N
N

N

HAL

open science

Causality oriented shared memory for distribured
systems
Michel Raynal, Masaaki Mizuno, Mitchell L. Neilsen

» To cite this version:

Michel Raynal, Masaaki Mizuno, Mitchell L. Neilsen. Causality oriented shared memory for distribured
systems. [Research Report] RR-1680, INRIA. 1992. inria-00076903

HAL Id: inria-00076903
https://inria.hal.science/inria-00076903
Submitted on 29 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00076903
https://hal.archives-ouvertes.fr

Rapports de Recherche

1992
=2

KR nniversaire

N° 1680

Programme 1
Architectures paralléles, Bases de données,
Réseaux et Systémes distribués

CAUSALITY ORIENTED SHARED
MEMORY FOR DISTRIBUTED
SYSTEMS

Michel RAYNAL
Masaaki MIZUNO
Mitch NEILSEN

Mai 1992

| MMETATRTATI
. RR_.16886%*

] Rl S a INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
Avenue du Géneéral Leclerc
35042 - RENNES CEDEX
FRANCE

Tél. : (8SS) 36.20.00

Teélex : UNIRISA S5 0473 F

Causality oriented shared memory for
distributed systems.

Michel RAYNAL, Masaaki MIZUNO, Mitch NEILSEN
Programme 1, Projet ADP (Algo. Distribués et Applications)
IRISA
Campus de Beaulieu
35042 Rennes Cédex
raynal@irisa.fr

Publication Interne n°® 656 - Avril 1992 - 8 pages

Abstract

This paper presents an efficient protocol that implements causal
memory in a distributed system. This protocol is deduced from a gen-
eral framework that allows to derive other immplementations.

Mémoire partagée causale pour systémes répartis.

Résumeé

Cet article décrit un algorithme réparti qui implémente une mé-
moire causale dans le contexte des systémes répartis. Cet algorithme
est déduit d’un cadre trés général duquel peuvent étre dérivés d’autres

protocoles.
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
(L.A. 227) EN INFORMATIQUE ET EN AUTOMATIQUE

UNIVERSITE DE RENNES 1 I.N.S.A. DE RENNES {LABORATOIRE DE RENNES)

Causality Oriented Shared Memory for Distributed Systems
(Extended Abstract)

Michel Raynal Masaaki Mizuno Mitchell L. Neilsen
IRISA Dept. of Computing and Info. Sciences
Campus de Beaulieu Kansas State University
35042 Rennes-Cédex, FRANCE Manhattan, Kansas 66506

1 Introduction

Implementation of shared data objects raises several problems in distributed systems. Among
these, the efficiency of access is an important issue. In order to improve the efficiency of read
access to an object, a traditional approach is to maintain several copies (replicas) of the object.
However, this approach causes the problem of possible inconsistency between copies of the data
object. Several replica control protocols have been proposed to solve this problem. Replica
control protocols ensure that different copies of each object appear to the users as a single
non-replicated object. This property is called one-copy equivalence. In other words, one-copy
equivalence ensures that a value returned by a read operation is the value written by the latest
write operation to the object.

For many applications, the consistency provided by one-copy equivalence is not necessary
(1]. By relaxing the definition of consistency, the complexity of managing replicated objects may
be significantly reduced [1, 2]. One such definition is called causal consistency, which is defined
based on causal relations among values in objects. Memory that satisfies causal consistency is
called causal memory.

The contributions of our work are twofold. The first is to provide a general framework of a
protocol which effectively captures causal relations among values in objects. The second is to
show an efficient protocol, based on the general framework, that implements causal memory.

2 Causal consistency and causal memory

This section reviews causal consistency and causal memory. Most of the definitions and notation
presented in this section follow [1].

A system consists of N processors, and the processors share causal memory. The causal
memory may store M different objects. Processors issue two types of operations on the memory:
read and write. A read operation on object x issued by processor P; is denoted r;(x)v, where v
is the value returned. A write operation on object x issued by processor P; is denoted w;(x)v,
where v is the value written. If the processor which issued an operation is not important, the
subscript may be omitted. Similarly, if the value read or written is not important, that may be
omitted.

