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1 Introduction

This paper is concerned with the computation of a few eigenvalues, those with either
largest real part or largest magnitude, and the corresponding eigenvectors of large, sparse,
unsymmetric matrices. Two methods are discussed both from the theoretical and the
practical point of view : a block-Arnoldi method and an adaptation of the Davidson
method to the unsymmetric casc. The former method and some of its variants have been
recently studied [7, 11, 12, 13]. The latter one is very popular in quantum chemistry
[4]. The symmetric case has been intensively studied in [2, 9]. We give in Section 2 and
3 some theoretical results concerning the convergence of these two methods. Numerical
experiments in which we compare them are described in Section 4.

Throughout this paper, the symbol M GS denotes the modified Gram-Schmidt algorithin,
| Il and || ||, denotc the Frobenius and the Euclidean norm respectively, X# and Y7
denote the transpose of the complex conjugate of a matrix X and the transpose of a real

matrix Y respectively.

2 The block-Arnoldi method

To compute the ! eigenvalues with largest real parts or largest magnitude of a real large
sparse unsymmetric matrix A € R™* let U; € R™ be a rectangular matrix having at
least [ orthonormal columns. If m is some fixed integer which limits the dimension of the

constructed basis, the block-Arnoldi method can be described as follows:

2.1 Algorithm 1

for yj=1,...m —1do
1. W, = AU;;
2. fori=1,...j do
H;; = UTW;
W, =W, — UiHi;
end for
3. Q;R; =W; QR decomposition;
4. Ui = Q5 ; ;= Iy,

end for

Since the algorithm involves implicitly a Gram-Schmidt process, the resulting block

vectors Vi, = {Uy,...,Un} have their columns mutually orthogonal provided none of the
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upper triangular matrices R; arc rank-deficient. Furthermore, the columns of V,, are an
orthonormal basis of the generalized Krylov subspace K,, = {U;, AU,,..., A™'U,}. The

restriction of the matrix A to I, has a block-Hessenberg form:

1[1‘1 1'{1'2 Hl,m
I,y Hys H, .,

Hey=Viav,=| o . - : (1)
0 .o 0 [Im,m—l Hm,m

where the submatrices H;x (1 <¢ <k <m) are densecand H;;—; (2 <¢<m) are dense
upper triangular. Each matrix is of order [. Therefore, the eigenvalues of 1, constitute
the Galerkin approximations of the cigenvalues of A on the Krylov subspace Ky,

From the above algorithm, steps 2,3 and 4 give :
. :
AU, =ZUz‘Hi.k+Uk+1”k+1,k k=1,...,m (2)

=1

which can easily be condensed in the form
Avm = ‘/m ['[m + [03--‘707 Um+111m+l,m]- (5)

If A =diag(A1,..., M) denotes the diagonal matrix of eigenvalues of H,,, corresponding

to the eigenvectors Y, = [y1, ..., ymi], then relation (3) gives
AV Yoi = Vi Ho Y = (0,...,0, Uny1 Hing1 m | Yom - (4)

Let us denote by X,, = V,, Y, the matrix of approximate eigenvectors of A and by Y,
the last | blocks of Y., that is

)"-m,l = . (5)
7m,l
Then equation (4) gives
“ AXm - XmA ”2 = “ 11m+1.m7m.l HQ (6)

Relation (6) is very useful for obtaining the residual norms without having to compute
them explicitly.

Convergence of this algorithm can be very slow and the slowness is exacerbated by an
unfavourable distribution of the spectrum of A. To ensure convergence, the dimension of
the Krylov subspace must be large, which increases the cost and the storage. One way
to overcome this problem is to restart the algorithm periodically. This gives rise to the
following algorithm.



