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Abstract

We give stationary estimates for the derivative of the expectation
of a non-smooth function of bounded variation f of the workload in a
GI/G/1/c0 queue, with respect to a parameter influencing the distribu-
tion of the input process. For this, we use an idea of Konstantopoulos
and Zazanis [12] based on the Palm inversion formula, however avoiding
a limiting argument by performing the level-crossing analysis thereof
globally, via Fubini’s theorem. This method of proof allows to treat
the case where the workload distribution has a mass at discontinuities
of f and where the formula of [12] has to be modified. The case where
the parameter is the speed of service or/and the time scale factor of
the input process is also treated using the same approach.

1 Introduction.

Consider a stationary GI/G/1/oco queue with inter-arrival times {7,},cz
and service times {0,,(0)},cz, where 8 is a real parameter in the interval ©.
Assume that E° () < E° 7, = A7, where PY denotes the Palm probability
with respect to the arrival process {1, },c;—with the convention Tj < 0 <
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Figure 1: workload of a GI/G/1 queue.

Ti. Then the queue is stable and we can define as a stationary process
the work Wy(t) remaining in the system at time ¢ and given by Lindley’s
equation—see figure 1:

Wolt) = (WalTum) +0(0) ~ (t = 1)) t€ (L0 To)s (1)

with the notation z+ = max(z,0). Given a real function f, consider the
functional J(#) given by

J(0) = B f(Wy(0)).

We want to estimate, if it exists, the derivative of J with respect to 8. To
this end, we use Infinitesimal Perturbation Analysis (IPA), a method first
introduced by Ho et al. [11], developed by Suri [15] and validated by Cao [4],
Suri and Zazanis [16]. Glasserman [5], Ho and Cao [10] and Konstantopoulos
and Zazanis [12] developed further the theory.

Alternative methods have been used to estimate derivatives, namely
Likelihood Ratio Method (LRM, see e.g. Reiman and Weiss [14] or Glynn [7]),
Smooth Perturbation Analysis (SPA, see Gong and Ho [9], Glasserman and
Gong [6]) and Rare Perturbation Analysis (RPA, see Brémaud and Vazquez-
Abad [3] and Brémaud [2]).

In this paper, we aim to prove that, under appropriate conditions

S J(W(0)) = B (Ws(0) 2)
0 T g
and we give a formula replacing (2) when f is not differentiable but is of
bounded variation. This formula was obtained by Konstantopoulos and



Zazanis [12]. However there is one term missing in their formula, due to
the difficulty of passing to the limit in their approximation procedure. Our
method of proof avoids this passage to the limit and therefore allows for
better control of the computations. Moreover, it can be extended in many
ways to handle different situations.

The paper is organized as follow: in Section 1, we give a construction
of the GI/G/1 queue and derive some basic properties. The main result of
the paper is given in Section 3 and the same method is applied to second-
order derivatives in Section 4; Sections 5 and 6 show how our method can
be extended to other parameters, respectively the speed of the server and
the rate of arrival in the system. Finally Section 7 gives conclusive remarks
on possible extensions of the results.

2 Counstruction of the GI/G/1 queue.

In a formula like (2), the probability space does not depend on 6. To ob-
tain this independence, we use the inversion representation (see for example
Glasserman [5, p. 16]): let {£7},.cz and {£7 },.ex be two sequences of random
variables uniformly distributed on [0,1]. If F7(-) and F?(-,8) are the re-
spective distribution functions of 7 and o, then we can define their inverse
functions

G'(§{) = sup(¢>0 : F'(z)
G?(&,0) = sup(e >0 : F(x,

INA
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Then 0,(0) = G7(£7,6) and 7, = G7(£]) have the correct distributions
and they will be defined on a probability space independent from 8. We now

=
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give the structural conditions on service times that allow IPA:

A1l G verifies the following conditions:

(i) 8 — G°(&,0) is differentiable and Lipschitz, that is

|G7(&,0,) — G7(&,0,)| < K7 (8|01 — 03], V01,0, € O;

(i) there exists 8* € © such that

G°(£,0) < G°(£,67), VE€[0.1], VO € ©.
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Figure 2: the domination property.

Condition A1-(i) ensures that we have enough smoothness with re-
spect to 6 in the distribution of the service times. However, in a num-
ber of cases, £7 will not be directly known, in particular when observing a
real experiment; this difficulty can be overcome with the following classical
proposition—see e.g. Glasserman [5, p. 16]:

Proposition Suppose that (i) F°(-,0) has a densily 0,F°(-,0) which is
strictly positive on an open interval Iy and zero elsewhere; and (ii) F° is
continuously differentiable on Iy X ©. Then

0gF°(0(0),0)

ﬂm:_mww@ﬂy

In the above formula, the prime denotes the derivative with respect to
f. A case of particular interest is when 6 is a scale parameter of the service
times, that is when o(8) = 07 for some random variable 7. Then we have

directly

a'(0)=n= #.

