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SUMMARY

An english new version of [Lerman 91,] is proposed here. The present
text is more accurate and more complete by including new points. On
the other hand, its conclusion is more decisive.

This work is devoted to a new and systematic treatment of the
different questions arised in the original study ([Simon & Dubois
1989]. We consider both formal and statistical aspects with a set
theoretic and geometrical representation. On the other hand we adopt
the combinatoric and statistical point of view which is usual in our
approach of data classification. Our synthetic formulation makes
clearer and improves the algorithms or calculations, previously
considered (cf. above reference). On the other hand and mainly, we
propose new algorithms and new calculations which enable to “see”
the limit of the complexity reduction that we can expect. For this
respect, we essentially distinguish the problem of the evaluation of
the number of solutions and that one of the recognition of the
satisfiability instances. Two cases are studied concerning real
observed and random systems of clauses. In our formalization we
represent a clause by a logical and geometrical object that we call
a “pinpoint cylinder”. On the other hand, the *“inclusion and
exclusion” formula plays an important rble in our evaluations. The
new algorithms that we present take into account the marginal
statistical distributions of the variables. On the other hand, we
introduce in these algorithms parallel procedures and -in a relevant
way- our approach in data classification. The latter can play. an
important role in complexity reduction of a SAT problem. In each of
both aspects : evaluation of the number of solutions and recognition
of the satisfiability, significant results are obtained 3in the
context of the generation of a random system of clauses. The
randommess is according to a model that we usually consider in our
approach of data classification, for measuring associations (between
“pinpoint cylinders”, here) ; and that we call, “hypothesis of no
relation”.

Key word : NP complete ; Logical exclusivity and statistical
independence between clauses ; Statistical estimation ; Computing

complexity ; Clustering.
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APPROCHES CARTESIENNE ET
STATISTIQUE
DU PROBLEME DE LA SATISFIABILITE

RESUME

Ce rapport reprend dans une version anglaise un précédent rapport
(Lerman 91,]. Les résultats que nous présentons ici sont toutefois
plus précis et plus complets, par 1l’apport de points nouveaux.
D’ autre part, la conclusion a un caracteére plus décisif.

Rappelons que dans ce travail nous reconsidérons de facon
systématique 1’étude originale de J.C. Simon et O, Dubois (Simon &
Dubois 1989] du probléme SAT ; et ce, aussi bien dans ses aspects
formels que statistiques. Nous apportons un traitement de la question
a partir d’une représentation d’un type ensembliste et géométrique,
en adoptant une approche combinatoire et statistique qui nous est
usuelle en classification automatique. Ainsi, & partir d’une vision
synthétique, nous reformulons, avec des apports nouveaux, ou bien
une clarification du sens des résultats, les algorithmes ou calculs
déja exprimés dans la référence ci-dessus. Mais aussi et surtout,
nous proposons de nouvelles algorithmiques et nous effectuons des
calculs originaux gqui permettent de “voir” 1les limites de 1la
réduction de la complexité qu’on peut espérer. A cette fin, qu’il
s’agisse d’un systéme réel observé, ou bien résultant d’une
génération aléatoire, de clauses, nous distinguons de fagon
essentielle, le probléme de 1l’évaluation du nombre de solutions, de
celui de 1la reconnaissance de la satisfiabilité. Pour pouvoir
entreprendre notre approche, nous sommes conduits & représenter une
clause par un “cylindre logique ponctuel” et a faire jouer un réle
déterminant & la formule “d’inclusion et d’exclusion”. Les nouveaux
algorithmes que nous présentons tiennent compte des caractéristiques
statistiques marginales de la distribution des variables. Nous vy
introduisons le parallélisme et, de facon pertinente, notre approche
de la classification automatique qui peut jouer un r8le important
dans la réduction de la complexité d’un probléme SAT. Sur chacun des
deux aspects : évaluation et reconnaissance, des résultats
significatifs sont obtenus, dans le cadre d’un systéme aléatoire de
clauses, conformément & un modéle gque nous avons coutume de
considérer dans notre approche pour 1l’évaluation des liens (ici entre
“cylindres ponctuels”), en classification, sous 1’appellation
“*hypothése d’absence de liaison”.

Mots-¢lés, NP-complet ; Exclusivité logique et indépendante
statistique entre clauses ; Estimation statistique ; Complexité
calcul ; Classification automatique.



I. INTRODUCTION

This work is devoted to a new and systematic treatment of the
different questions arised in the original paper of J.C. Simon and
0. Dubois [(Simon & Dubois 1989] on the SAT problem (({Cook 1971,1983],
{Garey & Johnson 1973]). Our synthetic formulation makes clearer and
improves the algorithms or calculations previously considered (cf.
above reference). On the other hand and mainly, we propose new
algorithms and new calculations which enable to “see” the limit of
the complexity reduction that we can expect.

Two general aspects are developed in our study ; the former, which
concerns the case of a real observed system of clauses, is purely
formal and algorithmic. The latter, which concerns a random system
of clauses (introduction of a random model to generate a sequence of
clauses), is of combinatorial nature [see section III for the first
aspect and section IV for the second aspect].

Whatever is the <case considered, faced with satisfiability
instances, we very clearly distinguish the two following NP problems;:

(i) exact, approximate or estimated evaluation of the number of
solutions ;
(ii) recognition of the satisfiability.

Obviously, an answer of non statistical nature to the first problem
(i) can provide an algorithm to the second one (ii). But, it may
exist a resolution algorithm for the second problem (ii) which cannot
be relevant for the first one.

Relative to the generation of a sequence of random clauses, the
previous fundamuntal conceptual distinction between (i)} and (ii),
makes clear the difference between the experimental verification and
the theoretical expected value of the number of clauses, from which
the system becomes contradictory [see section 3.3. of Simon & Dubois
1989]. In fact -as it is expressed by the authors, the latter
theoretical value is incorrect : but, the evaluation of the average
number of solutions is correct. In this framework, we obtain
significant results by considering different forms of the random
model of clause generation. As a matter of fact, we have introduced
the same type of model in our approach of data classification {[Lerman
1981, 1991a), and that, in order to significantly evaluate the
associations between qualitative attributes.
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For the both aspects : formal (see section III) and statistical (see
section IV}, we will consider (i) first and (ii) afterwards. On the
cother hand, we adopt in our combinatorial approach a set theoretic
and geometrical representation. In fact, we will work at the level
of the 1logical cube {0,1}", where n 1s the number of boolean
variables. In these conditions, we associate to a given r-clause C,
comprising r instanciated variables (i.e. where binary values 1 or
0 are assigned to exactly r among the n variables), its anti-clause
that we denote by C and that we represent in {0,1}" by what we call
a “pinpoint cylinder of oxder r” (see section II below). The proposed
evaluations and algorithms can take into account the geometrical
structure of the latter mathematical object. In this context, the
“inclusion and exclusion formula” will play an important role.

The random model of clause generaion mentionned above, corresponds
to a hypothesis of “no relation” or ‘“independence” in the
probabilistic sense. This model will intervene with very different
points of view at two levels. First, in the context of a real observed
system of clauses, where we show the pertinent role of our
classification method, to notably reduce the computational’
complexity, for determining -exactly or approximatively- the number
of solutions. In this method, the association coefficient between
the structures to be compared (“pinpoint cylindres”, here) is of
probabilistic nature. It is established with respect to a
probabilistic hypothesis of independence. In fact, the latter
provides a probability scale to significantly measure the
associations or similarities.

Secondly (see section 1IV), the random model will intervene to
generate a system of independent -in probabilistic sense- clauses.
Relative to the latter random system of clauses, the purpose is then
to study the problems (i) and (ii) mentionned above.

In this latter study the notion of independence in probability
between pinpoints cylinders -respectively associated to random
clauses- will play a very fundamental role. In these conditions, we
must emphasize that the notion considered in [Simon & Dubois 1989]
of “independent” clauses, corresponds exactly to that one of
disjunction or lusi -in a set theoretic meaning- between the
pinpoints cylinders, respectively associated (see section II). Then,
we will reserve the term “independence” exclusively to its
probabilistic sense.

Let us now make <clear the subjects treated in the following
paragraphs. In section II, we will precise the basic notions and our
mathematical representation of the two fundamental problems set [see
(i) and (ii) above]. These two problems are analyzed in section III,
from formal and algorithmic computational points of view, in a real
observed case. But, the random case is consistently studied in
section IV. The last section V is devoted toc a conclusion where we
will try to give -on the basis of this work and our experiment in
combinatorial data classification -an evaluation of the reduction
possibility of the computational complexity to treat a given NP
problem.
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Let us indicate that a new version of [Lerman $81,] is proposed here.
The present text is more accurate and more complete by including new
points. On the othexr hand, its conclusion is more decisive.

II. THE BASIC NOTIONS ; SETTING UP THE TWO PROBLEMS

II.1. Pinpoint cylinder associated to a clause

Let X={X1,%3,...,%;} be a set of n booelan variables and let
X={%1,%,,...,%,} be the set of the complemented variables (X;=1-x;,

1<ign) . Let us rggall that a ¢clause is a disjunction of variables
belonging to X U X ; where, for each i, 1<£ig<n, we have exactly one
of the three following exclusive cases

(1) only x; appears
(2) only X; appears ;
(3) neither x; nor %; are present.

Thus, a formula representing a clause, involves at most, n literals,
respectively separated by the disjunction sign v. For example, by
supposing n greater than 4, a clause c3 of order 3, can be

C3 = X3 Vv QJ3 vV X4

More generally, we denote a clause C* of order r, under the following
form

C* = ¥i1 V ¥i2 V...V¥ir , (1)

where rgn, where -without loss of generality- 1€i;<is<...€ip&n and
where yj, = Xj, or (exclusively) y; = §i ., 1gp<r.

We associate to CY, its opposite, the anti-clause CF

(ad

~ ~s ~/
C'=Yi1aYi2A- - -AYir (2)

where A denotes the conjunction and where Sﬂp ='§ip (resp.xj, ) if yi,
= xjp (resp. Xjp), 1l<p<r.

Then, we identify C® with the set of the points of the logical cube
{0,1}", which satisfy the formula defined by (2). We will denote by
E(C*) -or more simply E in case of non ambiguity- this subset of
{0,1}". E defines a cylinder in {0,1}", of which the basis is a single
point in a given cartesian subspace. This is the reason why we call
E, a “pinpoint cylinder of order r”. More precisely, for (okd [see (2)
above], the cartesian subspace 1is generated by the components
iy,ip,...,1iy ; and the basis of E(CF) is the point (Qj; ,0ip,...,04y
), where @;, =1 (resp. 0) if Yip = Q&D (resp. Xjp), 1g<pgr. In other
words, E is the set of points of {0,1}" for which, the sequence of
the values of the components is (0j1,0®i2,...,0%iy). In these
conditions, we will denote

E{(il,iz,...,ir),(ai dOG e 0y )} (3)
1 2z r
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In the previous exemple concerning the above clause c3, we have

E={(1,3,4),(0,1,0)} (4)

To be more explicit, if we suppose n=8, we may denote
E={(0,¢g,1,0,5¢88) 1}, (5)

where € is an undetermined boolean, belonging to {0,1}.

The volume (i.e. number of points) of a r-pinpoint cylinder [see (3)
above] is equal to 20T

vol [E(C¥)=2""T (6)
Thus, the volume of E -defined by (4) or (5) above- is equal to 2°.

Let now E; and E; be two pinpoints cylinders having, repectively, the
orders ry and rp

E1={(i1,30, . esdip1), (Qi1,Q52, -+, 0ip1)} (7)
E2={(J1s 327 -+ -+ 3rB31,By2r - -/ Byz2) b (8)
We have the following properties
Properties

(a) Eq1,=E; (\EZ is a pinpoint cylinder.
(b) Eyp=¢ and {hy,ha, ..., hgl={iy,dp, ..., iz} V{31, 32, -« ospa)

=> ay =B, , 1lgugs (9)

and Eqp={(Xy K, ++. ., Kr14r2-8) s (Y1 rYk2s ++ -+ ¥r1+r2-s) } (10)

where (kj,k2,...,Kr1472-4) 1s the strictly increasing sequence of the
subscripts of the union set

{iyrigseevrinny U 310320+ 302} (11)

and where, for a given k,, we necessarily have one of the three
exclusive cases

(1) k¢ is an hy [cf. (9)] and then, Y =0y =Pxv :

(i1) ky is an iy but non a jq [cf. (9)] and then, Yyxy =04y
(iii) ky is a Jq but non an ip [cf. (9)] and then, Yy, =Byy
1gvgr+ry-s,

(c) VOLl(Ej,)=20"%,7I,*s (12)
These properties are easy to see. On the other hand, if ij<iz<...<iyy

and Jj3<Jj2<...<jpz, the maximum number of comparisons to sort (11),
for establishing (ky,ky;...,Kpr14r2-¢) 1s max (rj,rjp).
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II.2. Logical “independence” between clauses

According to [Simon & Dubois 1989], two clauses C and C’ are
“independent” iff no assignment of the n variables contradicts both
clauses. Since, the contradiction of a given clause C is equivalent
to the statisfiability to the anti-clause C, the previous notion of
“independence” corresponds exactly to the gisjunctiogJin theh§et
theoretic sense, between the two pinpoint s cylinders E(C) and E(C’):

logical “independence” between C and C’ <=> E(e)(\ E(E')=¢(13)
The condition (13) is equivalent to the following

3i, 1gign); (E(C)ali, 11) & (E(E7)c(i, o
or (E(@cii, 0 s (E(E)c(i,1)). (14)

More precisely, the two pinpoints cylinders of order 1, ({(i,1} and
{i,0} are two coordinate hypeplans, which partition the space {0,1}"
into two complementary subspaces

{oll}n={ill}+[ilo}l (15)

where the sum is of set theoretic nature and also, corresponds to
the direct sum between subspaces.

