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RESUME

On considére un réseau fermé et cyclique de N + 1 files d’attente ou chaque file posséde
un serveur unique exponentiel. Utilisant la notion de fonction de Bessel sur un treillis, on
détermine de maniére explicite les probablités de transition de ce réseau jusqu’a la premiere
date oui 'une des files se vide. Le calcul de cette probablité de transition fait appel & un
groupe de symétries associé au processus, qui est déterminé comme le produit semi-direct de
groupes plus simples. On en déduit une caractérisation explicite du spectre du générateur
infinitésimal de ce processus aléatoire. On démontre en particulier que lorsque le nombre
de noeuds est supérieur 3 deux et que le nombre de clients dans le réseau est supérieur au
nombre de noeuds, le spectre de ce générateur n’est jamais complétement réel.
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ABSTRACT

Consider a closed, N + 1-node, cyclic network, where each node has an independent,
exponential single-server. Using lattice-Bessel functions, we can explicitly solve for the transition
probabilities of events that occur prior to one of the nodes becoming empty. This calculation
entails associating with this absorbed process a symrhetry group that is the semi-direct product of
simpler groups. As a byproduct, we are able to compute explicitly the entire spectrum for the
finite dimensional matrix generator of this process. When the number of nodes exceeds two, and
the number of customers in the system is at least one more tban the number of nodes, we can show

that the total spectrum is never purely real.
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1. INTRODUCTION

Let N, (1) be a Poisson process with rate n. From it we can construct the following
multidimensional process on Z¥, the N-dimensional integer lattice. Define Z(z) to be a randomized

random walk on ZV, where

N
Z(1) = Z(0) + 3 N, (0.
j=0

The Poisson processes N, (¢) are independent with possibly distinct rates ;. If any vector n in zy

N
can be written uniquely as n = (ny, ..., ny) = 3, nse;, we define the v;'s to equal
J=1
€ ] =0
v, = —€y ] =N
€i4] — € otherwise .

In Massey [2], it was shown that the transition probabilities for Z(z) can be written as
Po(Z(t)=n) = ¢g"W*hat go=m J(n—m, (N + 1)yt) (1.1

where o and vy are respectively the arithmetic and geometric means of g thru py, B equals the

following vector

B = Ko Kol Boky © " BN
Yoy vad

8 =
J=1

N
with 827® = JT 87'7™, and finally I(n, -) is a lattice Bessel function of rank N. These special




functions were defined by the generating function relation below

hd N
x*I(n, y) = exp [—1— X x"’]
“22,, | N+1 2

where x = (xy, ..., xy) and the x;’s are non-zero complex numbers.

From this definition, many properties of these lattice-Bessel functions follow, see [2] or (3]. In

this paper, we will need only their symmetry properties.
Proposition 1.1. Let Gy C Aut(ZY), where
Gy = {w|lI(n,y) = I(w(n),y) forall n € Z"}.
We then have
i. Gy = Sy+ and is equal to the group of permutations on the set {v, ..., vy}
ii. Z% is a fundamental domain for Gy.

In Massey (2], lattice Bessel functions were mtfoduced to solve the exit time problem from the
interior of Z¥ for the series Jackson network. This was achieved by observing that this problem
was equivalent to determining the transition probabilities for the process Z(s) where it is absorbed
on the boundary of ZY. The solution is constructed by a symmetry argument, exploiting the fact
that Z¥ is a fundamental domain for Gy. From this solution we went on to solve for the joint
density of hitting the boundary of Z¥ at time r, and the state on the boundary that is attained. This

was accomplished by using martingale techniques in Baccelli and Massey [1].

In this paper, we determine the analogous transition probabilities for an N + 1-node, closed
cyclic network possessing a fixed number K, of customers. This model is equivalent to that of an
N-node series Jackson network with the added feature of global blocking. New customers are
refused entrance into this pipeline system if the current number in there equals K. The state space

for this process is A, where

N .
L= f{n;,...,nN)}n,ZO. 3 n;<K, and n,EZ}.