In particular, we do not need to know the real distribution of service
times unless we actually want to simulate them.

Condition A1-(ii) takes care one of IPA’s major difficulty, which is that
a small perturbation in 6 can make two busy periods of the queue merge
and cause a big change in the workload process Wy(t). Here we have a
f-independent bound on the size of a busy period of the system, in the
following way: take the system with parameter 8*; since it is stable, there
is an infinity of regeneration points, say {R,(0%)}.cz e {R} }.cz, which are



the arrival times of incoming customers that find the system empty. We
can construct the process Wy(t) from the busy period process { R} },c; but
with the service times given by {0,,(0)},cz, so that the following domination
property holds—see figure 2:

Wy(t) < Wy«(t), YO €0, VieR. (3)

With the above construction, we get {R}},.c; C {R.(0)}.cz, where
{R,(0)},cz—or simply {R,},cz—denotes the beginning of busy period pro-
cess for the @-system. Moreover, we have the boundary property

RE(1) < R_(0)(1) < t < Ry(0)(1) < RE(0), (4)

with the following notation:

lm
—
o~
SNa—
Il

sup(R, : R, <1),
Ri(t) = inf(R, : R, >1).

Lindley’s equation (1) and Figure 1 show that the workload can be ex-
pressed as

Wo(t)= 3 ou(8) + R_(t)—t. (5)

R_(1)<Tn<t
Equation (5) gives us a useful expression for Wj(¢):

Wity=" Y. a(0). (6)

R_(t)<Tn<t

The last property of {R,},.c; that will be useful is that it is jointly
stationary with the arrival process {7}, },.cz, since both are computed from
sequences {&] },.cz and {£7},cz. This gives us a general purpose lemma that
will be used in the next section:

Lemma 1 Let N denote the arrival process associated to {T,},c; and let
{X,}nez be a sequence of stationary marks of N. Then

B |3 X, 5y (Tn)] = E°[N([Ro, B1)) Xol. (7)
neZ

Proof Let P be the Palm probability associated with {R,} ez and AP be
its intensity. If we call Z the random variable inside the expectation of the



Lh.s. of equation (7) and if 6; is the measurable flow with respect to which
the process is stationary, then

Z o 0T1‘ = Z Aan[R_(Ti),R+(T¢))(Tn)‘
neZ

Since Ry (T;) = R+(0)if T; € [R_(0), R+(0)),
Y. Zof = 3> Xalip_0),re0) (TR (0),Re (0)(T5)
T;€[R_(0),R+(0)) i€Z neZ

N([Ro, R1)) D X Ljrg ry)(T0).-
nez

If we now apply Neveu’s exchange formula—Neveu [13]; see Baccelli and
Brémaud [1, p. 11]—between P° and P, we obtain:

AEYZ = MRER > Z o by,
T€[R-(0),R+(0))

= NER[Y N([Ro, Ba)) X Nty ey (T
n€Z

= AE°[N([Ro, R1)) Xol,

which is exactly equality (7). [

3 An IPA estimator for general non-decreasing
functions.

In this section, we show that TPA applies with any non-decreasing cadlag
function f. But since f is not required to be continuous, we cannot apply
(2) as such. First, we need to introduce an assumption:

A2 The following inequalities hold:
(i) EO[K(€5)]* < o0;

(i) B[N ([R5, R}))]* < oo;

(dii) E°[f(We+(0))]* < co.



Theorem 2 Let py be the measure on R associated with f. Assume Al
and A2 hold. Then J admils a right derivative with respect to 8 given by

J8) = AECWH0)| F(Wa(0) - F(Wu(Ti-)
~ Loy [ ({Wa(0)}) - iy (W13 D] | (9
and its left derivative is
T8 = NECWHO)|707a(0) - FOWalT1-)
~ Lrgopson [ (Wa(O))) = iy (Wa(Ti- )] 9

Example 1 With f(w) = 1(,5,}, Theorem 2 yields

d, r
3—0P(W9(0) >a) = AEWH0) 1w, n—)wa(0)(2)

— Liwy(0)<0y [1{we<o)=a:} - l{wem—):z}H
5 ’
25 PWo(0) > 2) = AECWH(0)| L, 7,y wi o) ()