2.2 Algorithm 2

Choose an orthonormal matrix /; € R™ and an integer m

Zy = [UA4]

for k=1,2,... do

1. Starting with Z;, construct //,, and V,, from Algorithm 1

2. Compute the /[ desired eigenpairs O; = diag(Ay, -+, A)

and Y. = [y1, -, y] of H, = VAV, ;

3. if the quantity in (6) is less than some prespecified threshold, then exit
else Ziyy = MGS(V,, Y0 0)

endif

end for

Convergence of the above algorithm can be considerably improved by preprocessing
Zk41 by Chebyshev iteration belore cach restart [11, 12].
From a practical point of view, it is always possible and usually desirable to avoid complex
arithmetic by computing separately the real and imaginary parts of eigenvectors of //,,
corresponding to complex eigenvalues. In the following theoretical results, we will not
make this assumption and so everything can be treated in complex arithmetic. In the fol-
lowing, the eigenvalues of the matrix A are denoted by py, o, . . ., i, labelled in decreasing
order of their real parts (resp. of their magnitudes) and o,(A) > 02(A) > ... > 0,(A)
denote the singular values of A. A,,,;() stands for the largest eigenvalue of a Hermitian
( or symmetric) mattix B. 0maz(B) and omin () stand for the largest and the smallest
singular value of the matrix B respectively.
Let Ax be any eigenvalue of the matrix F,, produced by Algorithm 2, then we have the

following

Proposition 2.1 The sequences (v = (Re(M))en and & = (| Ak |)pen are bounded by

/\mar(%) and o,(A) respectively.

Proof
. s,z
sl
1 1 " JH g H
= max - E(z Ho.z4 2" H 2)
1 1 yyn T
= max E(Z VI(A+ AT )V,2)
1 1
= max CMTVHA 4+ ATV, 2)

220 VIV, 2 2
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Proposition 2.2 Al cach restart k = 2,3,... the matriz I, constructed by Algorithm 2

o T I
= ( I, 1 )

has the following pattern

by .
where the matriz Ty = is upper triangular and Ay, ... A\ are the cigen-
0 Al
values obtained at the k — 1 st restart. H, = 1(1)2 where Hy is an upper triangular
matriz of order |, H, is a rectangular matriz and Hs is a block-Hessenberg matriz .
Moreover
]
” 1 “FS ZO’, jlm _l/\ | ) (7)
t=1
and
I Hallp = | AZi~ ZiT0 | (8)
l
< JZ(U:’(”m) —1x ) (9)
1=1

Proof It issufficient to prove this proposition only for the case k = 2. By construction,
the matrix H,, and hence the matrix /I3 have Hessenberg form. After the first restart
Zy = MGS(V,,Yn) is used as the initial guess. According to the MGS algorithm,
VinYoi = Z3 Rz, where R; is a square and upper triangular matrix and Z; 1s an orthogonal
matrix. Thus Toy = ZFAZy = R7"YIVIAV, Y R = R7YYH Y, 0RY. Since
Rél Ry, = Y 1Yo, we conclude that T, = R0, R5" which is an upper triangular matrix
with Ay, ..., )\1 on its diagonal.



From step 3 and 4 of Algorithm 1 and from (1), Hy is upper triangular and || H, ||,» =
“ AZ2 - ZQZ2”AZ'2 ”1‘ == ” AZz - ZgTzJ ”F
Now, Since o2(H,,) is the ith largest eigenvalue of the matrix I{¥ H,, , it follows from

the Cauchy interlace theorem [10] that
l {
S o) = S (TETe + 1)1 1)
=1 =1
= Trace(T{Ti;) + || Ha I

!
Z| Ai |2 + || H, ”2r
i=1

vV

Corollary 2.1 If we assume that the matriz A is nearly normal in the sense that
| oi— | i ||= €0y fori=1,2,...,n with e small,

then the Frobenius norms of Hy and I, are bounded by

l§ ! 2

e oot | M) +201 D | pi— M|

i=1 =1

Proof Sincefor:=1,...,1 o,(Hy) is the ith largest singular value of H,,

H
Ui(Hm) — max J_l_m_:th
scrml dim S=:i €5 | z ||,
H
_ ax i IV AV [l
serml dim S=;i =€S || Viaz ||,
A
< ax min | Az ”2
SeR™, dxm S=i €5 |z,

= OJ;.

Using the results of proposition 2.2, we see that the square of the Frobenius norms of H;
and H; are bounded by

PR PR

{
= Y (o= m Dot N D)+ DGl =1 X Dot | Al
1 =1

IN

ey _oiloit | \i ) + 20y Z | i — A |
=1 =1
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As soon as the Ritz values A, 1 = 1,2,...,0 start to approximate the eigenvalues

piy = 1,2,...,0, | Hy || and || 3 || become very small according to the above in-
equality and AZ, — Z; T}, goes to 0, which mecans that Z; tends toward an invariant
Iy 0
subspace of A. The matrix II,, tends toward H = where Hs is
Hi
0 Hy

a block Hessenberg matrix. This cstablishes the convergence of Arnoldi’s method in the

case of nearly normal matrices.