{ <




If we wish to ignore the absorbing states, then our state space can be restricted to A* where

N
A* = {(nl, ey "N) I”J>0’ 2 nj<K, and nJEZ},
/=1

While the state space A is finite compared to Z¥, solving for the corresponding absorbing process is
more complicated. The notions of group actions, fundamental domains, and semi-direct products
of groups all become essential to the exact solution of this problem through the use of lattice-Bessel
functions. Moreover, we construct a queueing network model for which the complete spectrum of
the generator can be determined. When N exceeds 1 and X exceeds N + 1, we have examples of
transient solutions for Markovian network processes that are not reversible, with spectrum that is

not purely real.
2. SEMI-DIRECT PRODUCT
Let G be the Cartesian product of ZV and Gy endowed with the following binary operation

(m,,g)) o(my, g;) = (m, + g,(my), g.82) . 2.1

Since Gy C Aut(Z¥), Gy is a group under this operation where (0,e) is the identity, and
(m,g)"! = (—g~Y(m),g~"). We say that Gy = Z¥ x, Gy is the semi-direct product of Z¥ and

Gy.
We define Gf?’ to be the natural embedding of Gy into Gy where
G? = {(0, g) |g € Gy}
For any vector m in Z¥, we define G{®’ to equal
G = (m,e) ' oGP o(m,e)

Consider a cyclic closed network with N + 1 nodes and K customers. We associate with it the

following subgroup of G .

Gy = (G, GF™)



Proposition 2.1. Let A equal the following sublattice of ZV,

N N
im0 {=0
We then have
GK.N“A X, GN. } (2.3)

Proof: Let H equal A X, Gy. Since elements of Gy merely permute the v,’s, we can easily show

that H is a group. Direct computation shows that Gi and G,(vx'°) are subgroups of H, hence

GK.NCH-

To show the converse, note that any element of Gﬁf'” is of the form (K (g(vg) — Vo), 8). One

special case of the group operation is
(my, 8)0(0,82) = (m2,g,82) .

So applying (0, g~') to the right of (K (g(vo) — Vo), &) shows that (K (v, — vo), e) belongs to Gy »
for all i. Applying a different (0, g) to the right shows that (K (v; — v;), g) belongs to G, y for all

8 in Gy and all i. Letting g equal e, and making liberal use of the formula below,

(e,m,) 0(gs. m,) = (g2, m; +my),

N
we see that any element of the form (K- &(vi—vo),8) belongs to Gy y. Defining
=]

N
Co=-S¢ weseethat H CGyyandso H =Gy ®

iw}
Let each element of G, act on Z¥ by defining
(m,g)n) =gm) + m.

The composition law for these mappings is exactly the group operation (2.1) defined for the semi-

direct product.
Let {w, ..., wy} be a subset of Z¥ where their integer span, <wg,..., wy> equals Z¥ and

i w; = 0. We will call such a set a projective basis of Z¥ and associate with it the following set
i=0



of objects:

i. G(w) = {automorphisms on Z" that permute the w;’s}

N N
J=0 J=0

N

iii. A(W) = [/E eij 'eoz o an,eo—CNSK, with CJGZ}
=0
N

iv. A*(W) = Et’jw,|€0> st >€N,€o—€,,<K, with CIEZ}.
=0

These quantities are related by the following theorem.

_Theorem 2.2. Let {w,, ..., Wy} be a projective basis of ZN¥. We can induce a G(w)-action on

Z¥ /A(W), such that
A(w) = (ZY 1 A(W))/G (W) .
Moreover, if (ZN / A(w))* denotes the set of elements in ZV | A(w) that have fuI.I orbits with respect to
the G (w)-action, then ‘
A*(w) = (ZV 1 A(W)* /1 G(w) .