— Liwy0)>03 [1{vve(o)=z} - 1{W9<T1—)=z}]]-

a

Theorem 2 shows that J(#) admits right and left derivatives even when
Jf is not continuous. But in a number of cases, we can get a much more
usable formula:

Corollary 3 Assume Al and A2 hold. If f is continuous or if Wy(0) and
We(T1—) admit densities with respect to P° then J(8) is differentiable and

J'(8) = NEPW5(0)[f(Wo(0) = F(Wo(T1-))]. (10)

Proof First note that if f is continuous, w — ps({w}) = 0. If Wy(0)
admits a P%density, say 7°(w), we can use the fact that us({-}) = 0 almost
everywhere for the Lebesgue measure:
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E 1, ({Wa(0)})
| sty de =o.

| E° 1w 0y<oyits ({Wa(0)})]

In either case, the result is proved. [ |

Remark In the case where f admits a derivative f’, we can write (10) as

T
J'(0) = MEO[/O Wi (1) ['(Ws(1))]dt = E[W;(0) f'(Ws(0))],
thus obtaining the expected IPA estimate (2). Since our Palm estimate
does not require differentiability for f, one will want to check whether it is
as accurate as the classic IPA estimate: if the system is ergodic, equation
(2) gives

J(0) = Jim - Wit roma(e) ds

— lim inij / W) (Wals)) ds

n—1

=l Y WHTOLOW(T) — FWalTiga )L,
" k=0

where all the limits are valid P%a.s. or P-a.s. indifferently. On the other
hand, the ergodic theorem reads in case of equation (10)

7(6) = lim 2 S WHT)OV(T2) - FWo(Tipr )
k=0

Thus, the estimates based on the same amount of data give very close
expressions; in fact, they are even equal when A needs to be estimated. For
comparisons between time-average and customer-average estimates, see for
instance Glynn and Whitt [8]. ]

Before starting the proof of the theorem, let us mention that our deriva-
tion is different from Konstantopoulos and Zazanis [12] in two respects: first
we do not require an approximation procedure and we treat directly a non



decreasing function f. This is made possible by the simple crucial observa-
tion that

flz)— fly) = /(I J pe(dz) forall z <y,

which allows us to have a better view of the residual terms in the level
crossing analysis that follows. The result can be applied to any function of
bounded variation if assumption A2 is verified by both the increasing and
decreasing parts of the function. Secondly, we do not need switch back and
forth between the Palm probabilities with respect to the arrival process and
with respect to the regeneration points as in [12]. However, we retain the
fundamental idea of [12] by starting with its expression in term of the Palm
probability PO.

Proof of Theorem 2 Assume that f(0) = 0, so that f is non-negative.
The Palm inversion formula—see for instance Baccelli and Brémaud [1,
p. 13]—gives

T
E f(Wy(0)) = /\]EO/O F(Wa(1)) dt
T
= /\]EO/O /R+ Liw,(t)>e) pp(dz) dt

T
= /\]EO/R /0 ]l{ﬂfe(t)>x} dt,uf(dx)
+

and therefore

%]E[f(WeM(O)) — [(We(0))]

A ¢
= #EO /R+/0 (Ui Woyn ()52} — Liwy(t)>ey) At pg(dz).

In order to simplify the notations, let:

def

ez, 1) = Lwy,,@)>er — Lwe)>a)
T

o0.h) < [ [" (a0 dips(do)
R+ 0

The first step of our proof is to compute limy_o ®(8,h)/h. We will
have to integrate a function taking its values in {—1,0,1} with respect to
dt ps(dz). Define also for any t € [0,7}):

AWg i = Wopn(t) — We(t).
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Case 1: W/(0) > 0 and W(T1—) >0 Case 2: W'(0) < 0 and W(T1—) > 0

Wotr(0) \ Wy(0) \
]

Woyp(0)

Wg(0)

T 0 T L 0 T
Case 1': W'(0) > 0 and W(T1—)=0 Case 2": W/(0) < 0 and W(T1—-) =0

Figure 3: Four different cases for the computation of ®.
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Assume first that A > 0. As shown in Figure 3, we must consider different
cases depending on the relative position of Wy(0) and Wyy4(0). We have to
add cases 3 and 3/, where W/(0) = 0, preventing us to guess their relative
positions. In fact, all the terms of the formula can be found in the first two
cases and we will let the other ones to the reader’s attention.

Positive correction

N\

Main area

Negative

Wps(0 .
o(0) Correction

TO 0 T1

Figure 4: computation of ® in case 1.

