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O - INTRODUCTION

In the following pages we introduce a formalism to describe some classical
problems related to the synchronisation of processes : these processes are
described by the set of their infinite behaviours, each behaviour being an
infinite word on the alphabet of actions including the empty action. Our

approach is thus very close to the theory of path expressions [111].

The two main points are

- the introduction of delayable processes, that is processes which
can be stopped either for a finite amount of time or indefinitely

at any stage.

- the importance of the notion of closedness, borrowed from previous
work of the author [1, 10]. We believe that the main difference in
status of the two problems of deadlocks and starvatiéh does come
from the fact that the set of synchronised behaviours of a vector
of processes is closed, when the set of fair behaviours is not

closed.

Algorithms are given for detecting deadlocks and avoiding them, and also
for detecting starvation phenomena in the case of closed rational processes
which has been the most extensively studied in the litterature [2,3,4,5,6,77.
Some discussion follows of the notion of command of a vector of processes : it
it is proved that in the restricted case we consider there is no finite complete
fair command, that is no command using some finite state device which allow

a vector of processes to take all possible fair behaviours and those only.
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Résumé

Dans cet article nous introduisons un formalisme pour décrire des ensembles
de comportements infinis de systémes de processus concurrents : la condition
de synchronisation est définie comme un sous ensemble de 1l'ensemble des actions
que peuvent réaliser les processus composants du systéme & chaque instant. Des
définitions correspondantes des "blocages" et "famines" sont également données et
une notion de commande proposée pour donner un sens 3 l'action d'éviter blocages
et famines.

Une version préliminaire, en frangais, de cet article doit paraftre dans

la Revue Technique Thomson-CSF.

Abstract

In this paper a formalism is introduced to describe infinite behaviours of
a set of processes obeying some synchronisation condition which restricts the
. set of actions which can be performed by the processes at any given instant of
time. The traditional problems of deadlocks and starvation are discussed, as
well as the way to avoid both by using a command of the set of processes.

A preliminary version of this paper, in French, will appear in the Revue

Technique Thomson-CSF.
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I - INFINITE WORDS

Let A be a finite alphabet. N, is the set of strictly positive integers.

*
We denote by A the set of finite words on A :

*
a finite word feA 1is a partial mapping f : W, > A

whose domain dom(f) is of the form
dom(f)=[n]={me!N+lmSn} for some ne N

By definition the length of f, denoted [£], is equal to n if dom(f)=[nl.
The word with empty domain [0] is denoted € and called the empty word.

We denote by A” the set of infinite words on A : an infinite word ueA” is
a total mapping u : N, » A, '
-] . -] * w
We denote by A the union A = A uA”,

e
The main tool to deal with infinite words is a relation defined on A which

. 3 *
entends the well known relation "is a left factor of" om A .

* .
For all f,geA we write f<g and say that f is a left factor of g if and

only if
[f1<|g| and VhelN+ n<lf]| = f(n)=g(n).
This relation is clearly an order relation and we have e<f for all feA",

*
For all feA , ueA” we write f<u and say that f is a left factor of u if

and only if
Vne N, n<lf| = f(n)=g(n).

We also use the notation uln] to denote the restriction of u to (n] which

is a finite word of length n.
Thus f<u & f=ul|f]],

If now u,veAw we define

usv &> u=v.



(o]
The relation < thus defined is an order relation on A and we can state

some properties [9,10].

Property 1 : Let fl’fz""’fn"" be an infinite sequence :f finite words
increasing for < : there exists a unique infinite word ueA® such that for

all ie IN+ fi.<.u.
For feAw denote by FG(f) the set of left factors of f :
FG(£) ={g€A*lgSf}
and for ueA” denote by FG(u) the set of finite left factors of u :

FG(u) ={feA”|f<u} = {ulnl|ne ™ }
+

If L is a subset of A we define FG(L) as
FG(L) =L_J{FG(a)|aeL}
Property 2 : For all ueAw, LCAm
card (FG(u)nL) = » == FG(u)cFG(L)

