppose M has the property that all off-diagonal elements in the kth

column have the same nonzero sign. Choose the initial point & as follows:
e, =0, 1 # k, a8y = A sgn mo i#k forany A >> 0.

Thus if my < 0 (> 0) & << 0 (>> 0). This determines an initial point

a such that Gi(a) =0, i#k (i.e., a 1lies on a k-ac ray of the poly-

tope P_

k). For this special class of matrices the following algorithm can

be described.

2y > W

(zi,wi), i # k. The term "driving variable" will be used to denote

1. Basic variables are always and one variable from each pair

the nonbasic varisble being increased from the value zero. We shall

say that =z is the first driving variable, forced toward (and pos-

k
sibly through) the origin from the initial value &y The term
"blocking variable" will be used to denote the first nonzero basic
variable (+ or -) to become zero. The central idea is to keep

z, >0, ViAZ 0, and z,w, = 0, i # k. The variables 2y and Wy

will always be unrestricted in sign.

2. Push the driving variable until the blocking variable is identified.

If the blocking variable is X, € {z

X X° wk} check the sign of Xk
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where i% is the complement of X, 1i.e., {Xk, fk} = {zk, wk}.
If ik_i 0 then record a solution. Then, or if f& < 0, continue
to push the driving variable until the blocking variable is neither
zk nor W. Its complement becomes the new driving variable which
is now increased from zero. Each time an Xk € {zk, wk} becomes
zero (blocking), check §£ for sign to see if a new solution has
been found and continue as above. Termination always occurs on a

ray, for the path cannot cycle.

Several remarks about the algorithm should be noted:

1. If the k°® column of M (including the diagonal term mkk)
is positive then the initial ray is feasible with regard to the inequalities
z>0, q+Mz >0 and in this case the algorithm, until'the point at
which a first solution may be discovered is the same as Lemke's algorithm
for matrices with a positive column.

2. The above procedure may find multiple solutions to (LCP).

3. The requirement that all off-diagonal elements have the saﬁe sign,
for some column k, is very stringent. It will be removed in the final
section of this paper.

4. One way to approach the existence of (LCP) solutions on the k-ac
path is to observe the following:

a. If at least one of 2 and w, are both initially negative

k k

(ak < 0 and/or (g + Ma)k < 0) and both z, and w_ are positive on

the terminal ray, then an odd number of solutions has been discovered.




b. If z,  and W, are both initially positive and either (or
both) is negative on the terminal ray then again an odd number of solu-
tions has been found.

5. If the homotopy path Fa has a single component (i.e., if there
is a single component to the set Gi(z) =0, 1i#k) then thelabove algo-

rithm must find all solutions to (LCP).

ITII. EXISTENCE RESULTS

An open question in the theory of linear complementarity problems
is the following: What is the class of matrices M such that (LCP) has a
solution for any q? This class is called Q-matrices. Although, because
of the procedure described above. for finding the initial .point a, the
above algorithm obviously applies to only a very limited class of matrices
M, it is nevertheless true that at this point some information on the class

Q can be given. The following lemma will be useful.

Lemma 2. Suppose M has a column k such that all off-diagonal
terms are of the same nonzero sign. The k-ac algorithm terminates on a
ray given by z + Ah, A > 0, with Z denoting the last vertex of é—k
encountered and h a nonzero vector in R® such that (i) hy 20V i#k,
(ii) hio >0 for some iy #k, (iii) (Mn), >0 Vi #k,

(iv) hi(Mh)i =0 VYi#k.

Proof. At least.one vertex will be encountered, since mik #0
if i # k. The representation of the terminal ray as z + Ah, A > 0,

h# 0, and 2 the last encountered extreme point of P—k is definitional.
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The fact that hi >0, 1#k follows because each 2z encountered on
the k-ac path is "almost feasible" in the sense that z; 20 Vi # k..