Case 1: for h small enough, Wy14(0) > Wy(0) and ¢ = 1. The way to
compute ®(0,h) can be best understood with the help of Figure 4. & is
equal to the area with a dashed border plus the dotted triangle on the left,
minus the right one. Here the borders included in the areas are in bold;
since all functions are cdadlag, these borders are the top and right ones.
AWs 1,

RO = [F0%(0) — S -] =

1 AWy n
+ E/O 1t (Wo(0), Wo(0) + y]) dy

1 AWy p
L py(We(T1—), Woe(T1-) + y]) dy. (11)

The first term converges to [f(Wy(0)) — f(Wy(T1—))]Wy(0). Moreover,

ps(Ws(0), Wo(0) + y]) = ps(We(0), Wo(0) + y)) + ps({We(0) + y})

11



Negative
Correction

Wg(0 .
C T o \ Main area

Positive correction

TO 0 Tl

Figure 5: computation of ® in case 2.

and since pus({Ws(0)+y}) = 0 dy-a.e., the second term of r.h.s. of equation
(11) reads

AW,
h/ s ((We(0), We(0) + y)) dy,

which is less or equal than

(W5(0) + o(1)) s ((W5(0), Wo41(0)))-

Since Wy(0) is continuous in the neighborhood of #, this goes to zero
with h. The third term converges to 0 for the same reasons. So we have in
this case:

i - 8(0, 1) = [[(Wo(0)) ~ J(Wa(Ty~))W(0)

Case 2: here Wy, (0) < Wy(0) and ¢ = —1. Due to the order of Wy (0)
and Wy(0), we find a formula different from equation (11)—see Figure 5:

~o(0,h) = —{[f(We(O))—f(We(Tl—))}%
1 [—AWs,
=5 ), rs(We(0) =y, We(0)]) dy

h/ (W Tl—)—y,Wg(Tl—)])dy}. (12)

12



The first term is the same as in case 1, but the second is equal to

%/O—Awf’ﬁf((we(ﬂ) -y, Wy(0)))dy — Nf({We(O)})AVZQ*h

and its limit is ps({Wy(0)})W3(0). The last term of ®(6,h)/h is computed

in a similar way. Finally:

Tim e(0.h) = [F(Wo(0) ~ F(Wo(Ti-)
— s ({Wa(0)}) + s ({Wa(T1=)})| W4(0).
We can summarize the above cases in the following formula:
lim ~®(0,h) = Wi0) [F(Wa(0) = F(We(T1-))

h—0+ h
— Ly 0y<oy s ({Wa(0)}) — s ({Wa(T1-)})]].

Now that we have limy_,o+ ®(6,h)/h, the next step is to find a bound
for ®(0,h)/h which has a finite mean with respect to P°. The formulas for
each case give:

1 (Wogn(Ti=)) = F(We(T3-))] - [ 5554
< 3/(Wer(0)KL(0).

The last inequality takes advantage of the fact that f is non-decreasing and
of the domination property (3). K}V () is a Lipschitz coefficient for W (1)
w.r.t. 6. Finally,

[2(6,1)| < 3£(Wa- (0) K1 (0)

The latter expression is independent from h. Moreover, it has a finite
mean under P°: from Cauchy-Schwartz inequality,

E° [ £(Wo (0) KLY (0)] < B (Wae (0))]2/EC K (0)]2.

The first mean is finite from assumption A2-(ii7). To prove that the
second one is also finite, we must first give an expression of K} (0):

13



‘We+h(0) - We(O)‘ < ‘We+h(T—1) - We(T—l)‘ N ‘00(0 +h)— 00(9)‘

h h "
on(0+ h)—0o,(0
< Z ( }z )‘]l[R*_(TO),o)(Tn)
neZ
< EUED e 0y o) (T)
n€”Z

=gl (o).

The first inequality comes from equation (1) and inequality |a* — bt| <
|a—bl; then we use the boundary property (4) and last the Lipschitz property
A1-(i). To prove that E°[K}V(0)])? is finite, we can use the inequality
(1 + -+ a,)? <P Hal + -+ 2P) and

B[S K7 () U o). 0 (1))
neZ
< E° [E N ([R5, RD)K (€)1 U ae (o). 0)) (1)
n€”Z

< E°[N([RG, RD)[E°(&)]

<IN ([Rg, RO ECLE (€514,

which is finite from A2-(¢) and A2-(77). Here, the second inequality uses
Lemma 1.
Summing up our results, we can apply the Dominated Convergence The-

Jie) = Jim E[f(Warn(0)) = F(Wo(0))]

1
_ : 0=
= lm \E h(I)(H,h)

= AEC lim (0, h
g, 5 20
This gives equation (8). The case of A < 0 is handled in the same way
and gives equation (9)—loosely speaking, the above cases used the sign of
Wosr(0) — Wy(0); this sign is inverted if A < 0.