According to above, the logical “dependence” between two clauses C
and C’ can be expressed by

e ) E@)te (16)

A particular case of logical “dependence” Dbetween <clauses
corresponds to the implication

c=> C’ ‘ (17)

which expresses that every literal which is present in C, also
appears in C’, under the same form (positive or negative). The
relation (17) can be translated as follows

E@)>E((E") (18)

In fact -providing {0,1}" by a probability measure P- the previous
logical “independence” notion between two clauses C and C’,
corresponds to a completg/probabilistic dependence between the two
pinpoints cylinders E(C) and E(C’") respectively associated.
Effectively, in the latter case, we have for the conditional
probabilities

~ ~ ~ ~
P(E(C)/E(C’)])}=P[E(C’)/E(C)]=0 (19)
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Then -as mentionned in the introduction- henceforth, the term
independence will be devoted to its probabilistic sense, whereas the
previous logical sens of independence between two clauses will be
expressed by the equivalent notion of exclusion or disjunction

between the pinpoints cylinders associated [compare with (13)
above].

ITI.3. The inclusion and exclusion formula

Let Q be a finite set of elements and let {E;/1<Jgk} a set of k non
empty subsets of . Let us recall that the inclusion and exclusion
formula enables to determine the cardinal of the union

U{Ey/1g3<k)

of all the parts Ey of , as a function of the intersections g by q,
1<ggk, of the different sets Ey. More precisely, we have

card(]éék EJ)=?‘: card(Ej)-E{card(Ejlﬂ Ejz)/,,[ :)473.?‘} ,B

...+(—l)2pZ£card(Ej1(\ e (\Ejzp—1)//£54"" 751p—133

2p+l . [
+(-1) Zicard(Ey. .. ... .. E,
{ j'l ‘)?‘P)/ {:j,‘?.. '/Q'LP}}
oo+ -D%lcard@E;, N E, N L. O EY .20
In this formula, an expression as {Jji,...,Jjq} which indexes a given
sum, denotes a generic element of the set Pq({l,Z,...,k}) ; the

latter being defined as the set of all subsets of {1,2,...,k}, of
which the cardinality is q, 1<qg<k. The cardinal of P4({1,2,...,k})
is the binomial coefficient (%), 1<ggk.

Let us dencte by S(gq) the expansion of the second member of (20) up
to the qfh term, which concerns the intersections g by g of the By,
1<ggk. In the above formula (20) we have clearly expressed the two
consecutive (2p-l)th and 2pth terms. The former is positive and the
latter, negative.

Let us now introduce the notion of elementary class of order h (hgk)
with respect to the set {Ej/lsjsk} of parts of . A such class is

defined by the following expressiocn

C
C(jl/o.-,jh)=(Ej n e e n Ejh) n(Ejh+1U « .. U Ejk)

=(Ej1 ﬂ e ﬂ Ejh)ﬂ(Ejh+1c ﬂ .. ﬂ Ejkc),(zl)

where {Jj;,J2,...,Jn} is a subset of h elements of {1,2,...,k} and
where {Jjn+1sJnhe2s.--,3Jx} is the complementary subset in {1,2,...,k}.
Notice [cf. (20)} that we have denoted by X the complementary subset
of X in U{E;/1gjgk}.
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Denoting by v(g,h) the number of times where the cardinal of a given

C(Ji1,....Jn) 1s counted in S(q). We can prove that
h-1
V(2p-1,h)=1+
P (Zp,l.)
v(2p, hy=1~(h=1 22
(2p, h) (ZP ) (22)

where the binomial coefficient (%) is null if the integer u 1is
strictly less than the integer v. We have

0(2p—l,h)—v(2p,h)=(gp) (23)
and we conclude
S(2p)gcard( U Ej)§S(2p—l) (24)
W€k

By (23) we see that, for fixed h, the difference between V(2p-1,h)
and v(2p,h) is decreasing with respect to p, for p greater than h/4.
Therefore, the higher is the value of p, the more accurate is the
interval approximation given by (24).

Otherwise and in general, the higher is h, the more we can expect a
low value of the cardinality of an elementary class of order h. This
property -intuitively expressed- will be quantified in section IV
where we will introduce an random model.

If the Ej,1<Jj<k, are pinpoints cylinders of the logical cube {0,1}"
[see section II.1l above] ; then, the intersection

By O ey, O Lo ) By (25)

of q among them, is also a pinpoint cylinder. Assuming each pinpoint
cylinder associated to a clause, the latter pinpoint cylinder [cf.
(25)) is empty iff there exists at least one variable presented under
two opposite forms (x; and Gﬂ) in two distinct clauses. If not and
if t is the total number of variables which appear in at least one
clause, we have

card(Ejl n Ej2 ﬂ ... ﬂ qu)=2n_t (26)

We may notice that the last term of (20) above is necessarily equal
to 0 or to (-1)¥*1- As a matter of fact, each of the n variables
appears at least once [under its positive or (non exclusively)
negative forms (x; or §1, 1<ig<n))] in the different <clauses ;
otherwise, the parameter n of the problem is greater than necessary.



_9_
ITI. 4. Setting up the two problems

Given a system of k clauses {Cj/1<jgk}, consider the logical
following expression

CinC2A- - -ACjAa- - -ACk (27)

A solution 1is an assignation of the n boolean variables of
X={Xy,X9, ««.sXys ..., %Xa} (cE. section II.1l. for which the expression
(26) is true or satisfiable.

As we have already announced in the introduction (cf. section I),
the two following problems will be studied, with our new formulation:

(i) number N of solutions ;
(1i) existence of a solution.

According to section II.1, we associate to each clause Cy, its anti-
clause'ﬁj, that we represent by the pinpoint cylinder E4=E(Cj) of the
cube {0,117, lgjsk. In these conditions, the two above problems (i)
and (ii) become

(i) evaluate the cardinality of the union U{E;/1<jgk};
(ii) does the union U{E;/1<jgk} cover the entire space
{0,11%2

In fact, we have

N=2"-card( U ey (28)
1456k

then, the covering of the all space {0,1}" by U{Ej/lsjsk} corresponds
to the non satisfiability of the formula (26).

Thus, in the following, our expression will be stated only in terms
of pinpoints cylinders of {0,1}"%, or -when some flexibility is
needed, with respect to the geometrical structure of our objects- in
terms of subsets of a finite set.

We have said above that each x; of the n boolean variables, appears
necessarily, at least once in the different clauses, under either
its positive form xy or negative form §1,1<i<n. Therefore,
necessarily, one at least of the following two pinpoint cylinders of
order 1, {i,1l} and {i,0} [see (3)], is non empty ; that is to say,
includes at least one pinpoint cylinder Ej, associated to a clause

On the other hand, we can notice that we can assume that there does
not exist in the set {E4/1<jg<k}, two pinpoint cylinders, such that
one of them is included in the other one..Effectively, it is always
possible to reduce the system {Ej/lsjgk} to an equivalent one, by the
following simplification algorithm
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1- Order the cylinders by decreasing volume
(Ey1,E52, . cerEgx) g
VOl(Ejl)ZVOl (E32)>, ..2vol (Ejk) .

2- Compare Ej, with the ordered sequence of the others following
cylinders. If Ejy(h2>2) is included in Ey;, delete Eyj.

3- If E4; is the first cylinder preserved of the sequence (Ejp,...,Ej
), go back to 2, with Ej; instead of Ej;.

4- An so on, until end.

III. EVALUATION OF N AND RECOGNITION OF THE SATISFIABILITY IN A REAL
OBSERVED CASE

III.1l. Evaluation aspeact
According to the above formula (27), we seek to determine

~ n

N=2"-N=card( U Ej) (1)

Wi¢k

IIT.1.1. Exact evaluation from a partitionning of U(Ej/lsjsk}
The construction of the partition will take into account the
geometrical structure of a pinpoint cylinder ; and in fact, each
element of the decomposition will be a pinpoint c¢ylinder. The
proposed algorithm is recursive and each of its steps concerns a
couple (Eg, Ep) of non disjoint pinpoint cylinders, chosen in an
optimal way, faced with the all pinpoint cylinders developed from

{E5/1<igk}.

According to expression (3) of section II, E; and E, are denoted as
follows

Eg={i1,i2, . .,ip, ip+1, . .,iq) s (Oi1s - cr Qi Qips1, v - - .,(liq) } (2)

and

Ep={ (11,12, -+ ., dip, Ips1, Je)@s1s - - .onip,BjP+1 reeaBip) s (3)

where q is supposed less than r ; that is to say,

vol (Eg)2vol (Ep, (4)
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In this algorithm, Ej is partitionned with respect to Ey, into a
sequence of exactly g-p+l pinpoint cylinders, which are mutually
disjoint and -except the last- exclusive from E4. As for the last (g-
p+1)th element of the latter decomposition, 1t concerns a pinpoint
cylinder contained in Eq

Precisely, Ep is decomposed -with respect to E4g- in the following
form:

Eh=Ehl+. . .+Ehl+ SN +th_p+Fh, (5)

where
. . ~

Ehl = Ey n { (lp+1, .o ,lp+1) ’ (aip+1, . .,aip+l_1,aip+l) }
(1<1<g-p) and

Fh=Ehﬂ{ (ip+1,...,iq), (aip+1""'0‘iq)}' (6)
As mentionned just above, on the one hand, Eg and the different Elh,
1<I<g-p, are mutually disjoint ; and on the other hand, Fy is included
in Eg5. Therefore,

card(Eq U Ey)=2""9% z2nr! (7)

gl q-p

We must notice that the number of new pinpoint cylinders introduced
in (5) is

p-q=Log, [vol (Ey) /vol (Eg () Ep)] (8)

and corresponds exactly -when vol(E4 N Ep)=¢- to the number of
instanciated variables, which intervene in Eg but not in Ey.

In these conditions, beforehand applying the sth step of the

algorithm, consider that we are faced with the following sequence of
pinpoint cylinders

{E1s .« esEqs oo urExg)} (9)

which are supposed ordered according to the decreasing value of the
volume

vol (E)2vol(Ej) 2. ..2v0ol (Ey (s) (10)
Then, establish the table

{p(g,h)/1<g<hgk(s)} (11)
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where

vol (Ey ) ; N
L Yo nirz. f E E
ogy { VOl(Figﬂth\] i g ht o

oo if Eg N By = ¢ (12)

p(g,h)=

Hence, the sth

step of the reduction algorithm consists of
(i) locating -by means of a sorting- a couple (gg,hg),1<Lgg<hggk (s),
for which p(g,h) is minimal ;

(ii) partitionning Epg with respect to Eg , as in (5) above and then,
replacing Ehoby

{ElhO 'E2h01~--rEh0p(go'ho)} : (13)

(iii) reactualization of the sequence (9) by introducing (13} instead
of Epp and by reordering its elements according to (10) where k(s)
has to be replaced by

k(s+l)=k(s)+p(gg,hg)-1 / (14)

(iv) reactualization of (11), by comparing each element of (13) with
each element of (9), except Epg, wich is deleted and Eyy for which
the p(gp,hg)y values are equal to infinity. k(s) has to be replaced by
k(s+l) (cf. (14)).

We have k(l)=k. On the other hand, the algorithm will necessarily
converge to the state where all the entries of the table (11l) are
filled with the infinity wvalue. The 1latter case indicates the
completion of the process of decomposition which of course may reach
an exponential complexity from computational aspect. But it is of
importance to note that the exponential nature of the computational
problem is relative to the number of clauses k, but not in relation
with the number n of variables. Because, the expansion (13) obtained
from Ey is linear with respect to the number n of variables.

The seed idea of the decomposition of a clause C with respect to a
clause C’, is clearly considered in [Simon & Dubois 1989]. In our
treatment where a geometrical and synthetic view is given, we have
to handle, in an optimal way and globally, a set of clauses. If, in
the preceding decomposition, we obtain an exclusive system of K
pinpoint cylinders, such as k; of them have the order rj, 1l<igp and

K=kj+kp+...+kp, (15)

then, we may write the following formula, considered in the above
reference

card( U Ej= T k2T, e
WAk Nigp
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III.1.2. Exact or approximate evaluations from the inclusion and
exclusion formula.