Remark
It should be noted that even if A is ncarly normal (or even normal) , the matrix f,, is

not.

Experiments have shown that for general matrices, after several restarts the matrix

H,, built by Algorithm 2 “converges” toward a matrix of the form < g' gl ) where
’ 2

ﬂl *
T = is triangular with gy, ... sy, the sought eigenvalues, on its diagonal.
0 1
H, and H, arc respectively rectangular and block Hessenberg matrices. This can he
viewed as an “incomplete ” Schur decomposition of the matrix A. This last assertion is

not obvious, but it can be proved.

3 The unsymmetric Davidson method

Davidson’s method for symmetric matrices was developed for problems in quantum chem-
istry [4] as an efficient way of computing the lowest energy levels and the corresponding
wave functions of the Schrodinger operator. The matrix dealt with is symmetric and
strongly diagonally dominant. It can be viewed as a preconditioned version of the Lanc-
zos method [2]. In the following algorithm, we will generalize the Davidson method to

the unsymmetric case.

3.1 Algorithm 3

The following algorithin computes the { eigenpairs of large real parts or large magnitude
of the matrix A; m is a given integer which limits the dimension of the constructed basis.

Ckit=1,2,...,1 are preconditioning matrices.

Choose an initial orthonormal matrix V; := [vy,--+, 1] € R



for k=1,2,--- do

1. Wi = AV
I[k = Vk” l’Vk;

)

3. Compute the [ desired eigenpairs (Aki, Yr,i)1<i<t of Hi;
4. Tk = ‘/;c?/k,i, for ¢ = 17 e 311

5. 1= Wiy — Apite, fore=1,---,1;

if convergence then exit;
6. tk,i = Ck'ﬂ'k‘,‘, forz = ],' M ,[;

7. if dim(Vi) <m
then Viyy := MGS(Vi, teay -y tia);
else Viyy := MGS(2k1, - @rasbiny o5 tea);
end if

end for

All the steps are the same as in the symmetric Davidson method, except that complex
arithmetic may occur. Fortunately, this can easily be avoided by dealing with the rcal and
imaginary parts separately in steps 3, 4, 5 and in some cases in step 6. At each iteration k,
the basis Vi41 1s obtained from Vi by incorporating the vectors tx; = Cy i, 2=1,...,!1
after orthonormalization. The Cj; are often of the form (M — Ag;I)™! where M is an
approximation to A and A¢; ¢ = 1,...,[ are the desired eigenvalues computed at step 3
of the algorithm. The subspace span{V;} generated by the columns of V} is not a Krylov
subspace. If M # D the main diagonal of A, then a new system must be solved at each
iteration. The hope is to reach convergence very quickly with a small value of m, thus
rewarding the extra cost. The choice of a good preconditioner in step 6 is crucial for
convergence and has been already studied in the symmetric case [2, 9] . Here, similar
conclusions can be derived, namely that the matrix M must be an approximation to A
in the sense that

~ (10)

~
{Buy)e

(M = D)™ (A = )|

where {E,, }¢ stands for the complement of the set of eigenvectors associated with the

eigenvalue p;. Of course the matrix A4 is supposed to be diagonalizable.
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With such a matrix, we have from step 6, where the subscript 7 is dropped
ap — U = ap — (M = )" (A = peDzy. (1)
If we write a4 = arr + Bryx where Az = ez and yx € {E,,, }°, we have
2=tk = o (1= (= MM = MD)™ ) 2+ B (1= (M = i)™ (A = D)) e (12)

Taking into account the condition (10), expression (12) shows that when (Ag, ) starts
to approximate (i, x), then, provided that (M — p1)~" is bounded, the vector 2 — £
has small components except those in the direction of x, and therefore constitutes an
improvement over xy.