This concludes the proof of the theorem. [ |

14
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Figure 6: workload of the D/D/1 queue.

Remark Assumption A2 ensures that
B [ F(We+(0)K Y (0)] < o

If we know that f is bounded, for example, the only assumptions we will
need are

(i) E°[K(£5)]? < oc;
(i) B[N ([R5, B}))]* < oo
This reduced set of assumptions can for instance be used in Example 1. O

It is important to point out that Corollary 3 cannot always be applied.
We show such a case in next example :

Example 2 Consider a D/D/1 queue, that is with deterministic inter-
arrival time 7 and service time # < 7. In order to have a stationary queue,
To must be uniformly spread in [—7,0]. As we can see in Figure 6, we have

W(T,) =0, W(T,—)=0, Wg(0)=1 P°-as.

Forz > 0, take f(w) = 1>, asin Example 1. Thenif 8 < z, J(0) = 0,
else

0 —

x
T

0 dt
J(0) = /_ ]1{9—}—25217}? =

15



Finally J(0) = P(Wy(0) > z) = (9_717)+, which is not differentiable at
point 8 = z. Besides,

J;‘(G) = ’\EO[I{HZQ:} - 1{021’}]
1
= “loxa
Ji(0) = AE°[Lipssy — Liovay + Ljoma} — Lip=sy]
1
= Lo

4 Second order derivative.

The method used in Section 3 can be used for higher-order derivatives.

However, we need assumptions on the properties of our system and some
new moment conditions:

A3 G and [ verify the following:

(i) 8 — G°(&,0) is twice differentiable and has a bounded second deriva-
tive, that is

|G (€, 0+ 2h) — 2G7(€,0 + h) + G7(€,0)| < R2K ()

(i) w f(w) is non-decreasing and differentiable.
A4 The following inequalities hold:

(i) E°[K(£5)]° < oc;

(i) EO[K(&)]* < oo;

(¢ti) EO[N([R, R}))]® < oo;
(iv) EO[f(We+(0))]? < oo;

(v) E°[supy f'(W5(0))]? < oo;
(vi) E%[supg f'(Wo(T1-))]* < oc.

The main result of this section is:

16



Theorem 4 Assume A3 and A4 hold; Then J admils a right second de-
rivative with respect to 8 given by

I8 = NEC[WE(O)[£Wa(0) - FWu(i-)]
+ W (0)2[1(Wa(0)) = F'(Wa(Ti-))
= Loy <ol ((Wo(0)) = mp(WalTi- ]| (13)

and its left second derivative is
JO) = NE[WEO)[£(Wa(0) — F(Wo(Ti-)]
+ [W/(0)2] 7(Wa(0) = F/(Wa(Ti-))
= Largopsolir (Wo(0))) = wp(WalTi-))] |- (14)

Corollary 5 Assume A3 and A4 hold; if f is continuous or if Wy(0) and
Wy(T1—) admit densities w.r.t. P° then J(6) is differentiable twice and

70) = NE[WEO)[£0%(0)) - 07o(Ti-)
IV OF[FW(0) - FWa13-)] .
Proof of Theorem 4 As this proof is very similar to that of Theorem 2,

we will omit the parts of it which are not new. We want to compute the
limit as h — 0 of

o E[J0W120(0)) = 2 (Ways(0) + [(Wo(0))] = 25 B0 @106, 1),

with
def 7
©2(6,h) = / / [[1{W9+2h<t)>z}—]1{We+h<t)>z}]
Ry Jo

~ MWy n@)>2} — 1{?V9(i)>x}]]dt ps(de).

We will once more distinguish two important cases among all possible
ones, depending on the sign of W/(0). Suppose first that ~ > 0.

17
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Figure 7: computation of ®, in cases 1 and 2

Case 1: W;(0) > 0; for h small enough, Wy(0) < Wyr(0) < Wogan(0)—
see Figure 7. We have here to subtract the areas of two bands which are of

the same sort as in Theorem 2:
O2(0,h) = AWornn [[(Worn(0) = F(Wosn(T1-))
— AWoa[S(Wa(0)) = J(Ws(Ti-))]
+ Agp(0) — Agp(T1—)
where
AWpyinn
Agp(t) = /0 1 (Woir (1), Worn(t) + y]) dy
[T kom0, W) + o)
The main term is equal to
AW [F(Wag(0)) = J(Wan(T-)) — F(Wo(0)) + F(WolT3 )]

+ATWo [ £(Ws(0)) = F(Ws(T1-))].