We now return to the formula (20} of section 1II.3 and more
specifically to the qth term of the second number which may be
written.

(-1 E carae; ) ... NEy (17)
1 9
where the notations have been already specified [see below formula

(20) §II.3] and where {Ej/lsjsk} are supposed to be pinpoint
cylinders. Consider a given term of (17)

card(Eq [} ... NEyy (18)
and suppose that ry,rp,... and rq are the respective orders of the
pinpoint cylinders Ej;, Ej2,... and Ejq. If we assume ordered the

components of each pinpoint cylinder =—-as in (3) of section II.1,
where 1;<iz<...<iy~ then, the maximum number of comparisons to
establish the wvalue of (18), is bounded by i, Ipt.. . +rg, which 1is
linear with respect to n. The latter value is given by (26) of section
I1.3.

A sum as (17) above comprises (g) terms and all the computational
complexity in using the formula (20) (section II.3.), is provided by
the necessity to examine each of them. But, some simplifications may
arise in a recursive scheme if some of the elements of the sum (17)
vanish.

To be more explicit, let us suppose that Ey; .. Ej2 . ... ..Eyq =0,
for a particular subset {J;,J2,...,]q} Of q elements among 1,2,...,k.
Then, we may eliminate from the (q+u)th term of the expression (20),
the examination of (Ea?) elements, each latter being necessarily
null, because, having the following form

card(Ejl n PR ﬂqu 0 qu+1 n « o n qu+u> (19)

Thus, in all, we eliminate the consideration of

(59) + (%) + - - - H(T =221 (2o

1 k-¢q
It is now interesting to stud¥ the elimination process in passing
from the q‘h term to the (q+1)t term in the expansion (20) (section

IT.3). For this purpose, consider the following set

Vq={{j1,...,jq}/Ejlﬂ....ﬂqu =¢}, (21)

which is a subset of what we have denoted by Pq ({1,2,...,k}) (see
below expression (20) in section II.3).
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A given element {jl,jz,...,jq} of V4 generates (k-q) elements of Vel -
Each of the latter is obtained by inserting an integer jg4; belonging
to the complementary of {31, ¢+-r3q!} with respect to {1,2,...,k}. Let
us denote by

E({jlljZI---qu}) (22)

the subset of Pq+1({1,2,...,k})such that {jl,...,jq} is included in
each of 1its elements ; which represents a (gt+l) subset of
(1,2,...,k}. Clearly,

E({31s .-+ 3qD)={{31s ...+ 3g-h}/1gh<k, h éé{jl,...,jq}}.(23)
Then, we have the following properties
(1) card[E({J1,...,3q})=k-q ; (24)
(ii) for {j1,...,3g}F{3 1, ---+3"ghs
card{E({31,...,3q)) VE({3"1,...,3"q})1=0(resp.1) iff
card({jlr...,jq}(]{j'l,...,j’q})<q—1 (resp.=g-1} (25)

In these conditions, consider the table indexed by the set of
unordered object pairs of Vg, the entries of this table are filled
with 0 or 1 according to the above condition (25). If we denote by
t the total number of 1, then the number of elements which
necessarily belong to Vg41, as a consequence of the previous analysis
of Vq, is equal to

(k-q) card (Vq) -t (26)

Therefore, we have not to consider in the (q+l)th term of the
expansion (20) (section II.3), a number of elements equal to (26).

Nevertheless, the most interesting concerns the reason of the
bounding formula (24) (section II.3)

Szp_1—52p=z. card(Ejl v e eee 'Ej2p) (27)
SIPRRRELTTY
In these conditions, the lower is the value of (27), the more
accurate is the both bounded formula (24) (section II.3). (27) will
be analyzed in section IV from statistical point of view, in the
context of a random model of generation of independent pinpoint
cylinders or subsets of Q={0,1}".
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III.1.3. Simplification of the computing complexity by using a
clasgification method.

We are concerned here with a methodology of hierarchical
classification which builds on a set of unit data a classification
tree. The latter is obtained by means of an ascendant construction,
by successive agglomerations of the most similar <c¢lasses. The
combinatorial and statistical nature of the mentionned approach
{Lerman 1981, 1991a] enables to detect 1in the hierarchy of
classifications ‘significant’ classes and subclasses. On the other
hand, the combinatorial structure of a given unit data, may be very
general. In our case, each unit data will correspond to a pinpoint
cylinder and the set to be classified is the set

G={E4/1gjgk} (28)

of the pinpoint cylinders respectively associated to the clauses (see
sections II.1 and ITI.2).

Additionally and mainly, this method introduces a most original
notion of ‘statistics’ for measuring statistical relationships and
proximities, namely, the ‘likelihood’ concept. Thus, we set up the
*likelihood’ notion as part of the ‘resemblance’ notion. This
principle also underlies the ‘information theory’ formalism, in
which the higher the amount of information quantity, the more
unlikely is the event concerned. In our case the events correspond
to the observed relations between the pinpoint cylinders considered
in (28).

Let us begin by clarifying the usefullness for our problem of an
ascendant hierarchical classification method. First recall that in
order to obtain such a classification on a set of k elements [see
(28)], there exists algorithms of which the computational complexity
-in terms of number of comparisons- remains lower than kzlogzk
[Bruynooghe 1989]. The interest of the hierarchical classification
will be considered at two levels, the latter finer than the former.
The purpose of the former is to partition G [see (28) above] into
classes such that two pinpoint cylinders, respectively belonging to
different classes, have an empty intersection. More precisely, let
us designate by

{F4/1<ggh) (29)
such a partition, where we denote by
Fg={Eg1,...,Egi,-.olEgk(g)} (30)
the g*" class, of which the cardinality is k(g), 1g<g<h, where we have

k=k (1) +k(2)+...+k (h) (31)
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Then, the partition (29) is such that the following condition is
satisfied

[V(1gg<g’<h), (1gigk(g),1<i’<k(g”)],E% (\ E9 j.=0 (32)

In these conditions and with respect to an evaluation based on the
inclusion and exclusion formula, we can see that the maximum of the
computational complexity is reduced to

but, max{k(g)/1<g<h} can be equal to k.

A more and significantly intersting aspect concerns the application
of the above mentionned hierarchical classification method, based on
the likelihood concept, to each class Fg,1<g<h, [see (30) above]. For
a given g, 1l<g<h, the purpose is to decompose Fg into dependent
classes which are -more or less- relatively independent from
statistical point of view. The process is recursive, because each of
the latter classes will be decomposed at its turn ; but, with more
dependence between the subclasses ; and so on...

We explore the tree structure on a given Fg,1lgg<h, (see (30) above]
in a descendant process. The ‘significant’ nodes provided by our
method [Lerman & Ghazzali 1991] enable to recognize dependent classes
into Fy. Let us designate by

{Hg(t) /1<tgu} (34)
‘natural’ dependence classes discovered inside of Fy. The complete

statistical inependence between the different Hg(t) does mean that
there exists a partition

{I./1gtgu) (35)
of I={1,2,...,1i,...,n}, such that, if we denote
It={it1'it2""'itl(t)}’ (36)

where n=X{1(t)/1l<t<u}, each boolean variable X;, is -for i belonging
to I.- instanciated at least once in the different pinpoint cylinders
of Hg(t). But, X;, for i does not belonging to Iy, is never
instanciated in Hy(t). Thus, a couple (E,E’) of pinpoint cylinders,
belonging to the cartesian product Hg(t)xHg(t’), are statistically
independent for t=t’ ; that is to say

card (E ﬂ E’)=card(E) xcard(E’)/card(Q) = 20T I, (37)
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where r (resp. r’) is the number in variables instanciated in E
(resp. E’).

If we indicate by hg(t) the number of elements of Hg(t), we have
k(g)=Z{hg(t)/1gtgu} (38)

Then, the exact evaluation of
card(U{E/E € Hg(t) 1) (39)

by means of the inclusion exclusion formula, has a computing
complexity of 2h9 (Y} 5rder ; but where each elementary calculation
is linear with respect to 1(t) [see (36) above].

Now, let us designate by A, the argument of the cardinal function in
(39). At this stage, our purpose is to evaluate

card (U{A./1g<tgul), (40)
by taking into account the previous evaluations of
{card (Ay) /1<tgu} (41)

Once again, the inclusion and exclusion formula is applied, but at
the level of the u components defined in (40). For the latter level,
the computing complexity is of 2" order. Each elementary calculation
concerns the evaluation of an expression of the following form

card(ag () A (1 ..o ) Ay, (42)

where {tj,ts,...,t4} is a subset of {1,2,...,u}. In order to evaluate
(42), establish in each A, the statistical distribution D, of the
number of instanciated variables per pinpoint cylinder. The sequence
of distributions

{Dp/1<p<q} (43)

enables to analytically evaluate (42) by taking into account the
independence relation (37).

Even the statistical independence relation (37) 1is not always
strictly satisfied, the previous calculation under the independence
hypothesis, will give an approximate value of card{Ey/1<jgk}.

We are going now to be more explicit on the manner to obtain the
classifications above <considered. The general data that is
considered first consists of a set of subsets of a given finite set
Q. For the latter, the above notation (28) is preserved ; but we can
forget at first, the particular structure of Q and Ej, 1g<3gk.
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Relative to the comparison of two parts of Q Eq and Ep, 1<g<hgk, let
us introduce a “raw” proximity index which represents the cardinality
of the intersection between Eg and Ey

s(g,h)=card(Eg () E,) (44)

In order to obtain the above partition (28), let us define on the
set of subsets of G [(cf. (28)], the following similarity index

s(C,C')=max{s(g,h)=card{(Eg () En)/(Eg,En) € CxC’}, (45)

where C(resp. C’) is a set of elements of G. The latter index will
be used in the following ascendant construction of a hierarchical
classification, only in case where C and C’ are disjoint, in terms
of subsets of G.

The starting state of the ascendant construction of a hierarchical
classification, is defined by the finest partition ; where each class
comprises exactly one element. Thus, in our case the partition of
the zero level, can be written as follows

To (G)={{E;}/1<igk) (46)

Then, at each step, passing from a given level to the following one,
the class pairs {C,C’}, for which the similarity index s(C,C’) [see
expression (45) above] is maximum, are joined. By stopping the
classification tree building, just when the index becomes negative,
we necessarily end at the announced partition (29), of which the
classes have been denoted by Fg, 1<g<h.,

At this stage, on a given Fg, 1<g<h, it is of interest to apply
“Likelihood Linkage Analysis (L.L.A.)” classification method (Lerman
1991a), in order to set up a hierarchical system of dependence
classes (see above). For this purpose, we are going to recall the
first aspect -of the mentionned c¢lassification method- which
concerns the elaboration of a similarity measure between the elements
of the set to be classified. Let us designate the latter by

F={Ey/1<Jj<k’ }, (47)
so that F represents a subset of G [cf. (28) above].
We have already introduced the raw similarity index s{(g,h) [cf. (44)
above] between two elements Ey and E, of G, 1g£g<hgk. In the context
of our problem, where G is composed of pinpoint cylinders from the
cube Q={0,1}", we have

s(g,h)=2""97T*P, (48)

where the expressions of Ej and Eyp are given in (2) and (3) (see
section III.1.1).
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The raw index s(g,h) is statistically normalized with respect to a
probabilistic hypothesis of no relation or independence. The easiest
expression of this hypothesis does not take into account the
specifity of the geometrical structures to be compared. As a matter
of fact, to the couple (Eg,Ey) of pinpoint cylinders from Q, we
associate a couple (X,Y) of independent random subsets of a set U ;
such that, the cardinality of the triplet (X,Y ; U), respects in a
probabilistic sense the cardinality of that one (Eg,E, ; Q)

[card(X),card(Y);card(U)]~[card(Eg),card(Eh);card(Q)] (49)
In fact, there are three fundamental forms of the random model of
the hypothesis of no relation or independence [Lerman 1981]. Let us
introduce for a given form, the random raw index

S(g,h)=card(x [lY) (50)

that we have to calculate the mathematical expectation E[{S{g,h)] and

the wvariance var[S(g,h)]. For the three random models the
distributions of S{(g,h) are respectively, the Hypergeometric
distribution, the Binomial distribution and the Poisson

distribution. In all cases, we have

card (Eg) xcard(Ey)
E[S(g,h)]= =27797%, (51)

card (Q)
if we consider the expressions (2) and (3) above for Eg and E; (see
section III.1l.1).

The Poisson distribution 1leads to the easiest expression of
var[S{g,h})]:

var [S(g,h)=E[S(g, h)]=2""9"F, (52)
Restricting oneself to the latter random model, the standardized

association coefficient between E4y and E; is expressed by

s(g,h)-E(S(g,h)]
Q(g,h)= —- (53)

(var[S (g, h)))1/?
More precisely, we have here

Q(g,h)=(27"97r)1/2 (op_1) (54)
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We can notice that Q(g,h) is an increasing function of p ; but a
decreasing function of (g+r). That is to say ; for a given p, the
greater 1is Q(g,h), the more filled is the space Q={0,1}", by the
union E4 ... Ep. The expression (54) weights in a certain manner the
increase with respect to p and the decrease with respect to (q+x).

