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Abstract : We describe a numerical method to compute free surfaces in
electromagnetic shaping and levitation of liquid metals. We use an energetic variational
formulation based on the total energy and we apply optimization techniques to compute a
critical point. The surfaces are represented by piecewise linear finite elements.

Keywords: Shape optimization, levitation, Electromagnetic shaping, Boundary integral
representation.

Simulation Numérique Tridimensionnelle en Formage
Electromagnétique de métaux liquides.

Résumé : On décrit ici une méthode numérique pour le calcul de surfaces libres dans
des problemes de formage électromagnétique et de lévitation d'un métal liquide. Nous
utilisons des techniques d'optimisation liées & la minimisation de la fonctionnelle
d'énergie totale. La surface libre est représentée par des €léments finis linéaires par
morceaux.
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1. Introduction.

Our goal is to develop numerical method to compute free surfaces in
electromagnetic shaping and levitation of liquid metals. We introduce quasi-Newton
optimization techniques in an energetic variational formulation framework.

In the two-dimensional case a numerical simulation has been developed (see {20],
[25], [5], [4]1, [10], (2], [17], [16]). The physical model concerns the case of a vertical
column of liquid metal falling down in an electromagnetic field created by vertical
conductors. We assume the frequency of the imposed current in very high so that the
magnetic field does not penetrate into the metal and the electromagnetic forces are reduced
to the magnetic pressure acting on the interface.

The same model in the tridimensional case represents a bubble of liquid metal
levitating in an electromagnetic field. We want to compute the shape of the bubble (see
(3], [11], [12], [13], [14].

We denote by o the exterior in R3 of the domain filled by the liquid metal and by
I" its boundary (here a surface).

The surface I is characterized by the following equilibrium equations :

(1.1) VA B = Ugjo inw

(1.2) V.B=0 Inw

(1.3) B.n=0 onT =dw
IBII2

(1.4) — +08€+pgz=constant=P on I’
210

where jo in the current density, B the magnetic field, p, the magnetic permeability, q the
density of the charge, g the gravitational acceleration, z the height, € the mean curvature
of ', o the surface tension and n the unit normal vector directed towards w. The constant
P is an unknown of the problem. We denote by 2 = ¢ o the complement of .

The total energy of the system is given by (see [3], [28], [27], [9])
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(1.5) E(Q)= - J||B||2dx+c fdy+ _[pgz dx

2Ho o r Q
where B is solution of (1.1) - (1.3). With some usual hypotheses, a critical point of E(£2)
under the constraint that meas (£2) be given, satisfies the nonlinear equilibrium relation
(1.4) which characterizes the boundary T.

A quasi-Newton optimization method is used here to compute a critical point of
the total energy Q — E(Q). This means that one must compute the gradient of E with
respect to Q at each iteration. The main part of the gradient computation is solving the
exterior problem (1.1) - (1.3) for each intermediate domain . For this we introduce a
boundary integral representation on the surface I'y = d Q. This is quite convenient here
since the computation of the gradient of E requires only the values of the magnetic field
on the surface I'k. The computation is done by using a piecewise linear approximation of
Q. The energy (1.5) is replaced by a corresponding discretized energy. Details are given
in section 4. The derivatives with respect to Q of the various terms in E(Q) are recalled in
Section 3.

2. Computing the magnetic field B.
Let us consider the problem (1.1) - (1.3). Let @ be an open subset of R3. We set
(see [23], [6])
(W1((n) the closure of D(®) for the semi-norm
@ — IIV(pHLZ((D)
(2.1) < W2(w) the closure of D(®) for the semi-norm

1|y 2

Throughout this paper, we assume that :

\

2.2) {E = complement of an open set Q with boundaryl’ = 9Q = dw
of class C2 and w is simply connected.

Then it is well known that ¢ — IIV(pHLz(m) is a norm in W1(w) [6]. We also introduce :

(2.3) jo € (L2(R3))3 with compact support and V-jo = 0 in Z'(R3).

Lemma 2.1. There exists a unique solution B of the following differential system :

(2.4.a) B e Wli(w)3

24. 1% = U,j j
(2.4) (2.4.b) A B = Uojo in w

(2.4.c) VB =0 in

(2.4.d) Bn=20 onT.