Yy «© .
The relation < is related with the monoid structure of A which entends

“ * . ) .
the well known monoid structure of A 1in the following way

- for all f,geA* the product fg is the finite word of length |f|+]|g]|
defined by

A

f(n)
g(n - [£])

Vhe|N+ n

[fl < n

[f] = fg(n)
gl = fg(n)

IN

- for all feA*, ued” the product fu is the infinite word given by

Yhe N . n £ |f] => fu(n)

. f(n)
[f] <n => fu(n)

u(n - [£])

L}

[ +]

- for all ueAw aeh ua = u,



It is easy to check that this product is associative and that e is a
’ - * » 3 [
neutral element. Its restriction to A is the ordinary concatenation. And

we have

Property 3 : Vo, BeA” o £ B Jyea” 1 oy = 8

One should note here that y is not unique since ua=u for all o. If we

denote 0<B the strict order relation
a<B &> asf  and o#B.

We do have VT,geA* f<g &< dh#e fh=g but this is not true for

infinite words.

We now introduce the concepts which will be essential in' the sequel :
Let L be any » language ie any subset of Aé;
The adherence of L, deﬁoted Adh(L), is the w-language
Adh(L) = {ueA®|FG(u) < FG(L)}.
The centre of L, denoted LC, is the language 1€ c A" given by
LS = FG(Adh(L)).

A number of properties can be immediately proved and are proved in

[1,10].

Property 4 : For all L € A"  Adh(L) = Adh(L%).
Property 5 : For all L ¢ A*
1° = {feA*Icard{geA*lfgeL} = o}

Property 6 : For all L ¢ A
1S = FG(L)

(though L and Adh(L) may be different)



Progertz 7 : For all L],L2 c A

Adh(LluLz) = Adh(L]) u Adh(Lz)

Thanks to these propertles one can compute L¢ for L c A" knowing the

finite part Lf = LnA” and the infinite part L1nf = Lna”,

The mapping L m~y L = LuAdh(L) is a closure in the topological sense
ie satisfies

Ll I Y |
n
e s

£
c
o
N
1]
=
<
o
N

Indeed the topology induced by this closure, topology whose family of
open sets is the family of complements of the closed sets L such that L=1L,
is also induced by a complete metric on A™ which is described in [1]? In the

sequel it will be sufficient for us to use the definition of closed ~—-languages

LcA” is a closed «-language if and only if LoAdh(L).

Behaviour of processes

A process p is any mechanism able to perform actions taken in a finite

set of possible actions A.

We suppose that each action in A can be performed in one unit of time.

Among these actions we distinguish the empty action ecA which denotes

the fact that at a given instant p does nothing.

One behaviour of p is thus an infinite word ueaA® which describes the

action u(n) performed by p at each instant ne N

The process p is entirely described by its set of possible behaviours

C(p) < A”,



-

We shall say that the process p is delayable if and only if the

following condition holds

Vhec(p) Vi<u few€C(P) and Vkeﬂh_ : feku'GC(p)

W,
where u'eA is such that fu'=u.

Intuitively this means that the process p can be stopped at any instant

of time for any finite or infinite delay.

A process is said to be closed if and only if C(p) is a closed subset

of A”. We can give an example of a typically not closed process : that is a

process supposed to perform an action a during a finite amount of tims and
* W
a

to perform a, for ever afterwards. This process is described by C(p)=a1 5

and is not closed for

* W, % W w
Adh(ala2 = aja, U a ¢ C(p).

We shall be interested in the behaviours of a finite set of communicating
processes PpseeesPy- Rather than talking about a set of processes we shall

talk about a vector of processes

>

p = <p]’."'9pk>'

. > ) .
One behaviour of p, if we assume that the processes are independant (1e.each
process is able to perform any action at time n regardless of what the other
_> - I3 »
processes are doing) is & vector u = SUypyeee,uy > of infinite words, each u, a

behaviour of p; -
We write C(;) = C(p]) X, . .X C(pk) and we have C(;) c(Aw)k

But indeed there is a clear isomorphism between (Aw)k and (Ak)w : the
vector K<:(A“)k can be considered as an infinite word on the alphabet Ak if we

define for all ne EN+

u(n)

<u](n),...,uk(n)> € Ak.