The preceding random models do not take into account the particular
pinpoint cylinder structure of Eg and E; in the logical cube {0, 1}".
More accurate random model will associate to a given pinpoint
cylinder E, having q instanciated variables, a random pinpoint
cylinder X*, where the randomness concerns the instanciated
components. For a given component i, 1<£ign, the probability of an
instanciation is set equal to Yx(Xx=49/n). Generally, g is small
relative to n ; then, a perfect approximation of the probability
distribution of the random number L of instanciated components is
given by the Poisson distribution of parameter g. On the other hand,
for L=1 and for the specified components, the 21 possible
instanciations are considered as equally probable.

In these conditions, to the couple (Eg,Ey) of pinpoint cylinders, a
couple (X*,Y*) of independent pinpoint cylinders is associated under
a hypothesis of no relation, where Y* is associated to Ey in an
analogous way as X* is associated to Ey ; the elements %, L and 1I
being respectively replaced by p=r/n, M and m. Then, one can
determine the probability law of the random variable -representing
a random similarity index- that we denote here by

T(g,h)=card(X* {\ Y*) (55)

This probability distribution will be clearly establised in section
IV ; but, in a very different context. We will see that

E(T(g,h)]=2""(a+D)
var [T (g, h)}=2[" (@] (omP_7, (56)
It is interesting to note the following properties

E[{T(g.,h)]=E[S(g,h)] ; but, var[T(g.h)] # var[S(g,h)].(57)

Therefore, the statistically normalized index can be written here

S(g:h)‘E[T(g;h)]

R(g,h)=
(var [T (g, h)])1/?

2P-1

(ePXP) —1)1/2 (58)
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As for the non constrained form of the random model concerning the
statistical independence hypothesis, we obtain the same phenomenon
of increase with respect to p and of decrease with respect to a
symmetrical function of g and r ; but the latter decrease 1is
differently weighted in case of the coefficient R(g,h) [cf. (58)]
than in case of the coefficient Q(g,h) [cf. (53)].

In the expressions (53) and (58), we necessarily assume a non empty
intersection between Ey and Ej. If the pinpoint cylinders Ey and Ep
are exclusive ([s(g,h)=0], the coefficients Q(g,h) and R(g,h) take
the following strictly negative values

Qo (g, n)== (2"797%)1/2
R, (g, h)=-1/ (e"Pt_1)1/2 (59)

Otherwise, the values of Q(g,h) and R(g,h) are positive or null. Let
us notice that the zerc value corresponds exactly to the situation
where card(Eg 0 E,) 1is equal to its mean value, according the
probabilistic independence hypothesis. The latter case is that one
where p=0.

In the framework of the L.L.A. method [Lerman 1991la), the table
{Q(g,h)/1<g<h<k’} (resp.{R(g,h)/1<g<hg<k’}) leads to a probabilistic
scale for measuring the associations between the elements of the set
F [cf. (47) above]. The latter scale is established with respect to
a global hypothesis of independence, where to F is associated a
family

Fr={E*/1<igk” ) (60)

of independent subsets of €, such that, the structures of the
different E*j, 1£Jj<k’, are considered with more or less constraints
(“free” subsets or pinpoint cylinders of Q). On the other hand, the
E*j, 1<Jg<k’, respect -strictly or in a probabilistic sense- the
cardinalities of the Ej, 1<jgk’.
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III.2. Algorithms of satisfiability recognition

III.2.1. Using the inclusion and exclusion formula

The recognition algorithm is directly deduced here from the both side
bounded formula (24) (section II.3). To be more accurate, we are
going to distinguish in the formula (20) (section II.3), the case
where k=2q 1s even and that one where k=2g+l is odd.

For k=2q, the last term of the second member of (20) is negative or
null. The latter corresponds in the generic terms, to p=gq. In these
conditions, for p=1,2,...,9

if S(2p—1)<2n ; then the satisfiability is ensured ;
if S(2p)>2" ; then the system is contradictory :

if S(2p)<2Q$S(2p-l) ; the decision is impossible and then,
do p=p+l.

Now, for k=2g+l, the last term of (20) (section II.3) is positive or
null. The latter corresponds -relatively to the generic terms- to
p=qg+l. Therefore, the decision process corresponds exactly to above.

It is clear that the decision process will end when p reaches its
highest value. Then, the maximal order of the computational
complexity is 2%, But we may hope in the most current practical cases
to conclude with a less complexity order ; specially, if the average
of the number ry of specified variables per pinpoint cylinder Ej,
1<j<k, 1is not too low. The latter point will Dbecome clearer in
section IV.

IIX.2.2. Cartesian £illing of the cube ({0,61)}®

Consider the representation of a given ©pinpoint cylinder
E,associated to a clause C, by a vector with n components, of which
the ith component, 1<ig<n, is equal to 1,0 or g, according that in C,
the variable X; is instanciated by 1,0 or is indeterminate [see (5)
section II.1l}.

Relative to the system {Ej/lsjgk} of pinpoint cylinders, we are going
tc define a specific order on the n components, depending on

statistical considerations. Morevoer, for each component i, 1<ign,
an order will be established between the two values 0 and 1.

For a given i, 1lg£ig<n, consider the two complementary hyperplans

{i,1} and {i,0} (61)
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and let us define the integer numbers k(i,1l) and k(i,0), where k(i,1)
[resp. k(i,0)] is the number of pinpoint cylinders of which the
intersection with {i,1} (resp. {i,0}) is non empty. Then we define

1(i)=min{k(i,1),k(i,0)1}, (62)
1<ign.

We may suppose without any loss of generality that
I(1)L1(2)<. . . L1(1)€...L1(n) (63)

On the other hand, relative to the ith

the logical symbol 0 or 1, for which

component, let us denote by o

k(i,0)<k(i,Q), (64)

where o is the complementary symbol

0=0(resp.1l) <=> a=1(resp.0). (65)

In these conditions, we set for the ith component
~

oo (66)

Now, consider the logical cube {0,1}°® defined by the s first
components, 1<i<s, according to (63) above. The latter cube

represents the whole set of values of the vector (Xj;,...,Xi,...,Xg)
of the s first boolean variables. The s relations (66), established
for i=1,2,...,s, lead to the definition of a lexicographgic total

order on the whole set of boolean vectors, belonging to {0,1}%. To
be completely clear on this purpose, we set up for the relation (66)

0<1, (67)
in case where k(i,a)=k(if&), for a given 1i.

This construction is made in order to give a priori a maximum of
chance for a satisfiability conclusion by the following algorithm.
Effectively, at a given step, the latter will explore a sequence of
boolean vectors -of a given dimensionnality- ranked according to the
preceding lexicographic order.

In fact, the algorithm is recursive. At the sth stage the situation
can be represented by a two entries crossing table, comprising 2°
rows and k columns. The r*® row is labelled by the r*P value of the
boolean vector (xl,xﬁ,...,xs) according to the above lexicographic
order, 1<rg2%. The jt element of the r*® row is 0 or 1 ; the 0 (resp.
1) value indicates that the jth pinpoint cylinder Ej is disjoint
(resp. has non empty intersection) from (resp. with) the pinpoint
cylinder -comprising s instanciated variables- defined by the above
boolean vector.
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If a given row does not contain any element of which the value is 1,
the satisfiability condition is trivially performed. If not,
consider the variable Xg4,; and the associated logical value ¢,
acording to (66) above, for i=s+l. Then, for r=1 to r=2°

(1) divide the rth row into tow rows, which are labelled by two
boolean vectors of which the dimensionnality is (s+1). The first s
components are those of the preceding boolean vector concerning the
preceding r*® row. The latest component of the first (resp. second)
boolean vector is equal to a(resp.‘a). For the new rows, the elements
which are equal to 1, are necessarily among those which are equal to
1, for the preceding r*® row ;

(ii) if for one of two new rows respectively associated to the rth
row, there 1is no element which 1s equal to 1 ; then, the
satisfiability of the system is acquired. If not

(iii) continue by considering r=r+l.

If the latter process ends with r=2°%, without obtaining, from the
subdivision process, a row filled up with zero elements ; then, we
reach the (s+1)th stage. Finally and necessarily, a conclusion is
obtained on the satisfiability of the system ; but the maximal order
of the computing complexity is 27,

III.2.3. Algorithm of parallel covering by hyperplans

This algorithm is one of the most interesting. It may ‘quickly’
conclude to the satisfiability of the system. The general idea
consists in recognition of a pinpoint cylinder of {0,1}", which is
exclusive from the union U{Ej/1<j<k} of the all pinpoint cylinders
associated to the different clauses [cf. section II.1l)}. The method
operates by a suitable grouping of the pinpoint cylinders into
blocks, respectively included in coordinate subspaces or hyperplans
of {0,1}".

Relative to the set {E4/1gj<k} of the given pinpoint cylinders, let
us designate by {i;,®j,} a coordinate hyperplan which contains a
maximal number of Ej, 1<jgk. If k(1) is this maximal number, we have
an inclusion relation such that

Ejh < {iy,2411},

for 1< jngk (1) (68)
If k(1l)=k, the satisfiability condition is acquired, because

(U{E5/1<igkIN{iy, ay1 ) =0, (69)

~N
where i1 =1—0.il
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The extension of the inclusion (68) 1s given by the following
sequence of inclusions

U{Ej¢/k(u-1)+1gtgk (u) JC{iy, Oyuls (70)

where 1gug<l, where k(0)=0 and where the sequence of the integer
numbers

{k (u)-k(u-1)/1gugl} (71)
is decreasing.
If k(l)=k, the satisfiability is acquired, because we have
(U(Eje/1gtgk)) () ((iq, .vpig), @iy ..., @5p) b=0 (72)
But we may reach a maximal value 1; of I, with a strict inequality
k(1l1)<k (73)
In this case, it rests the following pinpoint cylinders
(Ey/3 ¢ (rs -0 dkan ) (74)
outside of
U{{iy,03,}/1gugiy} (75)
Then, each Ey of (74) has necessarily the following form
Ey={ (i1, ..., i0), (0, ..., 0 )} (76)
where
(i%9,...,1' 0y C {iy,ip,...,417)
The complementary subset of (75) is the pinpoint cylinder
((igsenerig )y (Qigse. s Gian) ) (77)
which is included in each Ey of (74) [see (76) above].
Let us designate by R the set (74) of pinpoint cylinders. We are
going now, step by step to reduce R to the only pinpoint cylinder

(77) . With respect to the latter, the complementary subset in R will
be integrated to the first member of (70).
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Then, and recursively from i; to i;; , consider the i™", component
and the latest state of R after (u-l) steps, 1lgugl;. Detect in R all
the pinpoint cylinders for which the ithu is not specified. Decompose
each of the latter into two pinpoint cylinders with one more (the
ithu) specified component. This, is equal to a;,, for the former and
to @;y,, for the latter. In these conditions, the first pinpoint
cylinder is included in the ut! subset of the union considered in the
first member of (70). But, the second pinpoint cylinder -of which
the ithu component is equal to a;u - is kept in R, unless it does
already exist in R. In the latter case, it is suppressed.

th

As announced, after u=1l;, R is necessarily reduced to the pinpoint
cylinder (77). On the other hand, the number of elements of each
subset of the union -considered in the first member of (70)-
increases in a non predictible manner. In any case the union between
the latest state of the first member of (70) and the pinpoint
cylinder (77) is exactly equal to the union U{Ej/1g<jgk} of the
different elements of G [cf. (28) section III.1.3.]}]. On the other
hand and clearly, the pinpoint cylinder (77) 1is disjoint from the
first member of (70).

Consider the relation (70) as defined at its final state after the
application of the preceding algorithm. We have

U{E’ 3o /k’ (u-1) +1gtgk’ (W)} & {iy, 054}, (78)

where 1gugl;, where k’ (0)=0 and where k’ (1) is generally greater
than k. On the other hand,

k’ (u) -k’ (u-1) >k (u) -k (u-1), (79)
for 1lgugl;. Notice that the sequence

{k’ (u) -k’ (u-1) /1gugly} (80)
does not still necessarily preserve the decreasing property of (71).
We may now conclude by the following.

THEOREM, The system is satisfiable if and only if, one at least of
the 1; preceding inclusion relation (78) is strict.

Thus, by the preceding algorithm the SAT problem with n variables is
replaced by 1; SAT problems with (n-1) variables, where I; is strictly
lower than n and where the number of clauses (or pinpoint cylinders)
concerning the uth problem is [k’ (u)-k’ (u-1)1, 1gugl;.
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It is of importance to notice that the 1I; problems can be treated in
parallel. Then, the computaticnal complexity relative to the number
of clauses k, is now relative to

max{k’ (u) -k’ (u-1) /1gugiy} (81)

On the other hand, the maximal computing complexity of the divinding
process 1is of [k—k(ll)]2‘u'1 order. More precisely, a pinpoint
cylinder Ey, as given in (76) above, car generate 2 1-h pinpoint
cylinders. There_fore, the general problem remains tractable if both
1, and [k-k(ly)] are enough low.