Proof: If we set w;=v, for j=0, -+, N, then G(w) = Gy, A(w) = A, A(w) =4, and
A*(w) = A*. We will prove the theorem only for this specific case and note that we only use the

fact that {vy, - - -, vy} is a projective basis.
To prove these results, it is sufficient to verify the following:
i. For every n € ZV, there exists a o € G x v such that o(n) € A.

ii. If m,n€A, then o(m) = n for some o € GK.N if and only if m = n. Moreover, if
either m or n belongs to A*, then o(m) = n is equivalent to o = (0, e).

If 8 maps each element in Z¥ to its equivalence class in (Z¥/A)/Gy, then (i) and (ii) show that it

induces an isomorphism between A and (ZV/A)/Gy. For any m € Z¥, by (i) there exists a

c ¢ Gy x such that c(m)£4. Since o(m) = g(m) + A for some g € Gy and X € A, this means

that 6(m) = 6(n) for some n € A. Consequently, 8(A) = (Z¥/A)/Gy is verified. Moreover, this




mapping is one-one. Otherwise, there exists a g € Gy and A € A such that m = g(n) + X\ for some
m,n € A. This gives us m = o(n) where o = (A, g) € Gz, Which contradicts (ii). Moreover, if

n €A but n¢ A*, then there exists a non-trival o € G,y such that o(n) =n. Either n;=0 for

N
some j=1,.., N and o=(0,g) where g permutes only v;.; and v;, or I my=K and
=1

o= (K(vo — vy), g) where g permutes only v, and vy. This cannot hold for n € A* by (ii), so @

induces an isomorphism between A* and (ZV/ A)* / Gy.

N
First, we will prove (i). For all n € Z¥ we can write it as 3 njv;. The n;’s are unique up to

Jj=0
L] L] N N .
adding on a constant to each term. Notice that ng - = 121 n; where n = le nje;. We will say

that ng ~ ny equals the length of n. For any n € Z¥, let n* = g(n) where g is the element of Gy
that gives a unique g(n) € ZY. Now we can define a sequence {m(€) |¢ € Z.} as follows:
1. m() =n*

2. m{¢é+1) = (m(() + K(VN-VQ))*.
By (2.2), we see that each successive m (£) is constructed by applying an element from G g v to the
previous vector. So if m({) € A holds for some finite €, we have mapped an arbitrary element n
of ZV into A using G x 5.
Let a be the maximal integer such that mg(0) = m,(0) and my_,(0) = my(0). If the length of
m (0) exceeds K, then
mo(0) = mo(1) = ... = mgla-1)

ma(0) = my(1) = ... = my(a—1)
Hence the length of m (€) is constant for € = 0, ..., a — 1. After that, we have
mg(0) — mp(0) > me(a) — mu(a).

New ¢ = N + 1, so by induction on the length of a positive vector, there exists some finite € such
that the length of m(€) is less than or equal to K. From this we have m(€) € A, which finishes the

proof of (i).




N
For (ii), there exists some g € Gy by Proposition 2.1, and integers €; with 3, £, = 0 such that

i=0
N
g(m) + K- E e,v,=n
i=0
N [ ] L N N [ ] L] N
Wenowsetn = 3 n,v, withn, = I n,andg(m) = F g(m),v, with g(m); = S m
i=0 J=i+l i=0 Jmg~Hn+1

For some fixed integer A, we have the following relations
n; = g(m); + \ = K¢&.
Now choose some arbitrary index and call it {(0). We then have for all i
nioy — ni = (8(m)iy = 8(m)7) = K (&) — €)
First, assume m has length strictly less than K, so 0 s g(m); < K for all i, whereas for the n;'s
we have 0 = n; =< K. This gives us

] . - L 3 L] 1
[€ioy = €| = ra [lni(m -n;| + [g(m)io) — 8(m); |] < 'E[K'*‘K] =2

Since the €,’s are integers, we have £, — € equal to —1, 0, or 1 for all i. However,

N 1

1 N
boy = NFLD ‘Eo boy = N+l Y by - &

{=0Q

but &) — € = 0 for i = i(0), and |&q — €| = 1 in general, so we get [€q)| = N_I-VFT Thus
€,0) = 0 since £, must be an integer. Recall that i (0) was selected arbitrarily, so this proves that

€, = 0 for all i, Therefore, g(m) = n, and the rest follows from the properties of Gy.