> .
Conversely any mapping u = N, » Ak can be considered as k-vector of

-
mappings <u],...,uk> where ug N, > A, 1s given by ui(n)=(u(n))i.

Let us now introduce a constraint on the vector of actions which may

be performed simultaneously by the processes <pl,...,pk>.

. . . s k .
We define a synchronisation condition S as a subset of A which does

- » +
not contain the k~vector of actions e = <e,e,...,e>.

(This last conditon is to prevent the processes to stop at the same
3 . . . -* -
time : we shall be interested only in the behaviours of p for which at any

instant of time at least one process in performing a non empty action).

. ->
We now define an S-synchronised behaviour of ; as a behaviour u of ;
such that

Vne W, g(n)es.
The set of S-synchronized behaviours of ; is thus

() = ¢B) n ¥

It is traditional to comsider two problems in connection with the

synchronized behaviours of a vector of processes

1) - The deadlock problem

>
The processes p, synchronised by S reach a deadlock iff they have been
acting in a synchronized way up to a certain instant n but cannot go further

without violating the synchronisation contion.
Let us make precise the definition of a deadlock in our formalism.

An S-deadlock of ; = <p],...,pk> is a k-vector f of finite words all
of whose components have the same length n satisfying

-t 9% a0 st

- T ¢ Fe(c())
(this means Vi = 1,...k fi € FG(C(pi)))

- for all seS fe = <flsl,...,fksk> ¢ FG(C(E))



The most important property regarding S—deadlocks is the following

Property 8 : If for i =1, ,k P; is a closed process, and S is a synchro-
nisation condition, the set C (p) of S-synchronized behaviours of p is precisely
the set

CS(;) = {ue(Ak)wl Vhe{N+ : g[n]es*{wc(g) a[n] is not an S-deadlock}

Proof : Indeed ueC (p) implies for all nelN : z[n]es , Z(n+l)eS and
K[n+1] u[n] u(n+1) € FG(C (p)) c FG(C(p)) proving that u[n] is not an
S-deadlock.

Conversely if for all ne[N ﬁrn] € FG(C(B)) n ¥ the closedness of P;
implies 2 € C(p) and the (obv1ous) closedness of §* implies usS Whence if

for no ne N, uLn] is a deadlock, ueCS(p). 0

Remark : The property 8 shows the crucial rdle played by the closedness of
the processes. Intuitively prop 8 says that the behaviours of ; which avoid
deadlocks are "good" synchronized behaviours. Or else that preventing 3 to

reach an S~-deadlock is sufficient to have it go on forever.

Obviously this would not be the case with a not closed process such

as the process p whose behaviours are described by

C(p) = (ave)*(bue) "

2 - THE STARVATION PROBLEM

. -+ + [3 13 » v
The behaviour u of p induces starvation of P 1ff there exists ne ™

such that for all n'>n : ui(n') =

The set of synchronized behaviours U of ; which induce no starvation is
denoted F (p), such a behaviour is called fair. A simple exemple shows that

usually F (p)lS not closed.
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Example : ; = <PysP,>, C(p]) = (alue)w C(p2) = (azue)w S={(a]Ue),(azue)}\{<e,e>}.

> W
Clearly Cs(p) = (<a],e> U <e,a2> u <a],a2>) .

Fs(p) = {<u],u2>lu1€(alue)w uze(azue)w and VYne N dn'>n, n">n
1 — n —
u](n ) = a, and u2(n ) = az}.

w w

Thus {<ena],a2>|n€(N} c FS(;) but o =<ew,a?> is such that FG(K) c FG(FS(;))

though o ¢ Fs(g) showing that FS(;) is not closed.[]

The starvation problem is then twofold
. > >, . .
| ~ determine whether some ueCS(p) induces some starvation, in other

words decide whether cS(E) = FS(;).