III.3. Concluding remarks

We want here to emphasize the great interest of a pre-treatment by
a hierarchical classification process based on the L.L.A. method
{(above mentionned)} ; and that, whatever is the basic NP problem
(evaluation of the number of solutions or recognition of the
satisfiability of the system). We have already in section III.1l.3.
illustrate this interest, in case of applying the inclusion and
exclusion formula, in order to evaluate the number of solutions.

For a given Fyg [cf.(30) section III.1.3.], consider the partition
(34) [cf. section III.1.3.] into independent classes. The subsystem
concerned by a fixed class Hg(t) depends on only I(t) variables ;
1(t) being a portion of n, 1<tgu. Let us designate by Ny (t) the number
of 'solutions of the latter subsystem. Then, the number of points in
the union of the pinpoint cylinders belonging to Hy(t), is equal to

N o1t
Ng (1) =21 - (1), (82)

1<t<u. Therefore, the number of points in the union of the elements
of Fg, is given by

Ng= TV (¥, (t) /1gtgu) (83)

On the other hand, the whole system (concerning Fy) is satisfiable
if and only if each subsystem, associated to Hg(t), 1gtgu, is
satisfiable.

For a given Hg4(t), 1<tgu, a good strategy consists in following the
hierarchical <classification tree established on Hg (L), in an
ascendant way and as parallely as possible, according to an inclusion
relation between classes.

Consider for example the algorithm defined in section III.2.2. which
can be regarded as the most classical. Very intuitively speaking,
the contradiction of the satisfiability condition has some tendency
to occur since the first levels. Because, the lower is the level,
the fewer are the number of variables specified [see remarks after
expressions (54) and (58) in section III.1.3.].
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IV. EVALUATION OF N AND RECOGNITION OF THE SATISFIABILITY IN THE CASE
OF A RANDOM MODEL

IV.1. Introduction ; description of different random models

As announced in the general introduction (see section I) we are going
here to consistently retake the statistical aspects considered in
{Simon & Dubois 1989). The latter concern the both mentionned
problems (i) (evaluation) and (ii) (recognition), in the context of
a random generation of clauses. In fact, in our set theoretic and
geometrical representation (see section II.1l), a system of
independent random subsets or pinpoint cylinders from a logical cube,
is considered. Then it 1is necessary to be more explicit on the
different versions of the generation random model.

At this stage, the observed data are assumed to be a couple (Q,E)
where Q is the logical cube {0,1}" and where E is a pinpoint cylinder
of order r. Two families of models can be considered, where the
latter is more constrained than the former. For the first family,
the cartesian structure of the pinpoint cylinder is not taken into
consideration. We only retain that E is an 1 subset of a m set Q,
where 1=2""" and m=2". But, for the second family, the geometrical
structure of (2,E) is intimately taken into account. Let us designate
by (0*,X*) [resp. (Q*,E*)] the random couple associated to (Q,E) in
the framework of the first (resp. second) family. As a matter of
fact, the second family will correspond in a specific sense to the
first one. Thus, for each family, there exists three fundamental
forms for the random model. In these conditions, let us denote by
(0%, i X*) {resp. (ﬁQ*,iX*) [resp.(iQ*,iE*)] the random couple
associated to the i*® form for the first (resp. second) type of the
random model, 1<ig<3. On the other hand, if jO*=0, (resp. ;Q2*=Q.) is
given, {X* (resp.jE*) is a random subset of O, (resp. €,). Let us now
describe each of these random models, by beginning with the first
family.

For i=1; 0*=Q and ;X* is a random subset of Q, of which the
cardinality is 1 [card(;X*)=1]. Thus, ;X* is an element in the set
P (Q)—-provided by an uniform probability measure- of all parts of Q,
having the same cardinality 1. In other words, by considering the
simplex 2*° of the set of parts of Q, the concerned model concentrates
and distributes uniformely all the probability measure on the 1th
level. In these conditions, if Ej, is a fixed subset of Q, we have

Pr(;X*=E,)=J0 if card(E,)+#l
1/(m) if card(E,)=1 (1)
1
This model respects strictly the cardinal characteristics (m=2",
1=2""%) of (Q,E).
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For i=2, the probability measure is shared by the different levels
of the simplex 28, This form of the random model comprises two steps.
The former consists of choosing a level e which is defined by Po(Q)
and the latter consists in choosing one element of this level.

For the level choice, consider the integer random variable L which
labells a random level of 2Q. We set for Pr(L=e), the following
binomial probability

Pr(L=e)= (DA% (1-1)™¢, (2)
where A is the proportion 1/m=2"F (in our case).

Now, for the random choice of an element at a given level e, the
probability (2) is uniformely distributed on the set of the (@)
points. Each of which represents an e subset of Q. Therefore, each
point of the latter is provided by the probability AS(1-A)™€., 1In
these conditions, if Eg is a given part of Q of which the cardinality
is ¢, we have

Pr [2X*=Eo/card(Eo)=c]=xc(l_l) m-c (3)

For i=3, the random model comprises three steps. On the contrary of
the two previous models where Q is fixed, consider here that 3;0* is
a random set. But, the randomness concerns only the cardinality M of
30*. We assume that M is an integer random variable which follows a
Poisson distribution of parameter m

P
m -m
) e 7, (4)

for all p belonging to the set of the integer numbers.

Pr (M=p)=

Conditionnally to a given value p, of M, let us introduce a set O,
of which the cardinality is p, and that we can denote by

00={1,2, .+ sis...,Po} (5)

Then, the two following steps of the model are entirely analogous to
those considered for the preceding model. More precisely, consider
a vertex of the level e of the simplex ZQ" To the latter -which
represents a e subset of O,- we assign the probability A®(1-A)P,7€,
where A=1/m, keeps exactly the same value as above. Therefore, the
random choice of the e 1level will be done with the binomial
probability

(®yae (1-1) P, e, (6)
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Now let us make clear the random models of the second family where
the cartesian structure of the data (£,E) is preserved. To this
purpose, instead of considering the definition of the model at the
level of an abstract set associated to 2, consider the latter one at

the level of the yariable set, More precisely, each form of the
random model can be decomposed into two steps. The former consists
of determining a subset of a component set. If {i’1,i";,...,1'p}
denotes such a subset ; then, only the variables (Xjr1 ,Xjr3 + .../ Xy

) have to be instanciated. In these conditions, all the 2B

instanciations are considered with the same probability 1/2P,
according to the second step of the random model. The random
construction of the above {i’l,i’z,...,i’p} is associated to the
subset {i;,i,...,iy} of ({1,2,...,i,...,n} which defines the
specified components of the pinpoint cylinder E. The three preceding
models can be considered here, since {ij;,iz,...,i,} is a free subset
of the set (1,2,...,1i,...,n}. Let us precise once more in the latter
context the second random model, which will have to be considered
below.

For this model, n is fixed. Denoting by {n} the set
{1,2,...,i,...,n}, the probability measure is distributed on the
whole set of all subsets of {n} : 2{™. The p®! level of the simplex
2{r} _yhich is defined by the whole set of p-subsets of {n}- is
provided by the binomial probability

()PP (1-p) 7P, (7)
0<p<n, where p is the ratio r/n. On the other hand, the latter

probability (7) is uniformely distributed on the (g) vertices of the
level p ; each representing a p subset of {n}.

In order to study the two main problems -gvaluation or recognition-
the one or the other of the preceding random models will be
considered. The proposed evaluation will be the assumed value of the
mathematical expectation of the number of solutions of a SAT problem,
under a probabilistic hypothesis of no relation or independence,
between the random structures respectively associated to clauses. In
the recognition aspect a random generation -one by one- of the latter
structures 1is concieved. Then, a random integer variable K 1is
introduced. It is defined by the number of elements -representing
clauses- for which the system becomes contradictory. The
probabilistic law of K and its mathematical expectation are studied.
Depending on the problem to be handled, different approaches are
considered. One of them is based on the ‘inclusion and exclusion’
formula. In the another one [personal communication suggested by F.
Daudé (Ph D researcher)] a Markow process is associated to the above
mentionned random generation of clauses. In the latest approach, to
a given point ® of the logical cube £, is associated an event Akm
which expresses the non covering of ® by the union of k independent
random pinpoint cylinders.
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The distinction between the random number of solutions N* and the
above random variable K, will explain the results obtained in the
experimental verification ([see section 3.3. of Simon & Dubois 1989]
already mentionned in the general introduction (see the above section
I).

IV.2. Average number of solutions of a SAT problem in the framework
of statistical hypothasis of no relation

IV.2.1. Introduction

With the formalism introduced in section II.4, we have, relatively
to a set {Ej/lsjgk} of pinpoint cylinders provided from the logical
cube {0,1}", to give an estimation of

ﬁ;card( U E5), (8)
1<3igk

where N=2"-N, in the context of a random model of probabilistic
mutual independence between the different pinpoint cylinders. More
precisely, to the sequence {Ej/1g£jgk}, we will associate the one or
the other of the two following random sequences

(1X*3/1<3gk) (9)
and
{iE*j/ISjsk} (10)

where the free random subset ;X*; (resp. the random pinpoint cylinder
iE*4) is associated to E4, according to the form i of the random model
(see the preceding section IV.2.1.), 1<i<3, 1<j<k. On the other hand,
the ;X*; of (9) [resp. the ;E*; of (10)] are mutually independent. In
these conditions, for a given i, 1<i<3, we associate to N (cf. (8)
above] one of the two following random variables

~v
iN, *=card ( U iX*j)
1<igk (11)
and
iN*=card( U 1E*j) ’
1<igk (12)

where the latter one is more accurate in its conception than the
former one. But in fact, we will establish that the assumed value of
the mathematical expectation of the random variable associated to N
does not depend on the chosen random model. Therefore, if E denotes
the mathematical expectation, we have a common value of

~y ~nS
E(iN’*)=E (yN*), (13)
for all i=1,2, or 3. Then consider the two general expressions
U{X*;/1<igk} (14)

and .
U{E*4/1<3gk}, (15)



_32_
which respectively refer to (9) and (10) above. Notice that the case
(15) where the random structures are pinpoint cylinders, is more
difficult to study. But, as said above, it is more accurate. Then,
the latter will be considered, whenever it is tractable. If we not
have to specify between (14) and (15) consider the most general
expression

U{G*3/1<3gk) (16)

The first approach for determining the mathematical expectation of
the cardinality of the latter random set, is based on the ‘inclusion
and exclusion’ formula. Then, by taking into account the linearity
of the expectation, it suffices to be able to evaluate expressions
of the following type

E[card(G*jl nG*jz 0 nG*jh)] (17}

-where {3j1,32,....Jn} 1is a fixed h- subset of the subscript set
{1,2,...,k}, 1ghgk.

More deeply, we will begin by recalling the probability distributions
of card(G* () H*) ; and in particular, their respective means and
variances (see section IV.2.2.,). Next, and by recurrence, we will
clearly establish the value assumed by (17), whatever is the nature
of {G*4/1<jgk}, according to above. For this purpose, we begin by
considering the most interesting case where the G*4,1<j<k, are random
pinpoint c¢ylinders (see section IV.2.3.). In section IV.2.4. an
approximation of the probability distribution of the random variable

card(G*; [} G*, N ... N G*p) (18)
is proposed in the simplest random model.

In section IV.2.5. the above mentionned approach by Markov process
is exploited. In this framework, the first random model (see i=1,
section IV.1) is considered in order to determine E(N*). On the other
hand, the exact -and by approximation- probability distribution of
the random variable ﬁ*, is apprehended.

The latest approach -above mentionned in section IV.1l- is studied in
section IV.2.6. The latter, where to each vertex ® of the logical
cube {0,1}", is associated the event Akm to not be covered by the
union (16), will be reconsidered in section IV.3. In the latter the
recognition problem will be studied from statistical point of view.
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IV.2.2. Probability distribution of card(G*nH¥*)

Let us begin by considering that (G*,H*) is a couple of independent
random subsets, associated to a couple (G,H) of given subsets of Q.
Denote g for card(G), h for card(H) and m for card{(f). On the other
hand, to be more precise, we will designate by (;G*,;H*) the preceding
random couple of independent subsets, if i is the number of the
random model considered, 1gig3 (see section IV.1. above). Thus, to
the raw index

s(G,H)=card (¢ 0\ H), (19)
we associate the random raw index

S;(G,H)=card(;G* Y ;H*), (20)

1<i<3. In [Lerman 1981] the following results are established

(1) The probability distribution of S;(G,H) 1is a hypergoemetric
probability law, of which the parameters are (m,g,h). More clearly

G T8y by -k,

Pr(S; (G, H)=s]= =s o 2 YN -s T o)
M m
h J

max (0, h+g-m)<s<min(g, h).