Let o and o’ be two operations on the causal memory. Operation o is said to causally precede
o’ (denoted 0 — 0’) if

1. o and o’ are successive operations issued by the same processor, and o is executed before

o’,

2. o and o’ are write and read operations, respectively, and o’ reads the value written by o,
or

3. there exists operation o” such that o — 0” and 0o” — o’.

If o and o’ are not related by —, they are said to be concurrent (denoted by o || 0’). Let o,
02, -+, Ok be a sequence of operations such that 0; — o0j4q for 1 <i < (k —1). We call such a
sequence a causal path from o; to oy.

Definition 1 (Live Values): Let o and o’ be operations r(x) and w(x)v, respectively. Then,
the value v is live for o if
l.o|| o or
2. 0’ — o and there exists no operation 0” on any causal path from o’ to o such that o’ —
0", 0” — o, and 0” is either w(x)v’ or r(x)v’ (v’ is produced by some write on x other
than o’). If such o” exists, we say that o” invalidates the value v.

Definition 2 (Causal Memory): An execution on causal memory is correct if the value
returned by every read operation is live for the read operation.

3 Implementation

3.1 A general framework

Since the correct and efficient implementation of causal memory requires identification of causal
relations among values written in the objects, we first consider a general framework to capture
such causal relations. Vector clocks are often used to identify causal relations among events
in message passing systems [4, 7, 8]. Thus, it is natural to use a mechanism similar to vector
clocks for our purpose.

For vector clocks in a message passing system, causal relations among instances of one
unique type, namely events, are of concern. Since all of the events produced by one process
are totally ordered, they are uniquely identified by numbering them; for instance, “the fourth
event produced by process 2” uniquely identify the event produced in the system. We call such
numbers event identifiers. Each process i maintains one dimensional array, VT;[Process_Range].
When process i has produced a new event e;, the value VT;[j] at this moment denotes that “all
the events up to and including the VT;[j]'® event produced by process j causally precede e;.”
Furthermore, the value VT;[i] denotes the identifier of e;.

Now, let’s consider causal relations among values written into objects. We first assume
that each object x is fully duplicated at each processor, and that each processor performs write
operations on its local copies. Note that this assumption will be modified in Section 3.2. As
with events in vector clocks, all the writes on an object performed by one processor may be
uniquely identified by numbering them, such as “the fourth write on object x performed by
processor 2.”

Unlike vector clocks in message passing systems, which manage causal relations among only
events, all of the writes on the same and different objects are of concern in the causal memory
system; that is, causal relations must be identified among all of the different writes. Thus,
as a natural extension, two dimensional arrays are used instead of one dimensional array. Let
each processor i maintain two dimensional array, CR2;[Object_Range, Processor_Range]. When
processor i writes on object x, the value CR2; denotes that “all the writes up to and including
the CR2i[y, j]*h write on object y performed by processor j causally precede this write on x.”
Value CR2;[x, i] denotes the identifier of this write.

Now, we have a tool to capture causal relations among all the values in objects. We call this
method, which uses the two-dimensional arrays, the general framework. Based on the general
framework, we presents an efficient protocol to implement causal memory.

3.2 An efficient protocol

Managing two dimensional arrays in the system is very costly. There are several ways to simplify
the implementation. In this section, we will describe an efficient protocol to implement causal
memory based on one such simplification.

In this implementation, we collapse the two-dimensional arrays CR2; into one-dimensional
arrays CR;[Object_Range), such that CR;[x] = erj:l CR2;[x, k], 1 < x < M. This is possible by
assigning unique system wide identifiers to all the writes on one object, instead of processor-
level local identifiers. We call such identifiers version numbers. For example, a write may be
identified as “version 4 of a write on object x.”

For simplicity, as does the implementation by Ahamad et al. {1], we assume a primary copy
approach. For each object, there is a primary copy site. A write operation to object x requires
the processor to communicate with the primary copy site of x to write to the primary copy.
Each processor maintains a set (maybe subset) of objects in its cache memory. A primary copy
site does not use the primary copy as a cache. For example, assume that the primary copy site
of object x is processor i. If processor i needs to access x, it allocates memory for x in cache,
aside from the memory assigned for primary copy x.

Primary copy approach provides the following two advantages:

1. System-wide, unique version numbers may be issued by the primary copy site.

2. The primary copy can always provide a live value to any read operation; thus, when a
processor needs to read a live value, it reads from the primary copy.