2 - Avoid starvation ie describe FS(;) as the set of all synchronized
behaviours which obey some rule whose respect can be checked at

every instant of time.

III - A WELL-KNOWN EXEMPLE

This is the celebrated problem of philosophers eating noodles [2].
We consider 3 philosophers Pys Pys Py ¢

a table is set for them with seats assigned, a plate in front of

each seat, and a fork between two plates as shown on the drowing.

C)

A philosopher P; can only do the following
/’%:> sequence of actions

- seat in his place : a;

~ seize his left fork bi+ (mod 3) and seize

1
his right fork afterwords bi
or
\\3}/ seize his right fork, b., and seize his

left fork afterwords, b (mod 3)



1

- then eat ;

~ then replace the forks in either order didi+1 of di+ldi

(we omit the mod 3 indication)

- then go away and think 8;

And repeat endlessly the same sequence.

The set of behavioﬁrs of the philosopher P; is thus reprensented by

- w
C(pi) = (ai(bi+1bi U bibi+1) ci(di+1di U didi+l) gi) .

In order to make it a delayable process we introduce an arbitrary sequence

of empty actions everywhere we thus define

) - * * * * * * * * * w
: (e a;e (bi+le bi U bie bi+]) ecse (di+1e di U die di+1) e gi)

and take as the set of actions of the now delayable process P

C(p;) = R; U FG(R,) e,

We note that P; is a closed process.

The behaviour of forks can be represented in a similar way :
the fork numbered j denoted p. +3'can be seized and be replaced,

n

selzed again and replaced again endlessly

If we introduce the possibility of arbitrary delays we are lead to

define
F——  doe—_ 1)
R. = b.e d.
j+3 ¢ J J)
and
- w
C(pJ+3) Rj+3 u FG(Rj+3) e

The process pj+3 (that is the fork numbered j) is also closed.

The synchronisation condition is obvious :
a fork cannot be seized (bJ) without a philosopher seizing it (b ) at
the same time, and a philosopher cannot seize a fork (b ) without its belng

. seized (b ) . Also a fork can be seized only once at each time.

The synchronisation condition S is thus the set SCA6 given by :
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S is the set of sextuple of actions <s “»8g> such that

R
1 - they are not all empty

2 - if there exists ie{1,2,3}, je{1,2,3} such that Si=bj then

Sj;B = 35 and i'e{1,2,31\{i} implies si#bj (same thing for dj)
3 - is there exists je{1,2,3} such that Sj+3=35 then there exists

a unique ie{1,2,3} such that Si=bj (same thing for Ej)

On this simple exemple we can easily see the deadlocks and starvation

phenomena :

- a deadlock appears if the three philosophers seize then left fork at

the same time, an event which is represented by the sextuple of words

1 = 2pb,

= ayb,

= asb,

= e b1

[}
®
o

2
3

f
f
f
f
f
f

o

= e

N U W

>
s =<8_,..
; I

Now vector of actions 38> € S can allow the six processes

to go on.

— a starvation phenomena appears whenever at least one philosopher is ,
after a while, prevented to eat forever.
. . >, . .
The following behaviour of p induces starvation of the philosophers

numbered 2 and 3 :

_ w
up = (aybybye,d dyg )
u, = e?

u, = &

3 - - w
u, = (e bl_é e dl_F e)w
u5 = (e e b2 e e d2 e)
ue = ¥



This is a synchronized behaviour which can also be represented as

n-= (<a1,e,e,e,e,e><bl,e,e,b1,e,e><b2,e,e,e,b2,e><cl,e,e,e,e,e><d],e,e,d],e,e>

= w
<d2,e,e,e,d2,e><g],e,e,e,e,e>) .

IV - CLOSED RATIONAL PROCESSES : THE DEADLOCK PROBLEM

A process p is closed and rational iff there exists a rational language
KeA” such that C(p) = Adh(K). If this is the case C(p) = Adh(FG(C(p))) and

FG(C(p)) is rational and conversely.