Moreover, if we set :
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Ho Jo(¥) A (x-y)
2.5 By (x)=He [ Jo¥) A (xy)
() 1% o

then
(2.6) VAB] = ltgjo, VB =0 in B3
(2.7) B=B; + Vo inw
where @ is the unique solution of :
(2.8.a) ¢ e Ww)
(2.8) (2.8.b) ;94<p =0 in @
(2.8.) S =-Bin onT.
Proof :
Let B be defined by (2.5). Since
1Y\ (xy) I () =
Vx (le-yll) = iixyip 24 Vydo®) =0,
we have by differentiating (2.5)
1 . .
2.9) VAB () =2 | -V, (Vy =) jo(y) dy = Hojo(x)
4z lIx-yll
R3
(2.10) V-Bi(x) =0.

If ﬁl(l’;) denotes the Fourier transform of B in R3, as VAB; and V-B; belong to
L2(R3), we have :

@2.11) EAB(E) e L2 and £Bi(E)e L2,

" But:
2.12) IE A B2 + &-BiEN2 = 112 1 B &)1,
Thus V By belongs to L2 which means :
2.13) Bie (WI(R3)3.

If we set B2 =B - By, (2.9), (2.10), (2.13) imply that problem (2.4) is equivalent to :
(2.14.3) B; e (WHw))3

(2.14.b) VAB2 =0 in ®

(2.14.¢) V-B2 =0 in ®

(2.14.d) B,.n = - By.n onT.
Since w is simply connected and dw regular, we have (see [23], [6])
(2.15) (B2e (WH))3,VAB2=0)=(B2=V9, 9 e WZ(w)).
Therefore (2.14) is equivalent to (2.8) where
(2.16) Bi.n € HI2 (D), JBl.n dy =0.

r

But the problem (2.8) has a unique solution (see [6]). This solution can be
represented by a single layer representation [1], [19].



Lemma 2.2. The solution of the problem (2.8) is given by :

_ L[ ay)
(2.17) o(x) = In j Ixy] dany)
r
where q is the unique solution on H12(T) of :
N n(x).(x-y)
(2.18) Bi.n=7q(x)+ in Ijq(y) iy 47 0)

Remark 2.3. : Extension to the case where j, is a sum of Dirac masses : If
jo is a compactly supported distribution on ® rather than a function f belonging to
(L2(R 3))3 , the relation (2.5) defines a distribution over R 3 belonging to
wl (\Supp jo). The problem (2.4), except for (2.4.a), can be solved according to (2.7)
and (2.8) with B1.n and ¢ as regular as before. The local regularity of B depends on j,
but is the same as previously (and then the same as the regularity of By )in a
neighborhood of dw.

This remark is essential since numerical examples are given for distributions
concentrated on wires (i.e. thin sets).

3. Variational formulation of the shape optimization problem.
We recall here classical results similar to those in [29], [30], [31], [32] (see also
[25] for the two-dimensional case). We first introduce some notations.
Let @ be an open subset of B3 such that Q =@ and let V be a compactly
supported vector field of class C2 over R3 that is :

(3.1) Ve C2(R3, R3), V has compact support in R3 .
We consider transformations of Q (or w) given by :
(3.2) Vxe R3 Ti(x)=x+tVX).

Then we set Q; = Ty (Q), w; = Ty(w) and we verify that I'y = Ty (I') = 92, for t small
enough (since DxT(x) =1 + t DV(x) and thanks to the local inversion theorem).
Given 6 >0 and G(x) € Wl]ocl (R3, R), with each w, (or ;) we associate the

energy :
(3.3) E(wy) = Eg (W) + 0 P(Q) + J G(x) dx
Q
with
(3.4) Eo (@) = - — _[ B 12 dx
2po

where By, is a solution of the problem (2.4) with w; instead of ® and P(Qy) is the
perimeter of ;. Recall that the perimeter of an open subset @ of R3 is defined by :
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(3.5) PO) =sup { < V1 9> pR%x s 0 € BRI, ol <1}

with X the characteristic function of @ defined by :

_[lifxe @
(3.6) X {O otherwise

and
1/2

/
» ¢ =(01, ..., PN).

N
— NEAY/
ll(plL,(,—x Esu?g3 {; ¢i(x) }

If 0@ is regular enough then P(®) is the surface area of 0@ (see [27] and its references).