Moreover,

AWp p
Aa(0) = [ [F(Waa(0) + ) = F(Wara(0)

18



— [(Wa(0) + y) + [(Wy(0))]dy + o(h?)
-/ W 0) g (W(0), Wo(0) + y])dy + o(h?)

As in Theorem 2-case 1, limp_ Ag x(0)/h* = 0; the limit is the same for
Ag ,(T1—). Consequently,

Jim, S®a(0,h) = WHOR[F(Wa(0) — f(Wo(T1-))]
+WE(0) [F(W5(0)) = F(Wo(T1-))].
Case 2: W;(0) < 0; for h small enough, Wy(0) > Wyi4(0) > Wyi2,(0) and
B2(8,1) = —1-{=AWapss [F(Warn(0) = F(Warn(T1-))]
— AW | F(We(0)) = F(Wo(T1-))]
_'Beﬁ(0)+'B€ﬁ(IH_)}

where

o

; AWoinn
e jﬁ 1 (Worn(t) — y, Worn(1)]) dy

—AWp p
= [ W) = g (o) dy.

Bgvh(t)

While the main part has the same limit as in case 1, we have

AW,
Byn(0) = /0 hW'(0)s((W5(0), W5(0) + y])dy + o(h?)
= —hAW5(0)Pup ({Ws(0)}) + o(h?).

Finally,

i Ldo(0,) = [WHO)R[(Wa(0)) — J'(Wa(Ti )]
+ WE(0) [F(Wa(0)) = F(We(T1-))]
— WH(0)P [y ({m( ) = mp({We(T1-)})].
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Besides,
[ ®a(6,1)] < 3[sup £(Wa(0)) + sup F/(Wo(Ti )] [K2 (0]
[ [

+ f(We+ (0) K}V (0),

where K}V (0) is the same as in Theorem 2 and

KM 0)=Y" I(OI(fg)l[R*_(O),Ri(O))(Tn)'
nez

As in theorem 2, we use Lemma 1, Cauchy-Schwartz inequality and
assumption A4 to prove that |®,(6,k)/h?| has a finite mean under P°.
Using the Dominated Convergence Theorem, we find expressions (13) and
(14) for the second derivatives of J. |

5 IPA for queues with parameterized speed.

Let us consider a setting slightly different from the original one: we still
deal with a GI/G/1 queue, but now working at speed v. Neither the inter-
arrival times {7,},c; nor the service times {0, },c; depend on v and when
the queue is stationary, Lindley’s equation for the workload of the queue
reads:

Wo(t) = (Wil L) + 0w — vt = T)) ", 1 € [T, Tu).

We address the same problem as in Section 3 in this new setting: estimate
the derivative of J(v) = E f(W,(0)) w.r.t. v, where f is any real non-
decreasing function. Our method can apply in this case in the same way
as for variable service times; we will try to keep the notations as close as
possible to those of Section 2 to point out the similitudes, replacing 6 with
v when necessary.

The construction of the queue follows Section 2, except that we do not
need the inversion representation to define our queue on a probability space
independent from v. To get a domination property, assume that v > v* > 0,
where v* is the minimal speed; then for all v > v* and ¢ € R:

W, (1) < Wi (1) (15)

R (1) € R-(v) < 1 < Ry(0)(1) < RL(1), (16)
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v
\ v > v

| \
Ro(v) Ri(v) Ry(v) t
Rg Ry

Figure 8: the domination property for the speed

def

with the notation R} = R, (v*)—see Figure 8. Note that Lemma 1 is still
valid in this setting.

The assumption on moments we need is much like A2:
A5 The following moments are finite:
(i) EO[ro]* < oo
(ii) B[N ([RE, B)]* < oo
(iii) EP[f(W,+(0))]? < .

The first real difference with the results of Section 3 is that the expres-

sion for the derivative use a primitive of f, whereas only f appeared in
Theorem 2.

Theorem 6 Lel F be a primitive of f; if A5 holds, then J has a right-hand
derivative equal to:

5wy = S E{ewO)[f%.0) - FW,(Ti-)
+ F(W,(0)) — F(W,(T1-)
— [W(0) = W17, (13- ) (1)

and ils left hand derivative is
A
Bw) = B0 [(7,(0) - F(W(T1-))
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+ F(W,(0)) = FOW,(T1-)
~ (W,(0) = WL )} F (W, (T3 -)
W)y (WA0))) — g ((WoTi-)))
- IW(0) = WL s (Wl Ti- ) .