The main difference between this unsymmetric Davidson’s version and the block-
Arnoldi method rests in Step 6 of the above algorithm. 1f no preconditioner is used
(le. Cri =1lor~yl,v#0forz=1,...,1), then the block-Arnoldi method is recovered.
Of course this version of the block-Arnoldi method is not recommended because of the
unnecessary computational eflort at cach step. There are some others obvious common
points between Arnoldi’s method and the unsymmetric Davidson method. First, they
both use matrix by block vector multiplication at each step without altering the matrix A
and gradually build an interaction matrix using different projection techniques. Arnoldi’s
method builds a Hessenberg matrix in a clever way whereas the matrix built by David-
son’s method is full, but scems, in some cases, more rich in information about the required
eigenvalues. Finally, we mention that both of the methods allow only the computation of
right eigenvectors.

In proposition 3.2, we characterize the matrices (/i )gen built by Algorithm 3. But first

we need the following simple proposition.

Proposition 3.1 Let 3 € C*" be a Hermitian matriz and Q € C™K withn > k «

rectangular matriz. Then

Amaz(Q" BQ) < Anaz(B)o}r(Q) (13)
Moreover if rank(Q) = k, then
az (Q(QTQ)TQY) =1 (14)
Proof From the Courant Fisher theorem [10], we have

HAH

T BQzx

Arae(QTBQ) = max —~Q—”i
reCk; #£0 U

9



Q=) B(Qz) z"QHQx

= max 77 i
zeCk; zz0 (Q2)"(Qz) 'z
H HAH
" Bx
< max max x—w

H H

2eCH 240 72 eck;z0 T

= Amaz(B) Amaz(Q7 Q).

To prove (14), let @ = ULV be the singular value decomposition of @, with U €

C*" and V € CK¥ orthonormal and £ = ( gc Y € C™K where I, stands for the
identity matrix of order k and ¥ = diag(vy,...,vi) are the singular values of Q. Then
QQ1Q) Q" =U( p 8)0". 0

For the following proposition, we will make use of the notational conventions R}, =

[Tk,1s- - - Tki] the residual matrix built in step 5 of Algorithm 3. Step 6 will be denoted
by Tk = [ty .- tad]-

Proposition 3.2 At each restart k = 2,3, ... the matriz Hy constructed by Algorithm 3

AT
M= ( Iyp M )
’\l *

where the matriz iy = is upper triangular and Ay, ...\ are the eigen-

0 Al
values obtained at the k — 1 st restart. Hyy, Hir and Hyp are dense matrices wilh

has the following pattern

appropriate dimensions. Moreover the Frobenius norms of Hsx, and H3 i are bounded by

{
\[Z("fz(ﬂk) — A1) (15)

i=1

and

| Hax H'z < || AVioy = Vil H2 (16)

If Yi_y stands for the matriz of eigenvectors of Hy_y, then

Umax(Rllcl_1 Tk—l )

| HsxYir |
LT i (T = Vi VI# ) Tih)

and
” llii,kyk—l ”2 S Umar(Rk—l)- (18)

10



Proof Irom Algorithm 3, it is clear that the matrices Iy x, Hzyx and Hyy are dense.
(15) was shown in proposition 2.2 in the context of Arnoldi’s method. The result is still
valid here because we did not make use of the fact that the subspace V;, is a Krylov
subspace in the prool of proposition 2.2.

Let us prove the bounds for I3, First, notice that because of the MGS algorithm,
there is no loss of generality in assuming that the columns of the orthogonal projection
of Tx—; on the orthogonal complement of Vi_y, ie. (1 — Vk_lv,jjl):l"k_,, are lincarly
independent before convergence. 1f we let Vi = [Vioy, Ui], where Uy is an orthogonal
matrix whose columns are thosc computed at step & which are mutually orthonormal and
orthogonal to Vi_,, then Hy, = Uk’,]/\Vk_l. Now, if QR stands for the QR factorization
of (I — Vk_l\/’g;l)'j'k_l, then

Up= Q= (I = Vil VI )T R ™! (19)

and

Hyp = RTE (1 = Vi VI AV (20)
Hence
i Hs g = VI AT = Ve VE )T (RERY T (T = Vi VE ) AV

Since RERy = Tkl{l([ — Vk—lv;ﬂ])QTk—l and (I — \/’k_lvk’jl)z =1~ Vi1V, wehave

hHs = (1= VeV YAV (1= Vi V)T
[T = Vi VI P ) [ = ViV ) T
(1= Vie ) avioy].