Lemma 3.1. The functions t — E, (w,), P(£2;), J G(x) dx are differentiable at 0 and
t

we have :

(3.7) 4 Eooy=—— J IB&I? (V.n) dy
2o

(3.8) 4 PS)= ,J € (Vn) dy

where €is the mean curvature of I'.

(3.9) g;/mod[c(x) dx =J G(x) (V.n) dy.
t

!
A sketch of the proof :

This kind of computations are classical (see for example [28], [29], [30], [21],
[32] and [16] for relevant results concerning regularity of boundaries). We recall here
some essential steps.

We start with the following classical formula : if g is a sufficiently regular
function from [0,e] x wto R :

d d
(3.10) dth=o J gty)dy = J 5% (O.y)dy - 1 g(y,0) (V.n) d¥(y)
(On w 9
(here n is always the unit normal directed towards w). It can be obtained by an elementary
change of variable y = Ty(x), namely :
(3.11) J g(t,y)dy = _[g(r,y +1V(y) det (I +t DV(y)) dy.
Wy ®
Then by differentiation and integration by parts we obtain :
d 0
612 Gl [ ety = [ (F 09+ Yy 50) . V) + 00V-V))ty
y ()
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= J%% (0,y)dy - J.g(y,O) (V.n)dy(y).
© r

If we apply (3.12) to g(t,x) = G(x) and €, instead of o we obtain (3.9). Applying (3.12)
10 g(1,x) = B (x)I2 , we obtain :

(3.13) gf Lo I IIBm[(x)I|2dx =2 J. B (x) gflt= 0Bmt(x) dx - J HBu(x)I2 (V.n) dy(y)
(O]} ()] I
By (2.7), we have :

(3.14) By, =B+ Vo(t,.) , gf ll=0 By, = V<9:(0,.) .

Then

IB(D g—[|[= on[dx = J B(D'VX(PI.(O") dx = - J (Bw.n) (p[ dY - J. (p[ V Bm dx = 0,
® ® r )

the last equality coming from (2.4).
The formula (3.8) is classical (see for example [31], [32]).

Proposition 3.2. We denote by V() the volume of $2,. Under the hypotheses
(2.2), (3.1), the functions 1 — E(wy), V(S2;) are differentiable at t = 0 and for every P
constant we have :

I
%/,=O(E(wt) P V()= j (——Z# /IBol/? + 6€ + G - P)/V.n)dy.
r 0

Then (Bg, ) is a solution of the equilibrium system (1.1) - (1.4) if and only if there
exists P such that for every direction V satisfying (3.1) we have :

d
(3.16) T/ (E(@) - P V(2))=0.

This immediatly follows from Lemma 3.1 and Proposition 3.2. A consequence is
that the solution of (1.1) - (1.4) can be considered as a critical point of the total energy
o — E(w) under the constraint V(Q) = V, (with some regularity hypothesis).

This property is in the heart of our numerical approach.

4. Algorithm and discretization.

The algorithm consists in constructing a sequence (I'k, Bk, Zk) k=1, .., n
where :

. TX is an approximation of the surface I" at the k - th iteration of the algorithm. It
is the union of triangles Ty in R3, 2 = 1, ..., L. Each triangle is parametrized by a
reference triangle of coordinates & and 1.

The nodes of the T ¢ triangles are denoted by x2:1, x£2, x£3, sothatif x e T
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3
(4.1) x = x(EN) = 2 xbi Ni(E,n)
i=1
4.2) Nignm)=1-&-n;N2Em)=&; N3 En)=n.

. If Tk is the boundary of the exterior domain y, then BX is an approximate

solution of :

VAB = Ho.jo in wk
(4.3) V-B=0 in ok
B.n=0 on I'k,

AL
. Zk = (Z%))<i<q is the vector field which gives the direction of the displacement
A .
at each node of I'k. The vectors Zik € R3 are associated with the displacements Zik
which are piecewise linear and related to each node &; by the formula :

A. . . .
(4.4) Zik(x) = ZhK Nj(E,m) if xe Tpand Ei=xtie Ty
0 otherwise.
At each iteration, a new surface I'k+! is constructed from Ik by (see [18] for a similar
approach) :
n
4.5) Tktl(y) = {X = x + Z u; Zihk(x) ,uje R, x e Tkp

i=0
Then, to update the admissible surface I'k+! we compute u = (uj, ...up) € RN,
Moreover, the natural energy associated with [X() is :
(4.6) Ek(u)=;l— lIBylI2 dx + © J-dy +pg J'x3 dx
Ho wkuy k{u) QK(u)
where QKk(u), wk(u) are respectively the inside and the outside of I'k(u) and B, is the
solution of (4.3) where wk(u) replaces wk. Here the gravity term is given by