Now suppose that m,n € A and they both have lengths equal to X. Let b be the maximal
integer such that

mo=ng= :++ =myp=n, =K.

Given n = g(m) + XA, we can transform this equation into n = g(m) + X, where



b
ﬁ-h[n-K-Ev,] o

j=0

[
=0
g=hgh™!

- [
A= X"i’K'zh(Vj)—Vj
j=0

b +
and finally h is the automorphism from Gy that makes n = [n-,K > v,] and
J=0

» +
m = [m -K'y v,) . Both m and n belong to A, but by the definition of b, one of them does
J=0

not have a length equal to XK. Using our previous argument, we getm = nand som = n. ®

A consequence of this theorem is that just as 2 is a fundamental domain for Gy, we have now

shown that A is a fundamental domain for G x 5. This observation yields the following theorem.
Theorem 2.3. Let T = inf{t |Z(1) € 3A}, where 3A = A\A*. We then have

PaZD =0, T>nN= 3 (=1 Boo®P, (Z(r) = o(n)). (2.4)
OGG‘JV

Proof: Let r(m,n) equal the right hand side of (2.4). If p,(m,n) = Py (Z(r) =n), then let

5,(m, n) be defined as follows:

p(m,n) -

BII'ID

s(m,n) = e~ W*rattq—m, (N + 1)y?).

Given the symmetry of the lattice-Bessel functions, we have for all g € Gy
s(g(m), g(m)) = s(m,n)
and for all k € Z¥
s;(m +k,n+k) = s;,(m,n).

By these two identities, we have for all o in Gxn



s(o(m), o(n)) = s,(m,n)
Since we are given

rm,n)= 3 (-1)°82"°Wp,(m, o(n))
oeGrn

the symmetry of the s,(m, n) also gives us

rim,n) = 3T (~1)7B°™ " Pp(c(m),n).
o€Gyx N

2.5

(2.6)

By (2.6), r,(m, n) satisfies the same forward equations as the p,(m, n) for the process Z(t). For

n € 3A, there exists an inversion o € GK.N (0% = e) such that o(n) = n. Using (2.5), it follows

that r,(m,n) = O for all n € 3A. Finally if r = O, then po(m,n) = 8y, 5. By Proposition 2.2, we

know that o(m) = n if and only if m = n and 0 = ¢ when m € A®. Therefore ro(m,n) = &y ,

and by uniqueness, r,(m, n) must equal P, (Z(t) =n, T >1). ®

3. SPECTRAL DECOMPOSITION

We will now use this solution to render a more tractable representation. First, we choose the

following basis for Z¥:

{e,-f-jeN. Jj<N
J=

eN. j=N
N-1
For any m in Z¥, let my(f) = my — 3 jm;,. We then have
Jj=1
N N-1
m= zl mpe; = mN(f)fN + .El mlfj .
i= i=

N
ZN = @ (f‘,)
Jj=1

N-1

where (f)) is the integer span of f;. Since (N+DKfy = 3 K(v;—vy) and Kf; =

J=0

for 1sj<sN-—1, we have

3.1

j-1
> K(vi—vn)
e
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. N-1
A= 1?1 (Kfj) @ (N +1)K1y) . (3.2)
From this, it follows that
ZXIAEZTT O Zpyax - (3.3)

Let T = {'"® | 0 6 < 27}, which is a multiplicative group, and let T¥ be its N-fold direct sum.
Its group operation will be componentwise multiplication. Now define a group homomorphism ¢

from Z¥ to TV where
dm) = (WF', ..., 0", 0@l (3.4)

with w4 = exp [(—N%?li)?] and wg = exp [-21%'-) Identifying a primitive generator of Z(y.1yx

with wp+x. and meking a similar association between Zy and wy, we see that the kernel of the
map ¢ is precisely A. Thus ¢ induces an embedding or monomorphism of Z¥/A into T¥. Now

define {m, n} as follows:
N m i mpy(finn(f)
{m,n} - jgl Q)AJ TWN+DK - (35)

Notice that {m,n} = {m',n’} when both m and n are congruent to m’ and n’ respectively,

modulo A.