H

If we let Bk-] = (1 - ‘/k_l‘/klll)rrk_] and Dk—l = (1 - ‘/]c 1V l)AVk 1, then
H% s = DL By (BIL By )7 'BE Dy,

And by proposition 3.1 we have
I Ha Ml = Amas(H3 Has) S 050n(Dicr)

ol (I = Vio VL) AViy)
= || (I = Vi) AV, ||2




On the other hand
HswYior = RITTE (1= Vi VI )AVEL Y,
= RU1TY Ry
Hence
(Hs Vi)' (HaYis) = R T (RERYTTH, Riy
. -1,_,
= B e [T (1= Vie V)T | TH Ry
Since VH R, =0, we have
g g Is 3] r Is 2] -1
(HapYior) (HapYeor) = RiL, (1= Ve V) Tect) [T (1 = Ve Vi) T
SH X H
(I = Via W) Tich) Recs
or
(HapVee) (I aYioy) = BRI Bioi(BE\Bioy) ' BEL Ri (21)

(18) is then a simple consequence of proposition 3.1 applied to (21). Now observe that
VI Ri_y = 0, this gives

(I3 Yio) " (HspYio) = BRI Tt [T (1= Vi V) Ten]
Tk}ile-l
and proposition 3.1 yields
-1
” 1{3,kyk—1 ||§ S Ama;c [rlfil(l - ‘/k—lvklil)Tk—l] U,?nar(Rf_lTk—l)

_ ( ez BRI Tio1) )>2

Tmin((I = Vs V) Cro1 Ry
which proves (17). O

Remark

1. If we denote by Xy = [zk,,...,2x,] the matrix of approximate eigenvectors built at
step 4 of Algorithm 3, then relation (17) can be written in the form

Oz (R (I = Vi VL) (Xaor = i)
rmin (I = Vica Vi) Ti)
maz( Ri-1) Tmaz (I = Veet V) (Xeor — Txon)
min (1 = Vi ViH ) Tier) '

| HaYeor ||, <

12

<



-

This means that || I ||, behaves like Omar(Ri—1)0maz (1 — Vi Vil (Xioy = Tizy). The
term Opmin ((I — \/L_lvk’il)fl"k_l) in the denominator is just a scaling factor. We have
seen in (12) that the columns of Xy — Tix_y have small components except those in
the direction of the wanted eigenvectors, therefore opmqz ((] - Vk_,kafl)(Xk_] - Tk_l))
tends towards zero and the matrix Il¢ tends towards the form announced in the remark
of paragraph 2.2

2. The same results as given in corollary 2.1 for the case of nearly normal matrices hold
for Algorithm 3.

3. Following the proof of proposition 3.2, if the Ci,; are proportional to the identity
matrix, we have from (19), Uy = I?k-l’R;‘, where Ry stands for the upper triangular
matrix derived from the @ R factorization of the residual matrix fx—y = AXe_ 1 — Xio1 Agy

where Xy = Vi_1Yio) and Agy = diag( Ak, ... Aky). Then

U'AXeoy = RIVRE AX
= R;"RI Ry, since R | Xy_1 =0
= 'R;H'Rﬁ”Rk since R,’C’_,Rk_l =R R,
= Rsi

If we assume morcover that the matrix Yi_; of eigenvectors of the triangular matrix

Hj._y 1s of full rank, then
Hayp=UlAVio, = U AX L Y™ = RV

and, under the assumption that the eigenvalues of the upper triangular matrix Hy_, are
all distinct, the matrix Yi_, is upper triangular as is the matrix Hz,. This shows that

the submatrices (Hy)i:-1 7 = 2,3... are, in Lhis special case, upper triangular.

4 Numerical experiments

We now give some experimental results to compare Algorithm 2 and Algorithm 3 discussed
above. We have implemented these two algorithms using MATLAB. Algorithm 2 and
Algorithm 3 refer to Arnoldi’s and Davidson’s method respectively. We consider two

examples.

13



Example 1. The matrix /A is the Toeplitz matrix of order n = 30 defined by

I U ce.e Up_o Up_y \
ll l Up—2
A=
ln_2 e . (751
ln—l ln—'z s 11 1

. .3 .
where [; =1+ 1 and ui =1+ fori1=1,2,...,n—1.