Hence (z + M); >0 YV i#k which implies h, 20 Vi # k. The exist-

ence of an io #k 3 hi > 0 is shown as follows. Since the algorithm is’

0
k-ac, it must be true that

zi(q + Mz)i =0Vi#k,
and

v A>o0, (Z,+ Ahi)(q

2 i + M(Z +2n)),) =0Vi#k.

i i

Hence if hi =0V i# k then hk # 0 (since h # 0) and Ei(Mh)i = 0,

which implies Zz. ﬁk mijhj + mikhk) = 0V i#k. This implies that

zm, =0V i#k and hence that Z, =0V i # k. But this implies that
the last extreme point encountered must be the same as the first. It is
well known that this cannot happen on an almost complementary path which be-
gins on a ray. The fact that (Mh)i >0V i#k follows from the fact that
on the path of the algorithm it is always true that wi.z OV i#k and
hence, V A >0, (q +M(Z + An)); >0V i # k, which can be true only if

(Mh)i.Z OV i # k. The last asserted property, that

hi(Mh)i=OVi#k

is derived from
¥A20 (Z, +2n)(q + (M(Z + An)),) =0V i#Kk,

for h; >0 implies Zini Xn; >0  which implies q + (M(Z +‘Ah))i‘

=0VY A >0, which can be true only if (Mh)i = 0.
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The following three simple and known theorems are presented to illus-

trate the framework just developed. Let N = {1, ..., n}.

Theorem 1. Let J C N index the positive columns of M. Suppose
J # ¢ and suppose the rows indexed by N - J are also positive. Then for
any q the k-ac path contains an odd number of solutions (and, hence,

M is a Q-matrix).

h

Proof. Choose k € J. Since the kt column of M 1is positive

the first ray is feasible (ak >> 0 and v, = (q + Ma)k > 0), in accord
with the above remark L(c). It suffices to show that h, < 0 on the ter-
minal ray. Suppose to the contrary that hk-z 0. By Lemma 2 there is a

3o # k such that h, > 0. Then, for i €I =N - J,

Jo
+ >0 + o+ + >0
= > .
(m); = I m B, +m, b +wm,ho>0
3*d, 0“0
ik

Hence, for i ¢ I, hi = 0, which implies jo € J. Thus,

+ >0 + + + >0

z m, ,h, +m, ., h, +m, _h >0.
Jott  Jodo o Jokhk

t€J-§ -k

(Ma), = I m, _h, +
Jo  ter Job ®

Which implies hj (Mh)j > 0. This contradicts Lemma 2.
0 0 ' a

The next two theorems show additional members of the class Q.

Theorem 2. Suppose M has positive diagonal terms, the k°h column
of M has negative off-diagonal terms, and all other entries in M are
nonnegative. Then for any q the k-ac path contains an odd number of

solutions (and, hence, M 1is a Q-matrix).
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Proof. Since the first ray is infeasible it will suffice to show.

that h >0 and (Mh), > O on the terminal ray. Suppose h < 0. By

k
Lemma 2 there is an io # k such that hi > 0. Then:
0
20 20 - <0+ o+
(M), = I m .h +m, +m, ,h, >0,
i 39Kk loj J 1okhk i3l 1g
J#io

which implies by (Mh)i >0, a contradiction to Lemma 2. Hence h > O.
0 0
Now:

>0 >0 + +

(Mh), = I h, +m >0 .
BT TesPs ¥ P o

Theorem 3. Suppose M has a positive column k. ILet M

denote the matrix M with kth column and kth

A -k,~-k
row deleted. Let M

denote a principal submatrix of M and suppose that for any such

-k,-k
ﬂ the system

has no solution. Then for any q the k-ac path contains an odd number

of solutions (and, hence, M is a Q-matrix).

Proof. Letting h be the vector defining the terminal ray, de-
fine J = {i # k: h, > 0}. Since hi(Mh)i =0, i#k, we have
hi z mijhj + mikhk) =0, 1#k
#k
which implies

I m . h, +m, = 0, i€dJ.
jeg ij7Jd 1khk
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It hk >0 then I m.,,h, <0, i € J, which contradicts the hypotheses

of the theorem. Hence hk < 0 and the theorem is proved.

a
In the next theorem existence of solutions is related to the signs
of certain minors of M. The following notation will be employed. The de-
terminant of any square matrix, say B, will be denoted as IBI and
without confusion the same notation |[J| will be used to denote the car-
dinality of a finite set J. Given the n-square matrix M and naturally
ordered index sets R c {1, ..., n}, s c {1, ..., n}, with |R| = |5],
the notation MR,S will be used for the submatrix whose elements are

m, i€R, J €S,

ij?
Thus for example, is a principal submatrix and is a
R,R princip M &l

principal minor. The symbol Jk will be used to denote any naturally

ordered subset of (1, ..., n) containing the index k. If I =

(il, cees ip)‘g {1, ..., n}, with i, < iy eee <4 and s € J then

1 p’