Proposition 3.1. Ler 1, be the indicator function for the sublattice A of ZN. We then have

1 S {m,n} (3.6)

1a(n) =
* [2": A) o €2V

Proof: If n € A, then by (3.2), (3.3), and (3.5), we have {m,n} = 1, and so 1,(n) = 1.
Conversely, if 1,(n) = 1 then {m’,n} = 1 for all m’ in Z¥, since {m ‘', n}{m,n} = {m' +m,n}

and

S m+m.m=—— 3 {m,n)=1,m.

{m’,n} Ix(n) =
A mezZN/A (2% Al mezViA

1
[ZN: A)

Now if {m',n} =1 for all m' in Z¥, let m’ = f;. By (3.5) we have {f;,n} = wy =1 for
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JSN=1, otherwise {f;,n} = 0§{x = 1. By (3.4), since dm) = ({f;,n}, ..., {fv.nh), we

have &(n) = (1, . . ., 1), which is the identity element of TV, and so n € A.

Moreover, when 1,(m) # 1, the above argument tells us that 1,(n) = 0. Otherwise

{m’,n} = 1 for all m"’ and this again would imply 1,(n) = 1.. ®
Proposition 3.2. Ifx = (x;,...,xy), then

xo N
xl A- ) = el " '/] ¢
A%‘,Ax (A=m,y) TNED “Z,IM{ m}exp [_LN-H Eo{ viix

Proof: Define an associated group homomorphism ¢ from Z¥ to T as follows:

Y(m) = ({e,, n}, ..., {ey, n}) 3.7

This mapping has the following property
{m,n} = $(m)*
N
where Y(m)® is the usual jl'Il w(m)j" . By Proposition 3.1, we have

S xMA-m,y) = 3T 1,(\) I(A-m,y)
AEA rez¥

3 MBI (A+m) I(N,y)
aez¥

xl+m

=3 Z {&a+m}Iny

N.
rezV (27 A) ee€zNIA

3 {&m} 3 WO INy).

xm
N.
(Z7: A] eezNiA rezV

The rest follows from the definition of y(n), the fact that [ZV: A) = K¥(N +1) by (3.3), and the

generating function relation for 7(\,y). ®

To simplify the expression for Py (Z(f) = n, T > 1), the following quantities will be useful.
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8(&,m) = 3 (—1)F{L, g(m)} 3.8)
8€Gy
0 =—1 3 (¢ ) (3.9)
€ B ee—— s Vil . .
N+1 g

We now define the following bilinear form on Z¥

(m,n) = Nilm,n, + M) m()

T (3.10)
=

2mi

Note that {m,n} = exp[ X

(m.n)]. It is with respect to this bilinear form that we want to

define an adjoint matrix. For every g € Gy we define g Gén to be the unique integral matrix such

that
(¢(m),n) = (m, g(m)) .
By inspection, 8(€, n) and € (£) have the following properties:

5(€, g(m)) = 8(g(€),m) = (—1)5(¢, n)
and
€(2(0) = €(£)

for all g €Gy.