G(x) = pg x3. In fact, BE is a numerical approximation of By,

We take into account the constraint on the volume of Qk(u) by a penalty method.
Then the penalized energy is the following :
4.7 EX(u) = EX(u) + 5 (V(w) - V0)2
with V(u) the volume of QK(u) and V, given.

A critical point of this penalized energy is computed by a quasi-Newton B.F.G.S.
optimization technique (see {22], [7], [8], [15], [24]). At each iteration we must compute
the gradient with respect to u of the energy at u = 0. We denote this gradient by DEI: =

(DiEl:)i=1, ..n- The derivatives DiEl: are given by the following lemma which is a

discrete version of lemma 3.1.



Lemma 4.1. For i=1, ..., n we have :

(8) DiEf= D, L [umi @ik ixd axdy e

(1.7t 2o 17

A 171k V4 Y L12 114412 _ v 232y -112
«pg ];[ x4 (Zikn) 1] 5 diin + o]rj (G2 12 - (cf x 2P

A Hky 2 LAky 82 R R B Ak 8 Sk
((xé . Zg )//xy// +(xn.2n)//xé// xéxn(xn.Z‘é + Xy z‘,7 )) d&dn

+r(Vg- VO)]J (Zik n) //X'g Ax’f// d&dn

where T, is the reference triangle (coordinates € and 1), B the solution of problem (4.3),

x4 = x(En) an arbitrary point of T ; (parametrized by (4.1)), x'é x'f, the vector

LR he vector derivatives of Z"¥ w.r. to € and

derivatives of x* w.r. to £ and 1, ng' Zfl

1, Vi the volume of $* (inside of I'*).
All these integrals are calculated exactly except the first one ; to compute this

integral one must know the value of the magnetic vector field B. This imply the resolution
of the exterior problem (4.3). This is the most time consuming step of the algorithm.

5. Computation of an approximation of ||B||2 over I'k.
The computation of the gradient DE:‘ requires the values of BX solution of :

V-Bk =0 in wk
Bk.n =0 on Ik,

We write B = By + Blz( with B} given by (2.5) so that B; =BX.- B is solution of :

V/\B; =0 in 0k
(5.1) V-BS = 0 in ok
B;.n=-B1.n on [k,

As explained in section 2, we have Bg(x) = Vx@k(x) where (pk is the scalar potential

solution of the following Neumann exterior problem :
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Apk =0 in wk
k
(5.2) %%;Bm on Tk

ek(x) = 0 (IxI"1), IV x@k(x)Il = 0 (lxil-2) as lIxll — oo,
As we need to evaluate Vy @k(x) only on T'k, we choose an integral representation of the
solution [6], [19], [23] :

i
(5.3) o= rk[ Ty V)

where q is the solution of the following boundary integral equation over Ik (see (2.17),
(2.18)) :

(5.4) B1(x).n =¥¥3 + L J qy )—”x_(_“:t,Ld‘Y(Y)
an X-y

To solve this second kind Fredholm integral equation, we use a Galerkin method [6],
[19], [23]. We introduce a basis {e}(}j=1, ...L where e;‘ is piecewise constant over 'k,

that is :
& (x) ={1 ifxe T; V j=1,..,L (L the number of triangles over I'k).
otherwise
Then the solution q of (5.4) is now approximated by :
L
k k
qk(y) = Z cy €
J=1
where (c}‘)j= L € RL is solution of the following linear system [6], [19] :
(5.6) (Dk + Hk) ck = ¢k ck—(c )j=1,...,
(5.7) (d,J) ij=1 and Hk—(h )l\l 1
where
n.(x-y)
(5.8) U - J J ey dy(x) dy(y)
ifi=#)
k
(5.9) dij= JdY(x) ifi=]
i