In case for all i=1,...,k,’pi is a closed rational process we can solve
entirely the deadlock problem, the solution goes through the definition and’

use of finite sink automata

Definition : a finite sink automation (abbreviated f.s.a.) on A, is given

as a quadruple A ='<Q,qo,qS,A> where

- Q is a finite set of states
- qer is the initial state
- qseQ is the sink state

- X : QxA > Q is the transition function satisfying

VaeA A(qs,a) = qg-
. . . . *
The function X : QxA + Q is extended into a function A : QxA -+ Q as
for an ordinary automation.

If A is a f.s.a. (finite sink automation) we define the w-language

recognized by A as V(A) = {ueA”| Vn A(qo, uln]) # qs)}.
We can make a first remark :

suppose A is the above f.s.a. . Let us call a live state any state

q€Q such that there exists ueV(A) and ne IN_ such that A(qo,u[n])= q.
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A necessary and sufficient condition for q to be a live state is that
there exist arbitrary long words f such that A(q,f) # qq and this is equivalent

to the condition
N Yok
A(g,A7) = {Maqy,D)1fea”, |£] = N} # {q}

where N is the number of states.

Clearly thus, given A, one can determine the subset of live states and
build a live automaton A' equivalent to A in the sense that

V(A') = V(A).
To build A' one takes as set of states Q' = Qﬂ U {qs} where Qﬂ is the

subset of live states of A. The initial state is 450 the sink state q and

the new transition function A' : Q' x A + Q' is given by

A'(q,a) = A(g,a) if qeQ, and k(q,a)EQﬂ

A'(q,a) qq if quz or qeQ, and A(q,a)éQz.

Verifying that V(A'") = V(A) is immediate : A' is said to be a live
automaton for all the states but the sink state are live states. We may

state that every f.s.a. is equivalent to a live f.s.a.

The main property is then

Property 9 : The closed w-language LeA” is rational if and only if L=V(A) for

some finite sink live automaton A,

Proof : Suppose L=V(A) where A is a live f.s.a.

Define F(A) = {feA*n(qo,f) # q_}. Clearly L=Adh(F(A)) and F(A) = FG(L).
Thus L is closed and rational since LoAdh(FG(L)) and FG(L) = FG(A) is rational
being recognized by the ordinary finite automaton A with Qe = Q\{qs} as the

subset of final states.
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Conversely suppose L is closéd, LCAw-and FG(L) is rational.
We have indeed L = Adh(FG(L)).
Suppose FG(L) is recognized by the ordinary finite automatom
A = <Q,94,Qg, 2>
this meaning that FG(L) = {feA*|x(qO,f)le}.
Consider then the subset Qp of Q given by

Q, = {qeqQ | Jfer™ A(a,£)eQ, ).

One can build a finite dink automaton A' in the following way

- the set of states Q' is Qg u {qs}
- the initial state is 4
-~ the sink state is qq

- the,transition.function A' : Q' x A~ Q' is defined by

A'(q,a)
A'(q,a)

A(q,a) if que and A(q,a)eQe
q  if q¢Qeor qeQp and A(q,a)¢qQ, .

It is immediate to verify that FG(L) = F(A') and that A' is a live
automatom. Whence L = Adh(FG(L)) = V(A'). [J

. - » '.i -
We can now give the main results of this section.

Theorem : if ; = <PysceesP> is a k-vector of closed rational processes then
C(;) and CS(;) are closed rational w-languages on Ak and one can build a finite

. . . > > k
sink automaton recognizing C(p) and Cs(p) for all ScA™.

Proof : Let for all i = A,...,k C(pi) = V(Ai) for some live f.s.a. Ai'

We build an automaton A on Ak which recognizes C(;) very easily : it is
. the cartesian product of the Ai with all sink states analgamated in a single

one.



The set of states is thus Q = QIK x Q2£ Xy aX Qk£ U {qs}.
The initial state is ab .
The transition function A : 6 x Ak - 6 is given by

>

)‘(<q]""’qk>’ <a]""!ak>) = <A(q19a])""9>\(qk’ak)>

if for all i = 1,...,k A(qi,ai)sQiﬂ.