Proposition 3.3. Ler {Vo, ..., Vn} be a subset of ZN such that

N
kmj+1

a

Vj = "
- Ekfk j"N.

k=1
We then have Gy = G (%) and A = A(¥).
Proof: By inspection, we see that {V, ..., Vy} is a projective basis. We can show that Gy = G(¥)

by proving that {Vg, ..., ¥y} is “dual” to the projective basis {vq, ..., vy} in the following sense

. -1
G v = T+ B | (3.11)

From this and the fact that g(vy) = v, we have g(¥;) = v,-1(;, since

IS
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@OV, Vi) = (v, g (V)

= (¥, Vo)

= w71 T Sew
-1
BT

(6"1([” vk) .

Thus Gy permutes the v,’s and so Gy = G(¥).

To compute the (\7,, v.)'s, we merely decompose the fr/ and v; into their orthogonal components

in the f-coordinate system. The V,'s were defined as such. The v,'s expressed in the f-coordinate

system equal

f, - fv, k=0.
fi40 — B — Iy, 1sksN-2.

e = INSy -ty k=N-1.
-1y, k=N.

We will do the case 05 j <N — 1 and 1 sk <N — 2, noting that the other cases can be worked out

similarly. For0sjsN—-land1sksN

-2, we have

) N
(Vv = (3 ffin—f—1y)

Cmj+]

-1
N+1

=1
N+1

+

Finally,

AW) = A.

N-1 N-2
—v )+ 3 fefin))— T de i)

t=j+1 t=j+1

N-} N-2
+ 3 Bekv1— T B

t=j4l tej+l

5k -

we note that {Kf,,..., Kfy_,, K(N + 1y} is the module basis for A(v), hence
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Now let A = A(v), and A"’ = A*(v). The above proposition, combined with Theorem 2.2

gives us
A= (ZV/A)/Gy.

If (ZV / A)* equals the coset representatives of Z¥ / A with full orbits under the Gy-action, we also

have

A* = (ZV 1 A)* 1 Gy.

Theorem 3.4. Let T = inf{t|Z(t) € 3A}. We then have

Po(Z(t) =n,T>1) = m “2” 8(¢,m)8(€,n) exp [— N+ a-vy e(()]t] .

Proof: Combining Theorem 2.3 with (1.1) and Proposition 3.2, we get

T (=DIBAIPL(Z() = a(n)) = e~W*Dugom S (~1)?I(o(n)~m, (N +1)yr)

oGy N oeGg,n
= g~Wtharga-m S (—1)¢ T I(g(m)—m +X\,(N+1)y1)
2 €GN AEA

=(N+1atqn- N
= BT T (-1 ¥ {&,m—gm}explyr - ¥ {¢, v}

KYN+D) e eezNiA j=0

We now simplify the summation term,
N —_—
S(=1¥ I {{m-gmlexp(yt- T {€&,vhHh= T {€, m}d€, n)exp(y(N+1)1: e(£))
8EGN eezZNiA j=0 eezN/A

=3 3 {g(£), m}8(2(€), m) exp(y(N +1)1 - € (8(€)))
8€GN geae

=3 3 (—=D5{E, g(m)}5(€, n)exp(y(N + 1)t -e(£))
eca* 2 €GN

= 3 8(€,m)5(€, n)exp(y(N +1)1-€(€))
fea

and the rest follows. ®

Corollary 3.5. Let A be the associated Markov generator for the process that acts like Z(t) in A°
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until it is absorbed by the boundary 3A. We then have that A is diagonalizable, and its spectrum
equals

1. N
—[uo+ ..ty = (o =+ + un)¥*! 120{8. v

where € belongs to A*. These eigenvalues are all real if and only if N=1or K=N + 1.