4

Since the diagonal is constant, we know that Arnoldi and Davidson with diagonal precon-
ditioning are equivalent. Table 1 displays the sequence of residuals corresponding to the
(I = 1) cigenvalue of largest real part of A obtained by Arnoldi’s method and Davidson’s

method with tridiagonal preconditioning. In this example Arnoldi’s method appears to
be superior to Davidson’s method.

iter Arnoldi Davidson
Tridiagonal

| 1.63 [£+01 1.67 E401

2 2.08 E£+400 2.71 E+401

: 5.57 E-02 3.65 E+00

4 7.71 15-04 9.60 E-02
5 1.37 E-05 1.40 E-03

6 1.77 E-07 1.76 E-05
7 1.22 I5-09 1.98 E-07

8 7.69 E-13 5.50 E-12

Table 1. Scquence of residuals obtained
by Arnoldi’s method and the unsymmetric
Davidson’s method with tridiagonal
preconditioning.

Example 2. A = (a;;)1<i,j<30 1s a matrix of order n = 30, nearly band, the main diagonal
is such that a;; = 7 for i = 1,2,...,n, the first upper (resp. lower) diagonal is random in
[0,1], the second upper (resp. lower) diagonal is random in [0, 1}, the third upper (resp.
lower) diagonal is random in [0, 1]. Moreover a(n,1) = 1 and a(1,n) = 2. Table 2 displays
the sequence of the maximum of rcsiduals corresponding to the (I = 2) two eigenvalues
of largest real parts of A obtained by Arnoldi’'s method and Davidson’s method using
diagonal preconditioning, tridiagonal preconditioning, pentadiagonal preconditioning and
heptadiagonal preconditioning.

Since we are working in this example with blocks of size 2, at iteration 15, the matrices

H\ constructed by the two methods are of order 30 and are similar to A. Thus we
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obtain the cigensystem after 15 iterations. Arnoldi’s method performs very badly on this
example. For Davidson’s inethod, the goal of this example is to show the extreme benefit
which may be obtained from a good preconditioner. The main difficulty rests in finding
preconditioner producing as good results as those with heptadiagonal preconditioning.
Unfortunately, in practice, the condition (10) is in general unrealistic. It is impossible to

find general purposc preconditioners and cach case must be treated in its own way.

iter Arnoldi Davidson Davidson Davidson Davidson
Diagonal || Tridiagonal || Pentadiagonal | Heptadiagonal

1 8.35 E+400 || 8.08 I£4-00 || 9.37 E400 7.71 E400 7.95 E+00
2 6.60 E4+00 || 5.15 £400 || 5.65 E400 4,98 E+00 5.05 E400
3 4.91 E400 [l 3.57 E400 || 4.87 E400 4.08 F+400 3.45 E-01
4 4.14 E+00 || 3.27 IE+00 || 1.74 E400 1.98 400 6.80 E-03
5 3.54 E400 || 1.82 E400 || 1.72 E400 1.74 E400 1.21 F-09
6 2.82 E4+00 || 2.08 15400 || 3.32 E400 9.38 I£-01 3.08 I5-14
7 1.92 E+00 || 1.58 E+400 || 1.20 E+00 1.43 E+00

8 1.62 E400 || 3.21 E400 || 1.46 E+00 2.67 E400

9 1.33 E+00 |[ 3.58 E+400 {[ 1.73 E400 1.49 E+00

10 1.04 E400 |} 4.24 12400 || 5.00 E-01 4.02 E-01

11 || 1.00 E400 {| 3.60 1400 || 9.60 E-03 7.90 E-03

12 8.53 I-01 1.57 E+00 1.77 E-04 9.33 E-05

13 7.91 E-01 2.78 E-02 2.00 E-06 5.12 E-07

14 6.43 F-01 2.59 1-04 2.52 E-08 2.26 E-09

15 1.14 E-12 3.50 [-14 3.49 E-14 3.90 E-14

Table 2. Sequence of residuals obtained by Arnoldi’s
method and the unsymmetric Davidson’s method with
several kinds of preconditioning.

We have also implemented Algorithin 2 and Algorithm 3 on an Alliant FX/80 using double
precision (unit roundoff & 2.2 107!¢). Because of the block nature of these algorithms,
level 3 BLAS routines were used extensively. The small eigenvalue problems (step 2 in
Algorithm 2 and step 3 in Algorithm 3) were solved using the PARA-EISPACK library
[8]. The following two exaniples were used to compare the two algorithms.