>
A(<q])""qk>) <a]v"'!ak>) q

S

. . > >
if for some ie{l,...,k} A(qi,ai) = q A(qs,a) =q -

The set V(A) is by definition the set of all Ke(Ak) such that ‘VneIN+
> > > > )
(g ,ulnl) # q_. Thus ueVA) &> Vi = 1,...,k Vne W, Algy.u;fnd) # q

in other words since C(pi) = V(Ai)

ZGV(K) S Vi=1,...,k uieC(pi).

We have proved V(K) = C(;).

Suppose we are now given a synchronisation condition SCAk. The S-deadlocks
appear very clearly in the picture : an S~deadlock is just a word fes* such
that
> > . -> > > - ->
A(qo,z) =q # q, and VseS A(qo,f s) = qg-

Obviously there exists an algorithm to decide whether there exists any
S-deadlock since this amounts to decide whether there exists an S-accessible
state a‘# qg (E is S-accessible & Jtes™ . K(EO,?) = 3) such that VseS
X(@,8) = q,.

But we can do more ie build from A an automaton recognizing CS(;). To
do this we first determine all the S-accessible states 3 which are not such

> >
that A(q,S) = {qs}. Call 65 this subset of 6. The automaton KS has
-
QS U {qs} as set of states
30 as initial state

q  as sink state



the following transition function KS :(6S U {qs})X'Ak - 63 U {qs} given by
->
A

KS( ,Z) = K(q,a) if quS, 2¢S and A(q,a)eQS S(E,Z) = qs'if EéQS or EZS or
O
A(q,a)éQSand X (q ,a) = q.

By definition the recognized w-language V(KS) is the set of all ;é(Ak)w
such that for all ne™W_ A (EO,K[n]) # q-

This is exactly thé set of all ueC(p) such that VhelN ulnl e ¥ 0 FG(C(;))
and uln] is not an S- deadlock. But property 8 we thus have V(K ) = CS(;). il

Commands to avoid deadlocks

The detection of deadlocks is one thing, avoiding them is another. If
we wish to formalize the notion of a command we are lead to consider a
command as an external mechanism which can register in some memory M an
information on the behaviour of ; up to instant ne N, and tells which vectors

. + . .
of actions can be performed by p at instant n+l. Thus we define

Definition : A command D of ; synchronized by S is given as a quadruple

D = <M,m0,¢,w> where

- M is a set of states (finite or infinite : the command is said to be
finite if and only if M is finite)

- an initial state moeM

- a mapping ¢ : M » Zs\{¢}

- a mapping ¥ : M x § - ZM\{¢}

(the command D is said to be deterministic iff for all (m,s)eMxS Y(m,s)

is a singleton, non deterministic if this last condition is not true,

finitary iff for all (m,s)eMxS y(m,s) is a finite subset of M)

. - > . . PR
A behaviour u of p obeys the command D iff there exists an infinite sequence

- -
of states mo,ml,...,mn,... such that Vne m+ u(n)e¢(mn_1) and'mnew(u(n),mn_l).



Intuitively ¢(mn_]) describes the subset of 'S which can be performed

18

By ; at time n, and w(z(n),mn_l) the subset of M in which D may move, depending

on the special choice of u(n) which has been made by ;.

We denote by CD(S) the set of behaviours of ; which obeys the command D.

And we can thus define

Definition : The command D is adequate for S iff CD(;) c CS(;)'
The command D is completely adequate for S iff CD(;) c CS(;).
. N . -> ->
The command D is fair for § iff CD(p) c Fs(p).

. . . > >
The command D is completely fair for S iff CD(p) = Fs(p).

What we have proved above is that if for all i = 1,...,k,pi is closed
and rational, then there exists a finite deterministic command D which is

completely adequate for S.