Moreover, if [ is continuous or if both W,(0) and W, (11—) admit den-
sities w.r.t. P°, then J is differentiable and its derivative is equal to J!.

Remark The expressions in Theorem 6 seem really complicated when com-
pared to those obtained in Theorem 2; in fact, in the case where f is differ-
entiable, the inversion formula applied to (17) gives the classic IPA formula

J'(v) = EW/(0)f(W,(0)).

The complexity of (17) comes from the fact that W/(t) is not constant on
[To,T1). m

Proof of Theorem 6 We once more proceed as in the proof of Theorem 2:

define

T
(v, h) dzf/ / (Lw, ,n)>2) — Liw, (1)>e)] dt ps(da)
R, J0
and remark that

%]E[f(wwh(o)) — f(W,(0)] = %]EO d(v, h).

We will consider separately the right-hand and the left-hand derivatives.

Case 1: h >0
Figure 9 shows how ® can be computed: the main area is equal to the
area of the trapezium on the right. As W, is linear in v, we have

AW, 1 (Ty—) — AW, 4(0) = AT},

where W,(0 W, (0) — W, (T
Tll d:efmin|: u( )7T1] _ 1/( )_ l/( 1_)‘
14
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Positive correction

‘WV-I-h(O) .
™ Main area AW, 5 (0)
v+h
\ Negative _————
e Correction | \\\
|
|
—
o
N :\,\ ‘L ,,,,, L ,\
=
AW, 5 (Ty—)
TO 0 Tl v+h
Figure 9: computation of ® in case 1.
The area of the trapezium of Figure 9 is equal to
AW, 4(0)
A = SRS FWL0) — f(W(T1-))
AT, ( + h)
Py v(v
-I-/ W, (11-),W,(0) - ——=y| ) d
[ s (W), W (0) = === ) dy
h AW, 1(0)
’ v - v T, —
SR ow,0)) - s 1)

+ %[F(W,,(O)) —~ F(WV(TI_))]

_ W,(0) - Wy(Tl_)f(VVV(Tl_))}‘

14

The additional terms read:

AW, p(0)
A (W (0), Wo(0) + (v + R)y]) dy

AW, p(T1-)
=TT AT =), W) + (v b)) dy.

As we have shown in the proof of Theorem 2, this kind of expression is

an o(h) and

, W (0
tim o) = O 4w, 0)) - w1
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Negative correction AW, 4 (0)
\ T Utk
-
\ ‘ ) -——
Main area | \
\ ! |
| I\
e \
| A
1
! Positive - -
= Correction _ AW A (Th-)
‘ v+h
TO 0 Tl

Figure 10: computation of @ in case 2.

+%Pm%mn—FmMﬂ—M

_ WV(O) - WU(Tl_)f(Wy(Tl_))-

14

Case 2: h <0
The main trapezium—see Figure 10—has exactly the same area as in
case 1; the difference lies in the corrective terms, which are

AW, 4(0)

“jﬁ T ((W(0) = (v 4 R)y, W, (0)]) dy

AW, p(T1-)
+ A vth ,uf((Wl,(Tl—) — (V + h)y, WV(TI_)]) dy
BTt wato))) - S (1) + o)

The limit is:

lim ®(v,h) = lim ®(v,h)

h—0— h—0+
+ O (w0 - iy (T )
WL (0) = W(Th-)

pi({W(T1-)}).

v2
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Moreover,

o] < 2Ol w00 - romrio)
+ 2w 0)) — 77|
+ BN gy 0)) - somo)
%\ﬂmhm—)) )

< 5[311; (0) + 270 f(W,+(0)),

where KW (0) is a Lipschitz coefficient for W,(0) w.r.t. v, which can be
expressed as in Theorem 2 as

def Z Tn R* * ))(T )

nez

One can easily check that assumption A5 suffices to prove that |®/h| is
bounded by an integrable variable. Consequently, we can apply the Domi-
nated Convergence Theorem and find the expected result. [

6 Change of time scale.

The method used so far does not apply to the case where the parameter
of interest is a parameter of the inter-arrival times; in this case, the Palm
measure associated to the arrival process depends on the parameter and the
method fails. In this section, we show how a change of time scale can be
used in some cases.

Consider a G/G/1 queue which inter-arrival times depend on a param-
eter, say a > a* > 0, and with a server working at speed 1. Given a
mean performance J(a) = IE f(W,(0)), we want to find an estimator of the
derivative of J w.r.t. a. We will restrict our attention to the following case:

A6 « is a scale parameter for 1,(a), that is 7,(a) = any,.