2= ZJBl(x).ni dy(x).
i

The matrix of the system is full and not symmetric. The coefficients h:(i are equal to zero

as nj.(x-y) = 0. Then we can compute hli(,j by a Newton-Cotes method. Computation of
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the coefficients 2; strongly depends on Bj(x). It requires numerical quadrature of the
expression (2.5).
Finally, computing IIBK (x)li2 = IIB1(x) + Vx @K(x)IIZ implies the evaluation of
Vx ¢¥(x) which is given by :

1 1
(5.10) Vi (Pk(x) = 4_7; FJ qk(y) Vx (W)ﬂ(y)-

This is clearly a singular integral as the kernel is Vy (IIT{W) which has a singularity of

order 2. As g¥ is a constant on each triangle Tj, this integral is a linear combination of

r[ Vs (g )9
]

which are computed at the barycenter of each triangle Tj. Only the integral where Tj = T;

elementary integrals like :

is singular. Integrating by parts reduces the problem to a simple integral over dT;.

6. Numerical results.
We write the energy (1.5) as:

6.1) E(Q)=Bmd[ IBIZdQ +© Jdl‘ + By Jz dQ

where the constants By, 0 and By are given various values.

6.a. Some extra information on the actual computation :

We slightly modify the algorithm described in section 4 in order to improve the
efficiency and reduce the computing time.

For instance, we start with a coarse grid to obtain a first rough approximation of
the free surface. Once the coarse approximation is calculated, we use a refinement
technique to work on a finer mesh. The displacement direction vector field Z; associated
with each node &; is modified at each iteration. New directions are obtained using the
normalized average of the normal vectors to the triangles in the neighbourhood of the &;
nodes. The linear systems are solved by a minimal residual algorithm.

The code was vectorized for a CRAY II computer. Indeed, in the boundary
integral representation method, one of the most costly parts is the evaluation of the
coefficients of the linear system matrix (5.6). In this section of the algorithm, we
compute h}(’j (see (5.8)), that is to say a double integral over each pair of triangles T;, T;.

The vectorisation of this part of the algorithm provided a significant improvement and
reduced the global time by five. The C.P.U. time for a gradient evaluation in a CRAY I
computer in a case of 480 finite elements is about two seconds.
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We do not have much control on the number of iterations since we do not really
use any one-dimensional optimization strategy to optimize the line search in the quasi-
Newton method. Indeed this would require lengthly evaluations of the magnetic field far
from the free surface. We chose to allow more iterations. More analysis is now being
made to improve this point.

6.b. The examples :

We now present six different examples ; in all cases we start with a sphere and a
mesh of 480 finite elements.

- In Figure 1 we present two views of a bubble where the magnetic field B is
created by three wires with a symmetric configuration. We do not take into account the
potential energy due to the gravity as Bg = 0 . Numerical convergence is obtained after
168 gradient evaluations (see remark above) and the final number of finite elements is
736.

- In Figure 2 the magnetic field B is created by seven wires, the configuration is
also symmetric. Here we take into account the gravity since Bg = 0,1. Numerical
convergence is obtained after 186 gradient evaluations and the number of finite elements
is 576.

- In Figure 3 the magnetic field B is created by seven wires, but now the
configuration is not symmetric. The free surface obtained is clearly not symmetric either.
Here we take into account the gravity since Bg = 0,1. Numerical convergence is obtained
after 208 gradient evaluations and the number of finite elements is 576.

- In Figure 4 the magnetic field B is created by the same seven wires as in the
previous example but here the sense of the current has been changed in the two wires on
the top. Numerical convergence is obtained after icount = 156 evaluations of the gradient
and the number of finite elements kel is 608.

- In Figure 5 the magnetic field B is created by only one wire which turns around
the liquid metal bubble. The factor of the energy due to the magnetic field By, is 50.
Numerical convergence is obtained after 248 evaluations of the gradient and with 544
finite elements.

- In Figure 6 we present the same example as before but now By, is 100. We
observe that the position of the liquid metal bubble is not the same. Convergence is

obtained in 240 evaluations of the gradient and with 480 finite elements.
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736 and icount = 168.

1;Bg=0;0=0,1;kel=

Figure 1- B,

1;Bg=0,1;0=1;kel =576 and icount = 186

Figure 2 - B,
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= 248.

0.1; kel = 544 and icount
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50,0 ; Bg

Figure 5.3,

0,1 ; kel = 480 and icount = 240

Figure 6 - B, = 100,0;Bg=0,1;0
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