M
Proof: If 3 g e® =0 for all # = 0 and the b;'s are distinct, then every a; is equal to zero.
I=1

From this it follows that Theorem 3.4 must give the unique spectral decomposition for the

M
generator A. The fact that each term is of the form 3 g et precludes any nilpotent term
J=0

associated with the Jordan normal form, so the generator must be similar to a diagonal matrix.
To determine when a spectral element is purely real, we note that this i8 characterized by

" whether or not €(€) is purely real. When N =1, then €(€) = cos [-‘%—], so the total spectrum is

real for this ca.se. For K=N+1, A* is a singleton state, namely {(1,...,1)}. Since A* is

isomorphic to A*, the corresponding spectral element is then the only entry in the generator, which

N
is = 3 u; and is purely real. It remains to treat the cases where N=2 and K =N + 2.
Jj=0

N
Now consider € = 120 €; v, where

¢

N+1 j=0,
S IN-j 1sjsN,

The € are strictly decreasing in j and €y — € =N +1, so ¢ belongs to A precisely when
Kz=N+2 We will show that the imaginary part of €(€) is always non-zero when N =2 and

K=N+2.

First, we use (3.5), (3.10) and (3.11) to get
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. 1 L4 .
G- 20

€(©) 1 ﬁ ® r=o
Ty 4
N+1 &
1 'N-ln [M;“ ”] [’:él 4 N]
= Wy Wy — Wy
N+1 &
N 1
_ 1 m‘['z'*n—ﬁ'] [1-wf*?
N+1 “F 1-ox K

-[-%’-4 L ] N+} sin [%(N'#'Z)]

= 1 233 7\ ) N
N+l 9K wy ~(m wx
sin X
i
. 1.1 sm[-l?(N-#z)] N__1
=2 —— 2 N+l 2 Nt
N+T ¥ ~(m Wk
sin X
Now to show that Im(e(€)) # 0, we need only prove that
sin | I 11— —2—|fsin | Zv+2)| # sin | T N - =2—|]sin [ Z]. (3.12)
K N+1 K K N+1 K

2 2 .
Observe that [l N+l](N+2) N N+1,andsmceN22andK2N+2hold,wehave
KzN-e-2>N-—-2 >1>1- 2 >0.
N+1 N+1

We can now prove that (3.12) holds by verifying the following lemma,

Lemma 3.6. Given0sa<x<b<=<m=, then

sin(x) sin [‘;—b] #* sin(a) sin(d).

Proof: Let f(x)=sin(x)sin [gxgl It is a differentiable function on the open interval (a, b).

Moreover, since f(a) = f (b) =sin(a)sin(b), by Rolle’s Theorem, we can prove our lemma by

showing that f'(x) has only one zero in (a, b).
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First, we write f'(x) as

4 = H .ai _Lb- 3 a—b.
f (x) = cos(x) sm[x] xzosm(x) cos[x].

tan(x)

If we set g(x) = , then f'(y) = 0 for some y in (a, b) is equivalent to having g(y) = g [11’-]

Yy

Now suppose that y # a_:_. We sce that g (x) is positive on [0. -;l] and negative on [12'-, ‘rr], 50y

and lyb- must both belong to the first or second interval. By Rolle’s Theorem, we have g'(z) =0

for some 2z in (a, b) with z % 12"- where

' tanx sec?x
X) & = —— + ——
4 ( ) 2

If g’ (z) =0, then

z = sin(z) - cos(z),
which is equivalent to 2z = sin(2z). The formula can only hold when z = 0, which contradicts the
fact that a <z <). Therefore, we must have y = gy’-’-. From this and a <y < b, we deduce that

y= Vab. Hence Vab is the unique zero for f'(x) on (a, b), and we have proved our lemma. ®

Theorem 3.7. Ifn € 84 such thatn~v; € A®, then
1
PoZ(T) =n,T=s1) = p,[Pg(Z(s) = n—v, T > s5)ds
0

otherwise Py, (Z(T) = n, T <t} = 0,

Proof: We use exactly the same argument as that in Baccelli and Massey [1], Theorem 1. ®

We can now solve the Dirichlet problem associated with the generator A on the domain 4.

Corollary 3.8, Ifn € 8A such thatn — v; € A®, then
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yin_m < s(e» m) 6((. n—v,)

Pm (Z(T) = l‘l) =

EYN+1)? S, a—y-e(@)

otherwise Py, (Z(T) = n) = 0.
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