Data structures maintained by processor i are as follows:

o If processor i is the primary copy site of object x, it maintains memory area P[x] consisting
of two parts:

— P[x].value
- P[x].CR[Object _Range]
P(x].CR[y] (x # y) : write on object y of version P[x].CR[y] is the last write on y
that causally precedes x
P[x].CR[x] : the version number of the write which created this x
o As described above, processor i maintains a single-dimensional array CR;[Object_range].
o Processor i keeps track of a set of valid cache objects in VALID;.
e For each object x € VALID;, processor i maintains cache area Ci[x] consisting of:
~ Cj[x].value

— C;j|[x].version : the version number of write which created x.

Operations at processor 1 are described below:

Write(x,v):
send [write, x, v, Live] to the primary copy site of x;
receive [x, Vn] from the primary copy site of x; /* Vn: version number */
Ci[x].value := v; C;j[x].version := Vn; VALID; := VALID; U {x};

CR,[x] := Vn;
Read(x):

if x ¢ VALID;
then

send [read, x] message to the primary copy site of x;

receive [x, P[x]] message from the primary copy site;
Ci[x].value := P[x].value; Cj[x].version := P[x].CR[x]; VALID; := VALID; U {x};
for each y € VALID;, y # x
a: if Ci[y].version < P[x].CR[y] then VALID; := VALID; — {y} fi; /* invalidation #/
b: CR; := update(CR;, P[x].CR); /* update = componentwise max */
fi;

return C;[x].value;

Process [write, x, v, CR;] message from processor j:
increment(P([x].CR[x]); CR;[x] := P[x].CR[x]; /+ generate the new version number */
c: P[x].CR := CR;;
P([x].value := v;
return [x, P[x].CR[x]] to processor j; / return the new version number */

Process [read, x] message from processor j:
return [x, P(x]] to processor j;

In the above protocol, the steps labeled a, b, and ¢ deserve special attention:

Step a: Invalidation of cache takes place only when the processor reads from primary copies,
since this is the only situation which introduces new causal relations that may invalidate some
of the values cached locally.

Step b: Update operation is performed because read operation merges two causal paths:
(1) the causal path defined by the execution of read and write operations on the processor and
(2) the causal path carried by the value read.

Step c: After a write operation is performed to the primary copy, the subsequent read
operations on this new value receive the causal information associated with only the new value
and do not receive any causal information associated with the previous (overwritten) value.
Thus, instead of an update operation, the replace operation (except for the new version number)
is performed at Step c.

3.3 Properties
1. Property 1: A primary copy always provides a live value.

2. Property 2: At Step a in the protocol, Cj[y].version < P[x].CR[y] implies that there
is a write on y with a higher version number than C;[y].version on a causal path leading
to this read operation. Note that it, however, does not necessarily mean that the value
in Ci[y] is invalidated by the write on y of version P[x].CR[y] (denoted w’[y]), since w’[y]
(or a read from w’[y]) may not be on any causal path from the write on y of version
Cily].version (the write that produced the value stored in Ci[y]) to this read operation.
However, for safety, the protocol invalidates such a local copy of y.

3. Property 3: At Step a in the protocol, Ci[y].version > P[x].CR[y] implies that there is
no write on y with higher version number than C;[y].version on any causal path leading
to this read operation. This implies that the cache value y is still live.

4 Discussions and related work

We can view the protocol proposed by Ahamad et al. [1] to be another special case generalized
by our framework. Their protocol is considered to have collapsed two dimensional arrays CR2;

to one dimensional arrays VT;[Processor Range] in such a way that VT;[j] = M ; CR2;[k, j],
for 1 < j < N. In this simplification, causal relations among different objects become unclear.
Thus, the protocol tends to invalidate more live cache values than our protocol. Consider the
following simple example.

L Wm0 1(2)
P, X

ra(y) wa(2)

v

If the protocol by Ahamad et al. is applied, r1(z) invalidates both x and y. This is because
in their protocol, when P1 performs r1(z), it only knows that “P2 has updated some value”
but does not know which value. Thus, for safety, it must invalidate both x and y, considering
the worst case scenario in which P2 has updated x or y. However, if our protocol is applied, it
knows that “P2 has updated z, not x or y.” Therefore, our protocol does not invalidate either
X ory.