On the other hand, the mean and the variance of S$;(G,H) can be put
in the following form

E[S; (G, H) ]=mym (22)
and
(3 .
var(S; (G,H) 1= M _ ymi, (23)
m-1
where 7= jL (resp.n= jL) and ¥=1-yY (resp. N=1-1).
m m

(ii) The probability distribution of S,(G,H) is binomial with the
parameters (m,y). We have

PI (S, (G, H)=s]=(J)n°F"®, (24)
0<sgm, where w=ym and W=1-r. This implies
E[S5 (G, H) ]=mr=myn (25)

and
var [S, (G, H) ]=mR (1-%) =mym (1-1M) (26)
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(iii) The probability distribution of S3(G,H) is a Poisson
distribution with the parameter ma=my. In these conditions, we have

Pr (S5 (G, H)=s]=imr) ™, (27)

51

E[S3(G,H))=var([S;(G,H) ]=n=x. (28)

Let us now consider the more interesting case where (G*,H*) is a
couple of independent pinpoint cylinders associated to an observed
couple (G,H) of pinpoint cylinders belonging to the logical cube
{0,11", Therefore, random models of the second family have to be
taken into account. Here, we will content ourselves with considering
the second version of the random model, above described [see below
expression (6} of section 1IV.1]. In these conditions, let wus
designate by

[(ill--vlir)l(jll---ljs)] (29)

the couple of the component sets, respectively specified in the
couple (G,H) of the given pinpoint cylinders. On the other hand, let
us denote by (I*;,J*;) the two independent random subsets of
{n}={1,2,...,1i,...,n}, according to the concerned random model.
Then; and strictly, card(I*; N J*3) follows a binomial distribution
B(n,po), wheref-r/n and 6=s/n. But, in the context of our problem p
and 0 are enough small, in order to admit the excellent approximation
of the above binomial distribution by the Poisson distribution with
the parameter WM=po. Clearly, consider

P
| o
Pl

Prcard(I*, [] J*,)=p]= , (30)

for all p integer, p>0.

For simpicity notations, let us denote by P the random integer
variable card(I*, { Y J*;). On the other hand, the random pinpoint
cylinder G* (resp. H*) is associated to I*;(resp.J*;) as described
in section IV.1l. Let us recall that if {179, 00l pr y
(resp.{j"1,...+,3"g+}) denotes a realization of I*,(resp. J*,) ; then,
only the variables (Xir1 ,Xilz, “ . 'Xi'f") [resp. (leq 'Xj"L' N ,les‘) ] havg
to be instanciated for G* (resp. H*). On the other hand, all the 2*

(resp. 2%") instanciations are considered with the same probability
1/2% (resp. 1/2%) for the random definition of G*(resp. H*).

Relative to this latter model, let us designate by T the random
variable card(G* () H*). An assumed value O of P, leads necessary to
the following value of T

2n—r-s’ (31)
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which is obtained only in this case. Therefore, we have

Pr (T=2""T"3%)=¢" M (32)

A given value p strictly positive of P can either lead to a zero
value or to the value 27" ¥ 3*P, for T. The former (resp. the latter)
case occurs in case of disjunction (resp. non empty intersection)
between G* and H*. The first circumstance occurs with the probability
(1-27P) : and the second one, with the complementary probability 27P

Finally, by taking into account the Poisson distribution of P [cf.
(30) above].

Pr (T=0)=X KP e" Hx (1-27P)

Py
=1-e W2, (33)
p
Pr (T=2""{£¥s-p)) - t eHx 27P
Pl
=eM/ 24 \T‘/Z)Pe‘“”‘], (34)
Pl

for p>0. Concerning the latter relation, notice that the case where
p assumes the zero value [see (32) above], is integrated in (34).

The calculations of mathematical expectation and second absolute
moment of the random variable T give

E(T)=2R"I"8 (35)
and

E(T2)=2U0-1-8) . o, (36)
We deduce

var (T)=22(n"I=8) (gH_1) (37)

By this way, the expression (56) of the section III.l1l.3. -concieved
in a very different context- is justified. On the other hand, it is
of importance to notice that the mean defined by the mathematical
expectation

E[card(G* [} H*)) (38)
does not depend on the chosen random model ; since the common value

myn [see expressions (22), (25) and (28) above] can be written as
follows

mmzzn—r—s (39))
if m=2", y=2""T/20=2"T and n=2""%/2"=2"%,
As a consequence, the assumed value of the mathematical expectation

of expression (18) above, is invariant whatever is the chosen random
model. Therefore, this invariance will be preserved for E(N*),.
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IV.2.3. Evaluation by racurrence of E[card(E*; ., .N E*)] and
calculation of E (N¥*),

Let us recall that {E*j/lsjsk} is a sequence of independent random
pinpoint cylinders, associate to an observed one {Ej/lsjsk}, in the
framework of a given random model, among those presented [cf. § IV.1.
and § IV.2.1.]. Suppose that Ey is a pinpoint cylinder of order Iy
(ry variables are instanciated), lgjgk. Thus, the volume of Ej is
2775, 1<jgk. Now, we assume to have established that

Elcard(E*; (N Ex, | () E*y)1=2""(F1¥Fo+e-4T5) (40

for 2¢ig3j-1. Then, we are going to prove the latter relation for i=j,.
We may write

Elcard(E*¥; [V E*; N...NE*y]=
I Elcard(Ex; N...N E*y; N E*xp/caraer V... NE* ;)=27"3)
x Pricard(E* M\ ... [} E*y_1)=2""%] ;(41)

because, 2%°7° is necessarily the general form of an intersection
cardinal of pinpoint cylinders [see (12) of section II.1l]. Now, E*;
n...N E*j_.; and E*y are two independent random pinpoint cylinders
of which the orders are respectively s and ry, for the above
conditional mathematical expectation. By taking into account the
results obtained in the preceding section IV.2.2., the value of the
mathematical expectation which concerns the second member of (41) is:

2n—s—rj,

therefore, the latter second member can be reduced to
2775 Efcard(E* N...[1 E*y)]. (42)

By considering the recurrence hypothesis {see (40) above], we obtain
the expected result, namely

E[card(E*; [)....() E*j)1=2""F17F27--- 75 (43)

This result does not depend on the random model considered above. It
enables us to determine E(N*) [see (13) above) by means of the
inclusion and exclusion formula {see (20), section II.3]. We have

E(’f‘i*)= 2 (_1)h+1'Ezn—frj4+...+rjk), (44)
Khgk $41,.. I8
where ry, ,1gigh, is the order of the pinpoint cylinder Ej
v
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We may recognize from (44), by considering the expansion of the
second member,

~J
E(N*)=2"[1- II (1~27%3)] (45)
1<gk

The latter corresponds exactly to theAFesult proposed in [Simon &
Dubois 1989), where N* is denotes by N ; but in our notations the
symbol ~ has been systematically devoted to the complementation
operation.

The latter referenced authors are surprised to notice that

E(N*)=[ Il (1-27%53y 12" (46)
1<3gk

does not depend on the distribution of the variables X;, on the
different clauses. As a matter of fact, this result is clearly
foreseeable ; because, the random model of no relation hypothesis,
only specifies the number of variables instanciated per clause. But,
the number of clauses where a given variable is instanciated, does
not intervene. A random model constrained by the both latter aspects,
can be represented by a random incidence table -comprising zéro- one
boolean values -with k rows and n columns, of which the margins are
fixed. A row (resp. column) margin is the number of elements of which
the value is equal to 1 in the concerned row (resp. column). An
assumed value equal to 1 (resp. 0) at the intersection of the jth row
and the i" column, does mean that the variable X; has (resp. has not)
to be instanciated in the jth clause.

The analysis of such random model is much more difficult than the
previous ones. The latter may lead to a value of E(N*) which depends
on both margins of the random incidence table : and then, the
distributions of the variables X;, 1<ign, will be taken into account.
However, one may wonder whether the expected results will give more
relevant information concerning the problem handled here. For this
one, it 1is mainly in question to study the reduction of the
computational complexity, that we can reach, faced with
satisfiability instances.

Relative to our estimation problems, henceforth, suppose -without
loss of generality with respect the computational complexity- that
all the ry, 1£3gk, are mutually equal to r. In these conditions the
above relation (46) becomes

E(N*)=(1-2"F)k x 2P (47)
E(N*) is an increasing function with respect to r and a decreasing
function with respect to k. On the contrary, concerning the average

of the space {0,1}" filling

E(N*)=[1-(1-2"F)k] x 2P (48)
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is a decreasing (resp. increasing) function with respect to r (resp.
k).

Let us now return to the evaluation of the range [see (27) section
I1I1.1.2.] of the both sides bounding (24) of section II.3. We may
calculate its mathematical expectation under probabilistic
independence hypothesis, according to one among the above introduced
random models [see section IV.l1]. By considering the preceding
relation (43), we have

- - n-2pr
E(S*2p-1 S*2p)—(q92 (49)
Denote by My, the first member of (49). Then, it is easy to see that
Mz (p+1) (k~2p) (k-2p-1)

= 272r ) (50)
Mgy, (2p+1) (2p+2)

We may establish that if p is greater than or equal to k/2r+1, then
the latter second member is strictly lower to unity. A “large” value
of r assumes a “small” value of (50) above. More precisely for the
both preceding points, the greater is r, the smaller is the minimum
value of p -expressed as a portion of k- from which the mathematical
expectation of the random interval ([S*;, S*3,;] range, becomes a
decreasing function of p.

IV.2.4. Probability distribution of card(;X*; () ;x*, (1...[)x*,)

Now, consider the independence or no relation hypothesis which uses
the first version of the random model [see section IV.1 and (9) of
section IV.Z2.1). Let us precise once more that (;X*y,1X*,,...,1X%)
—or more briefly- (X*;,...,X*;) is a sequence of independent randomm
subsets of £, having the same cardinality, denoted by 1. 1 can be
put equal to the volume 2"T of a given pinpoint cylinder and let us
designate by m the volume 2" of the space Q={0,1}". P; (), denoting
the set of all parts of £, having the same cardinality 1,
(X*1,...,X*,) is a sequence of independent random elements of P; (Q);
the latter, being provided by an uniform probability measure. Let us
recall that card[Pl(Qﬂ=0€) .

Property 1. For p, integer included in the interval [max(0,hl-m),1],
we have

Pricard(x*; N ... ) x*h);p};(},’)[(},)/(",',‘)]h‘l(su
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The result given in (51) corresponds to an approximation by excess.
We will be content with it ; because, an exact result seems
inextricable to be set up. In order to obtain (51), choose
arbitrarily a value Xol for the random subset X%. Xol is an l-subset
of Q. In these conditions, the necessary and sufficient condition to
have

card(x% N x*, N ... N x*)2p (52)

is that there exists a p-subset of Xol, included in each random subset
X*5,X*3,...,X*,. If a such p-subset is specified, the probability of
the latter mutual inclusion is

Uy, M ih-1

P)/(P)] (53)

However, the chosen part of X°1, of which the cardinality is p, has
notto bp specified. Strictly, we have to a%Fly the inclusion and
exclusion formula, relatively to the set Py(X";) of all (L) p-subsets
of Xol. Because, several elements of the set Pp(xol) can be altogether
included in each X*4, 2<j<h. By neglecting the inclusion probability
of at least two elements of Pp(xol) in the context of the probability
inclusion of at least one element, we cobtain the announced result
(51) :; which does not depend on the occured value Xol of X*;.

[(

Now, we are attempted to propose an approximation by default of the
second member of (51) which exceeds stlightly the probability
expressed in the first member. The lower is the value of p, the more
accurate is our proposed approximation, which can be expressed as
follows

Visp
(P)x (54)

where we denote by A the quantity
(1/m)b-l=p-r(h-1)

In these conditions, denoting by Y the integer random variable
defined by card(X*; N...M\ X*) [see first member of (51), the
following approximation

1
Pr(Y)p)E(P)Kp (55)

will be as much as admitted, that by this way, a probability
distribution is defined, for which the assumed value of the
mathematical expectation E(Y), is exactly given by the correspondent
value of the second member of (43). That is to say, with the adopted
notations, it is necessary to obtain from (55)

Pr(Y=q)>0, for 0gggl
)} Pr (Y=q) =1
0gqsl |
E(Y)=1A=20"hr (56)
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Property 2. If h is greater than or equal to n/r, then the numbers
{np=[(b)lp—(%ﬂlp+1]/0spsl} are positive and determine a probability
distribution of an integer random variable Y, of which the
mathematical expectation is equal to 1lA.

M, is increasing with respect to p. The positiveness of %y is acquired
iff h>n/r. The sum of the Ty quantities, 0<p<l, can be written

Im, = 1+ - l-11=1 (57)
0gp gt
On the other hand, we have
E(Y)=Z Pr(Y21)=L =, (58)
p21 p21

By taking into account the expression (55), we obtain
E(Y)=(1+A)1-1
Iyh-1_4_ tyh-1
~1+ & -1= =
~1 lx(m) 1 lx(m) ’ (59)

because, generally, A is enough small. The last result (59) can be
translated by 2°°P%, in the context of our problem where m=2" and 1=2"""

Remarks., The results that we have just obtained with the above
properties 1 and 2, correspond to approximations. The latter become
mainly valid for h enough large. Thus, concerning the property 2, we
reach coherence since the value n/r for h. Let us mention that -in
a very different context- the probability distribution of card(;X*,
N 1x*, N 1X*3) (h=3) has been very exactly determined [Lerman,
research report Irisa, Rennes 1984].