Cs denotes the ordinal position of s in Jk' That is, iC = s.
]

k,

Theorem 4. Suppose all off-diagonal elements in the kth column
of M have the same nonzero sign. Let Jk be any naturally ordered sub-
set of (1,..., n) such that k € J and |J. | > 2. For any such set J
suppose there is a t € J, - {k} such that lMJk'{k}’Jk'{t}l # 0.

Suppose also that:

A. If m, <0, i # k or q * kak <0 (A> 0) then VY I

J

(c +C,) lMJk-{k},Jk—{k}‘ X (c *c,) Jk,Jkl

0 and (-1) ke

(-+) IMJk-{k},Jk-{t}{

>
'MJk—{k},Jk-{t}‘

0
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B. If m;, >0 and q + Amkk >0 (X > 0) then

(e +,) lMﬁk-{k},Jk.{k}l wc,) s l

(C ,
(-1) Mo . <0 or (-1) k k
M7, ~(x},5,~(t}] " T, {t}l
for each J,. Then the k-ac path contains an odd number of solutionms.

k

Procf. By Lemma 2, the algorithm must terminate on a ray given by

Z + Ah, A >0 for some point 2z € R

and a vector h € R® with hi‘Z 0,
i # k, and for at least one i # k, h, >0, and hi(Mh)i =0V i#k.

Let p<n -1 be such that hi s seey hi denotes the set of hi which

1 P
are positive, i # k, and let Jk denote the natural ordering of the indices

i, -0, ip} U {k}.

Then using the fact that

jiJ mijhj =0, ied, - {x} ,
. ‘ ()
z m,.h, = -m,,h,, i €J,_ - {k},
jEJk-{t} 175 it™t k

Cramer's rule can be used to compute

+C,) | Iy -{x},7, {k}l

(1)
b = (-1
| Jk—{k},Jk-{t}|

(c.+c.) {MJ -{k},q -{j}l
h, = (-1) J e 7 LS k hy, J€J - {t} - {x} . (4)
M7, -}, 3, (e}

Now, using (3) and (4), (Mh), is computed as follows:

k
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(cj+ct) IMJk-{k},Jk-{J}l

(Mn), = & h, = h, + z (-1) h
k jer, "3y T ettt J€I, (1) |MJk-{k},Jk—{t}| ©
y : : )(CJ-Ct)!M ’ .
+ -1 :
] et I -k}, -{t} Sed- () 3 -h,a -(H P
M
| Jk—{k},Jk—{t}l
(c,+C.) IMJ ,J |
= (1) Y —EK . (5)
%3, - (i} 3, (8}

Since t € J, - {k} it is true by definition of J, that h > O. Under
condition A the initial ray is such that Zy >0 and Wy <0, or Zy < 0,

W.

X >0, or z_ <0 and w_ < 0, i.e., the initial ray is infeasible with

k k

regard to the inequalities z >0, w=gq + Mz > 0. Using (3) and (5), con-

dition A guarantees that Z) >0 and Wi > 0 on the terminal ray, which

implies that an odd number of solutions has been encountered. Under condition
B the initial ray is feasible (z >0 and w_ > 0). Again using (3) and (5),

condition B guarantees that Zk <0 or Wy < 0 on the terminal ray,-which

again implies that an odd number of solutions has been encountered.

In the above theorem the terms |MJ

and M are
k,Jk‘ | Jk—{k},Jk—{k}

o _ 2 in number and consist of all principal minors of M with the excep-
. n-1 . .
tion of M- The terms MJk'{k}’Jk'{t}! are 2 - 1 special minors of M.