Several definitions of consistency in multicache systems have been proposed. Traditionally,
the consistency definition used in such systems is the atomic consistency [3, 6], in which a read
always returns the last written value with respect to the global physical time. The notion of
atomic consistency has been relaxed by Brown [2] to a weaker definition that corresponds to the
consistency known as the sequential consistency [5]. These notions of consistency are stronger
than the causal consistency and consequently allow less concurrency and less parallelism.

5 Conclusion

In this paper, we proposed a general framework of a protocol to capture causal relations among
object values. Based on the general framework, we presented an efficient protocol to implement
causal memory. We also showed that the protocol proposed by Ahamad et al. [1] is a special
case described by our general framework.

References

(1] M. Ahamad, P.W.Hutto, and R. John. Implementing and programming causal distributed
shared memory. In Proceedings of the 11th ICDCS, pages 274-281, 1991,

[2] G.M. Brown. Asynchronous multicaches. Distributed Computing, 4(1):31-36, 1990.

[3] L.M. Censier and P. Feautrier. A new solution to coherence problems in multicache systems.
IEEFE Transactions on Computers, 27(12):1112-1118, 1978.

[4] C.J. Fidge. Logical time in distributed computing systems. JEEE Computer, 24(8):28-33,
1991.

[5] L. Lamport. On interprocess communication. Distributed Computing, 1:77-101, 1986.

{6] K.M. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Trans-
actions on Computer Systems, 7(4):321-359, 1989.

[7] F. Mattern. Virtual time and global states of distributed systems. In Cosnard, Quinton,
Raynal, and Robert, editors, International Workshop on Parallel and Distributed Algo-
rithms, pages 215-226, Bonas, France, 1989. North-Holland.

[8] D.S. Parker el al. Detection of mutual inconsistency in distributed systems. IEEE Trans-
actions on Software Engineering, 9(3):240-246, 1983.

Pl 648

PI 649

PI 650

PI 651

PI 652

PI 653

Pl 654

PI 655

Pl 656

LISTE DES DERNIERES PUBLICATIONS INTERNES PARUES A L'IRISA

SET-THEORETIC GRAPH REWRITING
Jean-Claude RAQULT, Frédéric VOISIN
Mars 1992, 18 pages.

UNE STRUCTURE D'INFORMATION POUR LES ALGORITHMES D'EXCLUSION
MUTUELLE FONDES SUR UNE ARBORESCENCE

Jean-Michel HELARY, Achour MOSTEFAOUI, Michel RAYNAL

Mars 1992, 18 pages.

BLOCK-ARNOLDI AND DAVIDSON METHODS FOR UNSYMMETRIC LARGE
EIGENVALUE PROBLEMS

Miloud SADKANE

Avril 1992, 24 pages.

COMPILING SEQUENTIAL PROGRAMS FOR DISTRIBUTED MEMORY PARAL-
LEL COMPUTERS WITH PANDORE I1

Frangoise ANDRE, Olivier CHERON, Jean-Louis PAZAT

Avril 1992, 18 pages.

CHARACTERIZING THE BEHAVIOR OF SPARSE ALGORITHMS ON CACHES
Olivier TEMAM, William JALBY
Avril 1992, 20 pages.

MADMACS : UN OUTIL DE PLACEMENT ET ROUTAGE POUR LE DESSIN
DE MASQUES DE RESEAUX REGULIERS

Eric GAUTRIN, Laurent PERRAUDEAU, Oumarou SIE

Avril 1992, 16 pages.

SYSTENMES D'EQUATIONS RECURRENTES
Patrice QUINTON
Avril 1992, 20 pages.

DIFFUSION ON SCALABLE HONEYCOMB NETWORKS
Dominique DESERABLE
Avril 1992, 24 pages.

CAUSALITY ORIENTED SHARED MEMORY FOR DISTRIBUTED SYSTEMS
Michel RAYNAL, Masaaki MIZUNO, Mitch NEILSEN
Avril 1992, 8 pages.

Imprimé en France
i . par
.V Institut National de Recherche en Informatique et en Automatique

ISSN 0249 -6399