Example 3. In this example, we compare the results obtained by block-Arnoldi and
Davidson’s mecthods with diagonal preconditioning, for computing the [ = 8 eigenpairs
of largest real parts of the matrices GRE1107, HOR131, LNS3937-S, PORES3-S and

PSMIGRI1-S from the Harwell-Boeing test collection [5]. These matrices are described in
the Table 3 below
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Matrix Order || Number of || order of Description
entries | All,
GRE1107 1107 5664 ] Simulation of computer
systems
HOR!3I 434 4710 0.901 Flow network
problem
LNS3937-S || 3937 25407 1.42 Fluid flow
modelling
PORIIS3-S 532 3474 2 1.40 Reservoir modelling
PSMIGRI-S || 3140 543162 5 Inter-county migration

Table 3. Characteristics of test matrices

The letter -S in the last three matrices means that the original matrices LNS3937,
PORES3, and PSMIGR1 which have already been studied in [12], were scaled using tech-
niques based on the Harwell routine MC19 [1, 3], which make the nonzeros necar to unity
in the sens that the sum of the squares of the logarithms of the nonzeros is minimized.
The reason for scaling these matrices is that neither block-Arnoldi nor Davidson methods
were capable of computing the wanted cigenvalues of the unscaled matrices. We report
hereafter some basic facts that can explain the misconvergence phenomenon of the meth-
ods on such matrices. First we notice that the original matrices are badly scaled, and
this may lead to numerical problems. For example the magnitudes of the nonzeros vary
from 3.2 1077 to 1.9 10" for LNS3937, from 4.8 107° to 99637 for PORES3 and from
0 to 2.2 10° for PSMIGR1. We also compute, in Table 4, the gap gap()) = %Sill//\\:—/\\j%
for the eight eigenvalues A of largest real parts of these matrices. The eigenvalues have
been computed by the QR method on CRAY2. These gaps measure the closeness of the
wanted eigenvalues and may be considered as indicators of difficulty. Finally an impor-
tant factor that has to be taken into consideration is the departure from normality. Let
QT AQ = A + N be the Schur decomposition of A, where Q is a unitary matrix, A is the
diagonal matrix whose main diagonal contains the eigenvalues of A, and N is a strictly
upper triangular matrix. A large factor of || N || means that the matrix A is very far
from a normal matrix, which may lead to an ill-conditioned basis of eigenvectors. Since

Il N | is extremely difficult to compute, we can estimate it using Henrici’s formula [6]

| AAT — ATA || Jnd—n
SN g < —/I AAT — ATA | ¢ (22)
Gaan SV les g

In Table 4, we computed the above bounds for the matrices LNS3937, PORES3, and
PSMIGRI1. In Figure 1, we plot the spectrum of all test matrices.
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Matrix v(A) Bounds for || N || miny gap(A) | maxy gap(A)
LNS3937 {44108 [ 1210 <|| N |l <3.110%® || 4.4 1071 1.2 102
PORES3 | 3.510° | 2.1 10° < || N ||p <3.5 10° 4.5 1077 7.3 107°
PSMIGR1 || 4.0 10" | 1.4 10° <[ N || < 1.4 10° 551073 3.7 107!

Table4. Some spectral characteristics of the unscaled matrice s.

g(LP(A) — mink /\"/\k

max, [A-A,|”
Although the scaling changes the eigenvalues, our aim remains the comparison of the
block-Arnoldi and Davidson methods. We report on Table 5 the results obtained by thesc
two methods on the test matrices. The gap ratio, as defined above, is also given for these

matrices on Table 6. We notice that in all these test matrices, Davidson’s method gives
better results than block-Arnoldi method.

Matrix Arnoldi Davidson
Mat-vec | Max. res | Time(sec) || Mat-vec | Max. res | Time(sec)
GRE1107 9200 9.8 107° 470 3464 8.5 1079 214.53
HOR131 360 9.0 10~7 11.49 264 6.0 10~7 8.12
LNS3937-S 1040 8.3 10°° 243.75 216 7.1 1077 37.5
PORES3-S 4000 1.7107°% 105.15 2992 9.9 10°° 82.86
PSMIGR1-S 120 1.0 1071 34.19 40 1.0 10714 13.15

Table 5. Comparing the block-Arnoldi method and the unsymmetric
Davidson method. Size of the basis m =40 ; [ = 8.
Mat-vec : Matrix-vector multiplications , Max. res :
Maximum of residual norms.