Lindley’s equation takes the form
_|_
Walt) = (WalTu(a)=) + 00 = (1 = To(0))) ", 1 € [Tn(a), Tuga(a)) (18)
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Now define a G/G/1 queue with speed a which inter-arrival times, service

times and arrival process are given by:

- def T (Oé)
o Yo
~ def

0, = 0,

Tn def Tn(a)

a def

These processes are stationary with respect to the measurable flow 6; =
0,: and the queue they define is stable whenever the original one is; this
queue will be referred to as the “auxiliary system”. In the remaining of the
section, we will use the same notations as for the main system, but with a
tilde. Lindley’s equation for the auxiliary system reads:

Walt) = (WalTum) 4 60— alt = T) ", 1€ [T Togn). (19)

Comparing equations (18) and (19) and noting that the process W, (at)
is stationary with respect to the flow 6;, uniqueness in Loynes’ Stability
Theorem—see Baccelli and Brémaud [1]— yields

W, (1) = Wa(t/a).
The effect of the change of time scale can be seen on Figure 11. Moreover,

A = EN((0,1])
= EN((0,a]) = a)(a)
Wi(0) = Wi(0).

In the computation of A, we use the fact that the auxiliary system is
defined on the same probability space than the main one. However, it has its

. -~ =0 .
own Palm measure associated to {7}, },.cz, say P . The way to switch between

probability measures P% and B° will be shown in the proof of Theorem 7.
Formula (5) allows us to derive an expression for the derivative of the

workload:

Ro(a)

«

W (0) = [R-()(0)]" =

Before proceeding, we need a set of A5-like conditions:
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Figure 11: Change of time scale for a = 2.
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AT The following conditions hold:
(i) Ba[ro]* < oo;
(i) B [N ([R5, B))]* < oo;
(iii) Fge [f(War (0))]? < 003
Using this model, we find the following result:
Theorem 7 Assume A6 and AT hold; then

sty = 2B aW0)[107.(0) - SOV (1)

+ [F(Wa(0)) = F(Wa(T1-)]

= [Wal0) = Wal 13- F VT3
sy = S L) [fV.(0) - FOV (1))

+ [F(Wa(0) = P(Wa(Ti-))]

~ [Wa(0) = Wa(T1 - )L (Wa(T1-))
Bell) s gwacrimi - 2y omao

Moreover if [ is continuous or if W, (0) and W, (11(a)—) admil densilies
with respect to P° then J is differentiable w.r.t. a and its derivative is equal

to J!.
Proof We have

_I_

J(a) = E f(Wa(0)) = E [(Wa(0))

where WQ(O) is the workload of the auxiliary queue with speed a. We aim
to apply Theorem 6 to this queue and then adapt the result to the main
queue. The three conditions of A5 correspond to the three ones of A7: for
condition A5-(7), note that

~0_ _ 4 _ 1
E [To] - ;\]ET%:Z {Tn }
1 Ta(a)*
N a/\(a)]Enze:Z[ a 1z el
1
= gEg[TO] < o0



and for A5-(7i),

EUN([RS, BD) = =B Y IN(E(T), BTN 7 oy

nez

= B INV(R (D), BT ) g 0yct00e])
al(a) =

= Eo.[N([R5, B))]" < e,
Finally, for A5-(iii),

> =

B[ (War () = EL[/(War (0)) < 0.
So we apply Theorem 6 and find:

sy = B {ail () [f(7.(0) - F(Ta(Ti))
+ [FOWa(0)) = F(Wa(T1-)]
- (Wa(0) = WalTa (Wl T}
= 2 {aWL(0)[J0V.(0) - S(Wa(Ti-))
+ [FWa(0) = F(Wa(T1-))]
— (Wa0) = Wal 13- F Wl 13-}
The expression for J! can be found in the same way. m

7 Conclusion.

We have given a method to derive IPA estimates non-smooth functions of
the workload of GI/G/1 queues. We have shown that our method can apply
in various settings; it is worth noting that the same method could be applied
to other quantities than the workload of the queue, for instance the number
of customers in the system.

The method can work for a general G/G/1 queue, except that the in-
version representation used in Section 2 does not always give a probability
measure independent of §, which is a prerequisite for IPA. While £ and &7
are uniformly spread on [0, 1], the joint probability P(&] > t,£7 > s) can
depend on @. Note that this representation is not used in Sections 5 and 6
so that Theorems 6 and 7 are valid even for a G/G/1 queue.
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