Indeed consider Ké and define the command D defined by M = 3 m. =

>

q
-> > > > . . . > ., . S’ 0 o’
¢(q) = {seS|i(q,s) # qq which is not empty since q is a live state

> > > > > .
¥(q,s) = Xx(q,s)eM by construction.

Cheching that_V(KS) = CD(;) is a straightforward and entirely formal

matter. We can state .
Theorem 2 : The exists a finite deterministic command which is completely

-‘» . -’
adequate for S, whenever p is a closed rational vector of processes (that

is each component P; is closed rational).

V - CLOSED RATIONAL PROCESSES : THE STARVATION PROBLEM

First we remark that detecting possibilities of starvation is easy :

> .
Let p be closed rational. There exists a possibility of starvation

iff there exists 3€CS(;) such that for all sufficiently large n's ui(n)=e.

But this implies the existense of u loop in KS which is empty for i if we define



Definition = A loop of a f.s.a. A is a pair (q,f) such that A(q,f) = q and
q # qq- ‘-

A loop of A is empty for i iff f.ce*.

One sees immediately that the existence of a loop in K which is empty

for i implies the existence of ueV(K ) =C (p) which 1nduces starvation of p.

These simple remarks are embodied in the following statement.

Theorem 3 : If ; is a k-vector of closed rational processes, there exists an
algorithm to decide whether some KGCS(;) induces starvation of some process
P;» ie{l,...,k}.

Proof it is entirely trivial : if there exists a loop of A, which is empty
for i then there exists such a loop whlch is elementary (ie if (q,?) is the
loop, £ e(A ) » all the states A(q,f(n)), n' n are distinct) and an exhaustive

search of elementary loops (whose length ]fl is less than card Q) is possible. [J

But according to the definitions given above the main problems are to
build commands which are fair for $ (if any) and commands which are completely

fair for S.

We shall first prove the

Theorem 4 : There exist vectors of closed rational processes for which no

finitary completely fair commands exist.

Proof : We show that if D is a finitary command C (;) is closed : since we
know that there exist vectors of closed rational processes such that F (p)

is not closed (see exemple above) the result follows.
Let us introduce the alphabet Z

Z = {(ms,m")|m,m'eM, seS, sed(m) and m'ep(m,s)}



20

Define the projection 7. : 2 » g* given by wz(m,s,m') =

2
Clearly CD(;) = wz(L) where Lcz® is the w-language formed of all the

infinite words vez” such that

Vhe W, ﬂ3(v(n)) = wl(v(n+l)) and TTl(V(])) = my-

The set L is obviously closed.

To show that if D is finitary Ty (L) is closed we use Koenig's lemma :
consider ueS” such that FG(u) < FG(n (L)).

Since T, is alphabetical FG(w (W) == (FG(L)) whence for all neU@

there exists v eFG(L) such that m (v ) =u n]
Define En = {vneFG(L)Iw (v ) = ulnl}.

From the above remark it follows that E # @ for all n, and the finitary
condition implies that E is finite for all n. Clearly for all n and yeE 0+l
there exists er such that x<y (it suffices to delete the last letter of y).

Whence by Koenig's lemma there exists an infinite sequence VisVoseeesV yens
such that

Vne W v eE and v <v .
+ n n n n+l

This sequence has obviously a limit vez”. The fact that L is closed

implies that veL since Vn : v €FG(L). .

We have u = nz(v) whence uewz(L) = CD(;). 0

Remark : We cannot escape the finitary condition is the statement of Thm 4 :
let us go back to the exemple given above

C(Pl) = (a]Ue)w C(pz) = (azue)w
and

>}.

S ={<al,e>, <e;a,>, <a, ,a

2 1’72

We can build a not finitary completely fair command for S even though

F (p) is not closed.



Take three copies of [N denoted N, N, N and a special element my .
Define M = Nu Wu O u {mo}.