Now, we will not be restricted by the value of h, if we consider a
more “fuzzy” random model, where, instead of the random subset ;X*y,
a sequence of 1 independent random points of the space £, is
considered, 1<j<h. In these conditions, the probability for a given
point of €, to belong to the intersection between the h independent
random sequences -respectively associated to the ;X*y, 1<j<h,- is
equal to (1/m). Then the random number Z of points of Q, falling in
the preceding intersection, follows a Poisson distribution, since nm
is enough large and (l/m)h, enough small. The parameter of the
preceding distribution is precisely 1A, where A=(1/m)P"t,
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IV.2.5. An interpretation in terms of a Markov chain

Such interpretation has been communicated to wus by F. Daudé
(researcher preparing a PhD thesis in data classification). The basic
random model concerns the first form (i=1) presented in section IV.1.
For the latter, imagine a sequence (X*;,X*;,...,X*;_1,X*,) of
independent random subsets of {2, having a common cardinality 1. We
will be interested in the random amount of increase of the filling
of Q, between two consecutive random subsets X*,_; and X*,. Let us
designate here by Sg the random cardinal

card(X*l lJ X*z U .« v U X*g)l (60)

then, we have for Pr(Sy=x+u/S,_1=x) the following hypergeometric
probability

(m—x)( X )
Pr (Sp=x+u/Sp_1=x)=\ U 1-1U (61)
&ﬂn

which leads to v >

E(Sy=Sh-1/Sp-1)= (/m _S\’l—l)b (62)
m

then

E(Sh/sh_1)=sh_1- L Sp-1t+1, (63)
m

from which we denote by reccurrence
E(Sp)=m[1-(1- L )P
m
=27[1-(1-2"%) 0y, (64)
for m=2" and 1=2""F,

Notice that the last result corresponds exactly to the above relation
(48) .

The preceding approach enables us to give the exact form of the
probability distribution of S,. Remind that Sy has been denoted by
1N’ * [see expression (11), section IV.2.1.]. We have S;=1. Now, let
us designate by Ty the difference (Spy~Sy-;). Then, the probability of
a given configuration (1,t3,...,tyx) for (S;,T,,...,Tx) can be put into
the following form

pP(l,ta,...,tx)=Pr(To=t;,, Ta=t3, ..., Tx=ty)

o + t4tpt ety
kmk L)(tz ,tg,..»,tx)?.g«s( E‘tk 1> ) (65)

(v
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where we have denoted by t the sum ty+...+ty and where t; is put equal
to 1, by construction. On the other hand, (tz,tg;t...,tk) indicates
a multinomial coefficient. In these conditions, we have

Pr(Sx=1+t)=Z{p(1l,to, ..., tx)/ (Lo, ..., tx)€ Pr_1(t)}, (66)

where Py_; (t) is the set of all vectors with (k-1) integer components,
where each component is comprised between 0 and 1 and where the sum
of the components is equal to t.

In order to obtain the latter result (65), consider the product of
{k-1) hypergeometric probabilities, where the htg 2g¢hgk, corresponds
exactly to

Pr (Th=th/T2=t2, PR ’Th-l=th—1)
(m—t. _t&_b.h. . —t“‘i)(“t”ﬁ,'_i—,}; +th-1
m
(7)

From (64) one may directly obtain

) (66

E(Ty)=(1- )bl
m
=(1-27"T)h-1 y pn-r (67)

which represents a portion of 27T, which decreases exponentially
with respect to h.

In order to simplify the expression (65), it is interesting to
consider the Poisson distribution of the above (66) hypergocemetric
probability. For this purpose, set

Ap = Catto +.. o+th 1<hgk, (68)
m ’
where t; is equal to 1 by construction. On the other hand, introduce
the parameters Wp=1A; for h=1,2,...,k ; and finally, instead of the
values ty, 1lghgk, consider the deduced values

sp=1-ty, 1lghgk (69)

then, the above probability (65) can be approximated by the following
probability

$ +$Z+...+S

(h+n%"°+H_)1

(KP4 )
- e 1'% -

(70)
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Notice that (70) is not a Poisson probability, because the quantity
(Hi+ Ip+. ..+ 1) 1s directly related to the value of (sy+sp+...+sSkx-1).
But, we may establish that the assumed value of the mathematical

expectation of the random variable associated to (Uj+Hot+...+H_1) 1is
k1-m[1- L )% (71)
m

which is in accordance with the above relation (48), for what it
concerns the mathematical expectation of the random variable
associated to (sy+sp+...+sy). The latter corresponds to kl-Sx (or kl-
N*). In these conditions, the question arises whether a Poisson
distribution can approximate the probability law of N*. We are going
to try to answer this question in the next section.

IV.2.6. An interpretation in terms of Bernoulli variables

Consider a fixed point ®O=(®W,...,W1,...,0g) of the logical space
Q={0,1}" and let be E* a random pinpoint cylinder of order r,
obtained according to the first form of the random model. More
precisely, the subset {ij;,i,,...,i,} of the instanciated components
is an element chosen in the set P,([n]) -provided by an uniform
probability measure- of all r-subsets, of the set {1,2,...,1i,...,n}
that we have denoted by [n]. On the other hand, the 2f possible
instanciations are considered with a common probability equal to
27f, Notice that ® is not reached by E* iff at least one of the
different random components specified in E* has a different value
from the correspondent one in ®. Therefore, by using the inclusion
and exclusion formula, we have

Pr{w¢ Ex}=r x ! (xR T
. M-
=1- 1 =1-4 =1- 1 (72)
alf‘ 2"“ m

Notice that this probability is the same in the more relaxed case,
where instead of random pinpoint cylinder E*, we have a “free” random
subset of Q, of which the cardinality is 1=2"7F,

Now, consider as in (10) above, a sequence {Ej*/lsjsk} of independent
pinpoint cylinders, with a common order r. Then, define the event

*

A (w)={o ¢ Ag\(pnj }

(73)

Taking into account the independence between the Ej*, 1<jgk, we have
from (72)

Pr[AX(@) 1= (1-27F)k=(1- |)¥ (74)
m
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Of course, the same result holds for a sequence {Xj*/lsjsk} -as in
(9) above- of independent “free” subsets, with a common cardinality
1=2"7%,

Let us now introduce the random boolean variables, respectively
associated to the events A¥(w),weQ. We will denote by o(k,®) the
random boolean (or Bernoulli) variable, which indicates the event
Ak(m) a(k,m)=1(resp.0) iff. Ak(m) occurs (resp. does not occur) ®EQ.
Then random number of solutions -that we can designate by N* (k) (see
section IV.2.1.) can be put in the following form

N* (k) =Z{a (k, @) /OENQ} (75)

By considering the more flexible random model where a sequence as
(9) (section IV.2.1.) 1is <considered, we may 1introduce the
corresponding event to (73)

K U 4
B = =~ ; 7
(@) ={w¢ A ex X! (76)

and then, by denoting P(k,®) the indicatory function of Bk (w), we
have - according to expression (11) (section IV.2.1.)-

N’ * (k) =Z{B (k,®) /0EQ} (77)

The result obtained in (74) above, leads -by means of (75) and (77)-
very directly to

E[N* (k) ]=E [N’ * (k) 1=2" (1-27F)¥

=m (1~ )X (78)
m
Now, consider an intersection of e events such Ak(m) [resp.Bk(m)]
respectively associated to e distinct points @, ®;,...,®, of Q. Let

us designate by Ak(ml,mz,...,me) [resp. Bk(ml,...,me)] the new event:
AKX (w,, ..., 0. =1{a¥ (wy) /1<dge} (79)
X —((rk
[resp.BX(®q, ..., 0.)={B* (0g) /1<d<e}  (80))

The probability of the latter Bk(ml,...,me) event does not depend on
the specificity of the elements of the subset {®gy/1<dge}. More
precisely, we have for the first form of the random model,
k )
Pr{BX(0,,...,0)1=] \ 1 1k
(7))
=[lML—tNWb4-1)-"(an‘L—e»+1)Jk (81)
MAM—3) « «« (/m—e4+1)

Consider the function g(e) determined by the ratio (nge,/(g). The
interval definition of g(e) is [1, (m-1)}. On the latter, q(e) is a
descreasing function and we have
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q(l)=M-1l = 1-2F

m
q(m- l)=1/(L) (82)

If e is small enough, a good approximation of g(e) by excess, 1is
given by g%, where gq represents q(l).

On the contrary of the BX (®1,...,0,) event case, the probability of
the event AK (03, ...,0,) does depend on the configuration of the
subset {Wgy/1<d<e} of vertices of . As a matter of fact, we have seen
that the second absolute moment of N*(2) is different from that one,
of N’*(2) [see expression (37) by comparison with expressions
(23), (26) and (28), section 1IV.2.2.]. But relative to the case where
the randomness concerns pinpoint cylinde{§, con51der instead of a
given (®W;,...,Wg), & random sequence (wl,...,me ) of 1ndePendent
points from Q={0,1}". For a fixed subsequence (wdl,...,mds), the
probability for each of its elements to be covered by a random
pinpoint cylinder E* of order r, can be expressed as follows

Prif\{{0aq" € E*}/1<qss}]

LPr (E*=E)xPr[{}{{0gq,' € E}/1gqg¢s}}], (83)

aesz(
where we have denoted by Q(r) the set of all pinpoint cylinders of
order r. The cardinality of Q(r) is (?) 2% and then, the value of
the second member of (83) is equal to

(275 (84)

Therefore, by inclusion and exc%usion formula, we deduce the
probability C,, for at least one ®y ,1<d<e, to be covered by E*

Co=e27-(§) (27 24. ..+ (-1 §) (27F)° ; (85)

and then, the complementary probability De can be written
Dg=1-Co=(1-27"F)° (86)

hence, we retrieve the above expression qe, where g=q(l) [see above].

The latter probability D, can be interpreted as the mean of
Ak(ml,...,we) over the cartesian power Q¢ space. In these conditions,
it is of interest to study the probability distribution of the random
integer variable N’* (k) {[see (77) abovel. The latter corresponds to
the complementary with respect 2%, of the random variable Sk
considered in section IV.2.5., But the obtained relations (65), (66)
and even (70) make intraciable the probability law.
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The above relation (81) makes clear that the events of the family

(B¥(w) /0 € Q) (87)
are interchangeable that is to say, if (Wi, ®,,...,®,) 1s a sequence
of mutual distinct elements of {2, the probability of the above event
k
B (01, ...,0), does only depend on the number e. This

circumstance enables to establish the following relation
U+ .
Pr(N‘*(k)=ul=Z (-1)3( 7.y ("I )pu+y) (88)
o\<j\<m_u U»{-ar U
where p(u+j) represents in our context, [q(u+j)]k [see above, after
relation (81).

The interchangeability property for the above family (87) permits to
envisage the known approximation of the probability law of N’=*(k),
by Poisson distribution [Y.S. Show & H. Teicher 1978). But, in order
to establish the validity of such approximation, the following
sufficient condition is required

Osnﬂslp(s)slos, 1<s<m, (89)

where A, is a finite positive bounded number and where we have denoted
by ml®) the s*® factorial power of m ; namely, m(m-1)...{m-s+l). In
our context the expression nﬂslp(s) becomes

{s)
(m—l)ls][ (m—{) Jk‘l (90)
,m_[.SJ
But, there is no garantee for a finite limiting behavior of (90).
Consider s=1 and obtain the corresponding following expression for
(90)

m(1- bk (91)
m
which precisely represents the mathematical expectation of N’/* (k).
The assumed value of the latter tends to infinity, for a fixed k and
for n -> oo.

It is easy to deduce from (76) that

tel
E{B(k, 0)B(k,0")]1=] (M—t) 1k (92)
mbCZl
and then, by considering (77) and by denoting ¥y=1/m,

var [N’ * (k) J=m (1-7) X+m (m-1) (1-7) #*-m? (1-7y) 2%
=m (1-7) *[1-(1-1) ¥] (93)

It remains interesting to study -at least experimentally~- the
probability distribution of the standardized random variable
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N’ * (k) -E(N’*(k)) N’ * (k) -m (1-1) ¥

(34)

(var (N * () 1) 7%~ L man ) 1-(1-Y 1§72

Our problem [see the interpretation given in section IV.2.5.] can be
related to the classical occupancy problem [see Feller, vol. 1, chap.
IV, 1964], for which, each subset Xj*, contains exactly one element.