The above theorem, when interpreted in R2, has the following form.
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Corollary 1. 1In R2, suppose M has a nonzero off-diagonal ele-

ment , mik’ Suppose
1. If m, <0 or qk+Amkk<o (A > 0) then
m. .
E& <0 and M<o.
ik Mk

2. If m, >0 and q + Amkk-z 0 (A > 0) then

m..
Eil >0 or Imf >0 .
ik Mix

Then the k-ac path contains an odd number of solutions.
The assumptions of Corocllary 1 apply to the problem defined by

-1 +1 -1

+2 -1 L

Lemke's method (with an artificial variable) does not succeed in finding
the solution (z1 = 0, Zy = 4) +to this problem. However, taking k to

be 1 or 2, Condition 1 of the corollary is satisfied.

a
The hypotheses of Theorem 4 are independent of gq if Lo # 0.
Thus we obtain the result:
‘ Corollary 2. Suppose the hypotheses of Theorem 4 are satisfied
with Lo # 0. Then for any q the k-ac path contains an odd number
of solutions and hence M is a Q-matrix. a
_ -1 +1
As examples, the above matrix is an element of Q.
+2 -1
0 +
Another example is the matrix , taking k = 2. -This latter example

-+
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shows that nonzero principal minors are not required by Theorem 4, for in
this case the minor R = m, 1is zero.

The positive diagonal matrices, which are members of @, are not
covered by Corollary 2. These will be added by the development in the

next section.

IV. RELATION TO LEMKE'S METHOD WITH ARTIFICIAL VARIABLE
The assumption is now dropped that M has a column with all off-

diagonal elements of the same nonzero sign. In this case there may not

exist a point a such that, for some k, Gi(a) 0, i#k (with G

given by (1)). An example is wo=-1l-2), W= -1 - z,. Moreover,
even if a point a exists 3 Gi(a) =0, i#k, there may be n? k-ac
ray p for which Gi(z) =0Vi#k, Vz¢€p. The convergence'arguments
of Section 3 require the existence of an initial k-ac ray. Finally,
even if there is such a ray it may not be easy to find. The approach of
Lemke is one way to overcome this difficulty. Another way is given in
Section V.

The approach of Lemke is to transform the original problem (Lcp)

to the new augmented problem:

Find z €R%, 2z €R )

n+l
' = >
(LCP) W=gq+M+az . >0
n
Vo1 “pey = 223 20
i=1
z >0, zn+l >0, <W,z>=0, W'n+lzn+l =0

where Ly is a very large positive number and o € R® is, for the moment,
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any n-vector such that ai >0, i=1, ..., n. We choose the initial

point a as a, =0, i=1,...,n, &, >> 0 and follow an n+l-ac

path for this problem. Thus on the first ray, initially, zi = 0,

i=1, ..., n, zn+l >> 0, v, >0, i=1, ..., n, Vsl > 0. Hence the

first ray is feasivle for (LCP)'. C(Clearly 4,4, can be set sufficiently
large that hn+l <0 will imply Z,41 Dasses through the value ‘0 an

odd number of times before Yo+l changes sign. Thus an odd number of

solutions to (LCP)' with 2,4 = 0 will be guaranteed, which in turn

guarantees that the n+l-ac path has found an odd number of solutions to
the original problem (LCP).
The algorithm for (LCP)' is the same as Lemke's algorithm;up to the

|
point of finding a first solution (z = 0) if in fact a first {solution

n+l ‘
is found. The algorithm thus far, as with Lemke's method, requires only
that o > 0. However, the main existence resuit to be presented, Theorem
5, postulates additional conditions on o. The approach to be followed will

parallel the approach taken in the previous section. It will be assumed

that the elements of the matrix for (LCP)' are arranged in the form:

.

— B SR s P B
M ; i
= M ... &
ol nn n
-1, ,-1,0
-1 ... =1 0
However, since w will always remain positive (until "far out" on the

n+l
terminal ray), there is no need explicitly to consider the last equation or
t> worry about the value of CHER Now, following the results of the pre-
vious section, associated with the terminal ray is a distinguished nonzeroc
i >
vector h with components hl’ e, hn’ hn+l such that hi >0,

i=1, ..., n, hj >0 for some j, € {1, ..., n} and such that
0
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n

(Mn); = jil mg by +ah

i=1, ..., n. Before presenting Theorem 5 several known results on

>0, i=s1, ..., n, and hi(ﬁh)i =0,

Q-matrices can be easily observed.