Consider the following mappings

‘¢(m0) =S
Y(my,s) = N UlN UV
¢$(n) = {<a],e>'} ifn#0

{n~1} ifn#0

¥(n,s)
$(0) =S

¥(0,s) = Wu ™

$(n) = {<e,a2>} ifnto0

V(n,s) = {n=1} if n # 0
$(0) =S
w(ﬁ,s) = WNu [N:

oG = {<a,a,>} if n # 0

¥(n,s) = {n-1} if n # O
$(0) = s
w(?,s) = WulN

It is clear that FS(;) = CD(;) since every ZEFS(;) can be factorized in

#a..

where a, ¢ {<a ,e>, <e,a >, <a, ,a >} n.eN and for all i : a.
i 1 | 1 1+1 i

2
But a non finitary command looks very much like an oracle which chooses
from times to times an integer at random : no finitary process can simulate

such an oracle. [
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On the other hand it is possible to bu11d a finitary fair command for S
whenever F (p) is not empty.

We sketch below such a construction.

D is fair for S iff C (E) cF (;) that is the command D has only to
avoid entering loops which 1nduce starvatlon of some P+ Now F (p) is not
empty if and only if KS contalns a fair loop : the loop (q,?) is fair
iff Vi f. eA (A\{e}) N \e .

. . . > > .
Suppose there exists a fair behaviour u of p and consider one state
+ L . »
q€Q such that A(qo, ulnl) = q for an infinite number of n's. we are sure
that such a state exists and we can order the sequence n, < n, <4 ee< n, <s.. Of

the n's such that A(qo,ﬁfnzj) = q.

Clearly (q, u (n£+l) e u(n£+l)) is a loop for all ZLe N denote it

(q,v 2) with vz = u(n +l) “e. u(n£+])

By the fairness of u there exists Zl such that (v£ )] ¢ e*, then £2>£]

1
such that (v, ). ¢ e and so on ...

2,"2
Eventually 32 32 R +k is such that for all i = l,...,k 3 (VK])""(VZ ) e
1 2 k
since (v ) ¢ e". And (q,3z ...33 ) is a fair loop.
1 1 k

The converse obvious : if (q,f) is a fair loop and q is accessible, ie there

exists a g such that A(qo,g) = q, then g(f) is a fair behaviour of p.

Building a fair command amounts to find a fair loop and this is not
extremely difficult though there need not exist an elementary fa1r loop :

indeed if there exists VZ such that the IVE | < 2N + 1 because VE can

be factorlzed then in ! I 1 ,
>
s

-> -> > > - _
vy v, such that A(q,w]) =q;, A(q],s) = q, and A(qz,wz) =q
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And we can always assume that I; | and |$21 are less than N. All this

I
allows us to state that if there is a fair q-loop then there exists a fair

q-loop of length less than kx (2N+1).

Whence there exists an algorithm to determine whether there exists
- . [ » . + -
a fair loop and a fair command may be obtained by just pushing p into

that fair loop (that will be a deterministic command) .

Remark : from the above discussion it is clear that one can do better and for
exemple build a command which allows ; to take all the behaviours of the form
g(Fq) where g is some elementary word such that X(qo,g) q and Fq the set of
words f such that (q,f) is a loop and IfI is bounded by any integer. And
thus we can build a command D such that, for any given fair behaviour K,

uecy () < F (B).

VI - CONCLUSION

In the litterature about synchronized processes, closed rational processes
are the most widely studied class of processes. They cover a wide range of

applications.

Other interesting classes however exist such as the class of "producer-
consumers" which communicate via infinite buffers. The consideration of
such processes lead to similar developments, with closed algebraic processes
(whose set of behaviours is aclosed algebraic w-language ie a set of the
form Adh(L) for some algebraic language L) or with closed FIFO processes, very
similar to the algebraic ones, one simply replacing the push-down automaton

(or counter) in the definition of L by a queue working in the FIFO mode.

Before being able to treat these non rational processes as we did treat

rational omes some work has to be done about w-languages which are not rational.

Another question which can be well formalized along the preceding lines
is the measure for a given synchronized behaviour of a "mean waiting time" of
the processes and the search for a synchronized behaviour which minimizes

this waiting time.
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