IV.3. Average number of clauses to reach the non satisfiability of
a random system

IV.3.1. Introduction of a relevant random variable

Consider the first form of the probabilistic hypothesis of no
relation [see (9) with i=1 of section IV.2.1.] that we have clearly
dealt with, above and particularily, in sections 12;2.5. and IV.2.6.
We have established by different approaches that E[N’*(k)]=m[l—(1—j%yq
[see (78) above]l. Now, following Daudé’s suggestion, 1let us be
interested in the assumed value k, of the number of clauses k, for
which the difference between the volume m=2" of the whole space Q
and the cardinality of U{Xj*/szsk), is strictly less than unity.
Thus, ko, is the lowest value of k for which

E(N)=m[1-(1- b )¥I>m-1 (95)
m
By denoting 1, the logarithm function, we have

Inm
k > R (96)
ln m-1ln{(m-1)
-1ln 2
k > ~ 2" 2n 2 ; (97)
= =
1n(1-27%)

where the higher is r, the more accurate is the latter approximation.
Thus, we retrieve the proposed value of k, [see Simon & Dubois 1989]
-ln 2

Ko=nx [ 1=n ~ 2%ln2, (98)
1n(1-27%)
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It is a mistake to beleive that the assumed value of k, provides the
average of the random number defined by the minimum number of random
subsets Xj*of which the union covers the whole space 2. Remin d that
the latter situation corresponds -in our representation- to the non
satisfiability reaching. Therefore, we have to clearly distinguish
between the preceding random variable K -that we will formally
precise below- and the value k, of the subscript k from which the
average value E[ﬁ’*(k)] of the space filling tends to cover the
entire space Q. This distinction permits to understand why the
assumed value of the mathematical expectation E(K) of the relevant
random variable K, is perceptibly lower than k,. The latter
circumstance explains the results obtained in the table 1 of section
3.3. of [Simon & Dubois 1989] concerning the “experimental
verification”.

Notice that our problem is in fact a generalization of the classical
problem of “waiting times in sampling with replacement” {see Feller,
vol.l, chap. IX, 1964], where 1 has to be considered equal to unity
and this corresponds to r=n. In these conditions, according to the
second member of (98), we obtain

ko (n,r=n)=2" 1n 27 = n2? 1n 2 (99)

Rigorously speaking the same error of interpretation remains in the
latest mentionned reference. However, the approximation of E(K) by
ko is good in the considered case, because 1l=1. More generally, and
according to the results obtained in the above mentionned table, the
approximation by excess of E(K) by ko, is as especially good as 1 is
small ; that is to say, as r/n is large (1=2""F, rgn).

Let us now present formally the random variable K in the exact
framework of a non finite sequence {Ej*/jzl} of independent pinpoint
cylinders, having the same order r. An observation of such random
variable is defined by

k=min{h/|} {E4/1<jch}=Q, (100)

N * .
where Ej 1s an occurrence of Ey, 1<j<h.

IV.3.2. Average number of random pinpoint cylinders covering the
entire space.

The above (74) and (86) obtained relations enable us to take into
consideration the fundamental interest of the more flexible case,
where we have a non finite sequence {X4*/3j21l} of independent random
subsets of , with the same cardinality 1=2""F, Reconsider here the
random variable K that we have just introduced above [see around
expression (100). The event {K>k} expresses that at least one of the
previous events By (®w) [see (76)] occurs. By using the inclusion and
exclusion formula we may write
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Pr{K>k} = mqlk—( )q2K +..-+(_1)s+1( )q8k+"‘
R L GG L (101)

The general term of the second member expansion can be written
m m- L -
(Dak=C" 5 1! (102)

By this way, the above relation (101) becomes

Pr{k>k}=(’”b—l)q1k'l-(7ngl )qzk—1+...+(_1)s+1( ”n;'L)qsk—l
v (- m-1 ) Qo1 <7t (103)

m-1
The latter probability is necessarily equal to unity if k<m/1=2%F. We
have effectively verified this property for m=8, 1=2 and k=2.

By admitting the above considered approximation [see around
expressions (81) and (82) above] of gg by q® (where g=1-(l-m)), we
have

Pr{Kgk}=~(1-gt )™ 1 (104)
As expected, the latter tends to unity as n tends to infinity.
By exploiting the expression

E(K)=Z{Pr{K>h}/h21},

we have to sum the expression in the right member of (103) from k=0,
in order to obtain

EK)=(M™b) 1 - (m;L) 1 to..
9,01—9,) (o (1=
e em=1, 1 +( v

g —
m—l)qs(1 qs)l

R S D " (105)
We also have from (101) Im-1 (1 “%-1)
E®=2 (- ) (106)
1<s<m~1 q_.q
g

And, by taking into account the above approximation of gg by g°, the
relation (105) can be written

EK)= I (-1 ™y 1

K 5\\"m—t 1— (19

(107)
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In sprite of their computational complexity it is of interest to
experiment the relations (104) (105) and (106). For this purpose,
the binomial coefficient

-1
()= 1 G
’ 0gig3-1

will be determined from its logarithm.

IV.3.3. A recurrence formula for the probability distribution of K

Relative to the above considered sequence {Xj*/j>l} of independent
random subsets of £, with the same cardinality 1, let us designate
by Pm(k-1,u) the probability of exact covering of a specified subset
of Q, of which the cardinality is u, by U{Xj*/lsjsk}. If k=2, this
probability is null for u different from 1. Then, consider k2>3. We
have

1gugmin{ (k-1)1,m] (108)

Now, if we denote by Qg (k-1,u) the probability of exact covering of
a non specified u-subset of 2, we have

On (k=1,u) = () P (k-1,1), (109)

where (3) is the number of u-subsets. On the other hand, we have
U -

Pr(k=1,m) =1 () / () 1¥704 (k=1, ) (110)
In the preceding relation, Pp(k-1,u) is multiplicatively decomposed
into two probabilities ; where the former concerns the probability
of the inclusion event

U{xj*/lsjsk—l} < u

and where the latter is defined by a conditional probability for u
to be filled up.

We have the following recurrence formula

w
Qu(k,m)=Z{(t_m+w) Qn(k-1,u) /m-1lgugm} (111)
(Wl
which is obtained by co%sidering how must be built the occurrence of
* . N
Xx » if we know that the occurrence of U{Xj*/l$j$k—l} covers exactly
u elements of Q.

By deducing Qp(k-1,u) from relation (109) followed by relation (110).,
we may write



_51_

m— v
Qn (k m)—E{(l) (W1L ) k=15 (k-1,u)/ogv<ly, (112)
m ’ - V%[ J u ’ ENAAN 4

(7)
where u and v are related by u+v=m.

To start the recursion, note that

w 1
Pn(2,u)= kL) , (zl—ﬂ) (113)
(™) (M)
1 1
and then
‘2,}—10)
Py(2,u) = (114)
aH
1

On the other hand, by (108), we have
Qu(2,u)=Py(2,1) (115)

Let us now retake the second member of (112). It is easy to show that
the ratio between the two binomial coefficients (under the symbol
{]) can be approximated by

(1- 1)v=@a-25yv
m
Thus, the above reccurrence formula (117) becomes

O (k,m)=Z{ ( JPV* o (k-1,m-v) /ogvsl}, (116)
where 1

=1-— =1-27°T

B m
It is also here of interest to tabulate the probabilities Qg (k,m) by
using the relations (112)and (116) which can be compared for moderate
values of m (e.qg. m=219 ang l=27).

IV.3.4. Realizing that k,(r,n) is greater than E (K)

Let us recall that k,(n,r) has been defined by the formula (99) above.
This section concerns an illustration which enables to answer the
purpose stated in the above title. In this order, suppose that at a
given step, exactly (m-i) points of Q are reached. The latter step
being considered as the initial state of the filling system, we are
going to compare
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(a) the necessary number of steps for which the assumed value of the
mathematical expectation of the complementary filling, covers the
last i points :

(b) the mathematical expectation of the necessary number of steps in
order to attain the last i points.

In order to make the calculations, the easiest possible, we are going
to consider the three cases corresponding to i=1,2 or 3.

i=1

After (k+1) trials of an 1 random subset of Q, the assumed value of
the mathematical expectation of the complementary filling is given by

p(l+gt...+qi+.. . +d5) (117)

where p=1/m=2"% and g=1-(1/m)=1-2"F. The latter expression (117)
which is obtained by recursion, can be put in the following form

1-gk*tt ; (118)
which converges to unity, only when k tends to infinity.

Now, consider

m-1
Pr{sz}=[k 2 > J"'1=qk'1 (119)
)
1
We obtain
E(K)=X g1 = 1 Mm__ o, (120)

ky1 1-9 l
which is clearly finite and does not depend on m.
i=2

The same recursion principle of calculation enables to establish that
the expression of the mathematical expectation of the complementary
filling, after (k+1) trials, is given by

2p (1+q+. . .+q5) =2 (1-g5*1y, (121)

which tends to the 2 value, as k tends to infinity.
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Now, by the inclusion and exclusion formula, we obtain

m-1 m—12
Pr{K}k}=Pr{K>k—1}=2[( 1 ) 11— ( l >]k—1
(™ ™
{ L
z2gkTl-g? ) (122)
And then
E(K)= ZPr{kKyk} = 2 4 A |
K)/l ] _ C‘ 1 '_' (—‘,L
(3x2%-2)
=2 ; (123)
(2x2T-1)

and that, for r=2, gives a value of E(K) comprising between 5 and 6.
i=3
The result corresponding to (121) becomes
3p (1+q+.. . +q*) =3 (1-g**]) (124)
and that one, corresponding to (122), gives
Pr{K>k}=Pr (K>k-1}=3q*"1-(3) g2 * D+ ) g?*D ; (125
and then

E®=_1 (3- 3 1 + 1 ) (126)
2“|" 2_2—r 3_?:r+1__2—r+2—2r

which is equal to 6.87, for r=2,
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V. CONCLUSION

At the term of this long study concerning satisfiability instances
with k clauses and n boolean variables, by using a very clear and
synthetic representation, different types of problems and situations
have been distinguished ; namely, the problem of evaluation of the
number of solutions and that one of recognition of the solution
existence [see (i) and (ii) of section II.4]. On the other hand, the
situation where the data is a real observed system of clauses, has
received a separate treatment from the case where a random system of
clauses is considered. Relative to the former case, we have tried to
“do the best” in order to reduce computational complexity.

Without an exact formal proof ; but by the wide variety of the
algorithmic approaches (see section III) and by the statistical
analysis of the random case, the following main result =-concerning
either problems (i) or (ii) mentionned above- becomes of evidence

lativ f rs - k i he number of
1 n n r f ri - her n X1
resolution algerithm, which cannot become exponential with respect

to either a portion @n of n (Q<a<l}) or (non exclusive) a portion

Bk of X (0<B<1).

As a matter of fact, in the case of using the inclusion and exclusion
formula, each elementary calculation is quasi-linear with respect to
the number of variables n ; but, the exponentiation can be reachable
with respect to k. On the other hand, as we have seen, for the
interesting algorithm of section III.2.3., the price for deleting
one dimension, can be an exponential expansion for a subset of
pinpoint cylinders, with respect to a part of the variables.

We should realize that a situation provided by the occurrence of a
random system of clauses (represented by pinpoint cylinders)
according to a random model of independence (or no relation)
hypothesis (see section IV.1l.), is the least favorable in terms of
computational complexity for exact determination by an algorithm.
The latter may either concern the number of solutions or the
existence of a solution. Moreover, the assumed value of the
mathematical expectation of the number of solutions is a portion of
2", Otherwise, detecting statistical independencies between classes
of clauses, can provide simplification in determining an gpproximate

value of the npumber of solutions, by meapns of mathematical

Xpr ion
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In practice, general independence for a real observed system of
clauses is absolutely unrealistic. As a matter of fact, there are
almost always statistical associations and exclusions between the
representative pinpoint c¢ylinders. By proposing a hierarchical
classification on the set of the pinpoint cylinders associated to
the systen, into dependence and subdependency classes, an
approximate organization of the preceding relations, is given. Such
organization is provided by our method of  Thierarchical
classification where the dependence classes are set up by means of
“significant nodes” in the <c¢lassification tree, automatically
detected [Lerman 1981, 199la]), [Lerman & Ghazzali 1991]. Relative to
the inclusion relation between two dependence classes, the smaller
is the class, the higher is the dependence degree. We have seen (see
sections IIT.1.3 and III.3) how to use the  hierarchical
classification scheme in order to notably reduce the computational
complexity of the different algorithms proposed. This reduction may
entail to only be able to determine an approximate value of the
expected result. Notice also that algorithms described in sections
I1r.1.1., III.2.2. and III.2.3., include statistical aspects of
compactness in their definition. Therefore, our analysis leads to
the following second main result

: . ] {thmic techni i tably tl t of t
x i i i isfiabili r ms_ j
I ] 7 (] techni 1 . ] it]
juci ; Ty . ] ] . tant ]

Faced with a real problem of satisfiability instances, after provided
it to be irreductible (see just above section III), we begin by
applying the hierarchical classification algorithms considered in
section III.1.3, Afterwards, we have to establish different possible
strategies related to the different algorithms which have been
proposed (see section III). These algorithmic strategies can be led
in parallel.
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