Lemma 3. If M is a P matrix (positive principal minors) then

hn+l <0 for any q, and hence P is a Q-matrix. ;
Proof. For i=1, ..., n,

n \
hi(Mh)i =0e= hi Jil mijhj + aihn+%> =0. |

=1 M

n
Since hi >0,i=1, ..., n, it follows that hn+l > 0 implies ihi('Z m, hj) 0.
It is well known that if M is a P matrix the conditions hi 2|O and
I
hi(Mh)i <0, i=1, ..., n imply that h, =0, 1i=1, ..., 0. But this

cannot be since h > 0 for some € {1, ..., n}. This contradiction

J
Jog 0

implies that hn+l < 0. o

From Lemma 3, if M is a P matrix then for any q the n+l-ac
path contains an odd number of solutions to (LcP). (It is known that when

M is a P matrix the solution is unique for any q.)

Lemma 4. Suppose M > 0 and M has positive diagonal elements.
Then for any q the n+l-ac path contains an odd number of solutions,

and hence M is a Q-matrix.

Proof. Suppose h >0 and let i, € {1, ..., n} be such

n+l 0
that h, > 0. Then
1
0
2020 + + >0
(Mh)i = I m ,h, +m ta b, >0
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and we have the contradiction hi (ﬁh)i >0 .
0 0

Lemma, 4. Suppose M has the property that for every principal

submatrix ﬁ the system

MZ <0, z>0

has no solution. Then for any q the n+l-ac path contains an odd num-

ber of solutions and, hence, M is a Q-matrix.

Proof. Again suppose hn+l > 0. Let J index the positive com-
ponents of hi’ i=1, ..., n, and let %7 Tbe the subvector consisting of

these positive hi' Then

hi(Mh)i =0, i=1, ..., n= Zi(;iJ m, 4%y + aihn+;> =0, i¢€J

which implies £ m,,%2, <O for i € J. Thus we have 2z >0, M, ;2 <0,
€ 137 — 7. J,d° -
a contradiction. a
Tt is known that the class of matrices hypothesized in Lemma 5 in-
cludes strictly semimonotone matrices, which in turn includes P matrices
n as well as all square nonnegative matrices with positive diagonal ele-
ments [8]. Thus Lemma 5 subsumes Lemmas 3 and 4. Lemmas 3 through 5 re-
quire only that the n-vector o Dbe pésitive. The following existence

result covers situations which may require a more judicious choice of the

positive vector.
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Given a nonempty ordered subset J < {1, ..., n}, with
t €J, let J - {t} + {n + 1} denote the ordered‘index set obtained by
deleting from J the index t and adding in the last position the index
n + 1 denoting the last column of M (recall that the vector o appears
in the last column of ﬁ). The symbol Ct denotes the ordinal position

of the index t in the ordered set J.

Theorem 5. Suppose:

1. M has nonzero principal minors.

2. There is a positive vector G ¢ R® such that for any principal
minor, say MJ’J, where J 1is some noﬁempty naturally ordered subset of

{1, ..., n}, there is a t € J such that the minor

|J|+Ct+l lMJ,Jl'
M

# 0 and (-1) <0 .

My J-{t}+{n+1} 7.J-{t}+{n*1}

Then for any q the n+l-ac path contains an odd number of solutions and,

hence, M is a Q-matrix.

Proof. The theorem follows from Theorenm L when k is taken to be
n+l, J - {n + 1} is replaced with J ¢ {1, ..., n } and it is.

recognized that C ., = || + 1. g

This result classifies members of the class @Q according to (i) the
existence of nonzero principal minors and (ii) the existence of a positive
n-vector ¢« which produces a negative sign for quotients involving the
principal minors and other specified minors. It can be verified that the
positive diagonal metrices satisfy the hypotheses Qf Theorem S. As a special
case we can put Theorems 4 and 5 together, in R2, to obtain the following

result.




22~

' 2x2 . o .
Theorem 6. Suppose M € R satisfies one of the following:
1. M has a column k such that I # 0, W #0 (i # k) and

such that
. . > > Ly > > 0.
&. m 0, B 0= m, s 0 or |M| >0
m,
b. m,, <0 or oy <0==2c<o and lMl-< 0.
ik m, m,
ik ik
2. M 1is a positive diagonal matrix.
Then M is a Q-matrix.
It can be shown that Theorem 6 actually characterizes the Q-matrices

in R".
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