Matrix miny gap()) || maxy gap(A)
GRE1107 2.510°3 5.3 1073
HOR131 7.51073 9.8 1072
LNS3937-S 5.3 1074 5.3 101

PORES3-S 2.0 1077 1.6 10~°
PSMIGI1-S 3.110°7 3.0107°

Table6. Gap ratios of test matrices.

(](117(/\) — ming |A=Ax

max; [A=A,]°

As show the numerical results, the block-Arnoldi method may not be considered as
a powerful technique in itself since the convergence can be very slow. It has, however,
a large spectrum of applicability and its efficiency is not preconditioner-dependent as
Davidson’s method. Chebyshev iteration constitutes a very good way for accelerating the
block-Arnoldi method. The algorithm then consists of the following main steps. After
construction of the matrix H,, by Algorithm 2, one computes the eigenvalues of H,, and
splits them into two parts : the wanted ones which constitute an approximation of the

sought eigenvalues, and one builds an ellipse which contains all the unwanted eigenvalues
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Figure 1: Spectrum of test matrices.
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from the rest of the spectrum. Using the parameters of this ellipse, one performs a few
Chebyshev iterations aimed at amplifying the components of the restarting matrix Zgy,
in the required directions while removing those in the unwanted ones. For more details on
the implementation of this algorithim, see [11, 12]. We call this new modified block-Arnoldi
method Arnoldi-Chebyshev. We have considered the matrix GRE1107 with m = 40 and
we have computed the (I = 8) cigenpairs of largest real part by the Arnlodi-Chebyshev
method using a Chebyshev polynomial of degree 40. We obtained the following results:
matrix-vector multiplications = 2920 ; maximum of residual norms = 4.44 E-09 and
time=24.90 sec. This constitutes a tremendous improvement over the results given in
‘Table 5. See [12] {or other examplcs.

Example 4. In this example, we compare the Davidson method using diagonal precondi-
tioning, the Arnoldi mmethod and the Arnoldi-Chebyshev method with different values of
the degree of Chebyshev polynomial. The matrix under consideration is of order 1000 and
is generated randomly by setting its density of nonzero elements at 0.01. The nonzero off-
diagonal entries are uniformly distributed in the range [—1, +1]; the full diagonal entries
are in the range [0, 20]. the matrix has 10763 nonzero elements and is moderately diago-
nally dominant. Table 7 shows the results obtained when computing the eight eigenpairs

of largest real part. Notice the good performance of Davidson’s method for this example.

Method || Matrix-vector | Maximum of Time(sec)
multiplications || residual norms

Davidson 264 6.79 E-09 9.42
Arnoldi 4467 9.28 E-09 220.53
AC(10) 2352 1.01 £-09 51.78
AC(30) 2064 3.27 E-09 25.19
AC(50) 2288 1.42 £-09 21.47
AC(70) 2480 2.05 E-11 19.54
AC(90) 4656 2.29 E-09 31.49

Table 7. Comparing the unsymmetric Davidson method with Arnoldi
and Arnoldi-Chebyshev method. AC(10) means that
Arnoldi-Chebyshev is used with a polynomial of degree 10.

5 Conclusion

In this paper, we have extended the block Davidson method for solving the symmetric
eigenvalue problems to unsymmetric matrices. We have discussed theoretical convergence
results and implementation aspects for this adapted version and for the block-Arnoldi
method. There arc obvious ways to exploit parallelism in the dominant parts of these

algorithms. Namely, in the matrix by block-vector multiplications, the matrix-matrix
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operations and the eigenvalue problems of full/block Hessenberg matrices. Numerical tests

have shown that the principal difficulties with Davidson’s method concern the finding of

an adequate preconditioner. If a good preconditioner is used, the unsymmetric Davidson

method may be quite superior to Arnoldi’s method. A typical case is diagonally (resp.

block diagonally ) dominant matrices where the unsymmetric Davidson method with a

diagonal (resp. block diagonal) preconditioner appears to be very suitable and is much

superior to the Arnoldi-Chebyshev method.
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