N

N

Parallel logic programming systems
J. Chassin de Kergommeaux, Philippe Codognet

» To cite this version:

J. Chassin de Kergommeaux, Philippe Codognet. Parallel logic programming systems. [Research
Report] RR-1691, INRIA. 1992. inria-00076926

HAL Id: inria-00076926
https://inria.hal.science/inria-00076926
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00076926
https://hal.archives-ouvertes.fr

Rapports de Recherche

/e
o & ARTIVETSQIre
UNITE DE RECHERCHE N° 1691
INRIA-ROCQUENCOURT

Programme 2
Calcul Symbolique, Programmation
et Génie logiciel

PARALLEL LOGIC
PROGRAMMING SYSTEMS

Institut National
de Recherche
en Informatique
et en Automatique

Jacques CHASSIN de KERGOMMEAUX
Philippe CODOGNET

Domaine de Voluceau
Rocquencourt
BP105
/8153 Le Chesnay Cedex

Fraroe Mai 1992
Tel(1) 396365611 llljlliﬂllll!”l!llllj/llllllllj)lﬂlﬂllﬂ!l

Parallel Logic Programming Systems

Programmation Logique Parallele

Jacques Chassin de Kergommeaux Philippe Codognet
IMAG/LGI INRIA - Rocquencourt
46, avenue Felix Viallet, B. P. 105
38031 Grenoble, FRANCE 78153 Le Chesnay, FRANCE
chassinQimag.fr codognet@minos.inria.fr
Abstract

Parallelizing logic programming has attracted much interest in the research community, because of
the intrinsic OR- and AND-parallelisms of logic programs. One research stream aims at transparent
exploitation of parallelism in existing logic programming languages such as Prolog while the family
of Concurrent Logic Languages develops language constructs allowing programmers to express the
concurrency, that is the communication and synchronization between parallel processes, inside their
algorithms. This paper mainly concentrates on transparent exploitation of parallelism and surveys
the most mature solutions to the problems to be solved in order to obtain efficient implementations.
These solutions have been implemented and the most efficient parallel logic programming systems
reach effective speedups over state-of-the-art sequential Prolog implementations. The paper also
addresses current and prospective research issues aiming to extend the applicability and the effi-
ciency of existing systems, such as models merging the transparent parallelism and the concurrent
logic languages approaches, combination of constraint logic programming with parallelism and use
of highly parallel architectures.

Résumé

La Parallélisation des langages logiques est un domaine de recherche trés actif, du fait des par-
allélismes OU et ET intrinséques aux programmes logiques. Une voie de recherche s'intéresse a
Pexploitation d’un parallélisme transparent dans les langages logiques existants tel Prolog, tandis
qu’une autre direction est prise par les Langages Logiques Concurrents qui developpent des primi-
tives pour permettre d’exprimer la concurrence, ¢’est & dire la communication et la synchronisation,
a 'interieur des programmes. Cet article s’intéressera surtout a I’exploitation transparente du par-
allélisme et présentera les solutions les plus avancées pour obtenir des mises en oeuvre efficaces.
Ces solutions ont été implémentées et les systemes de programmation logique paralléle les plus
efficaces atteignent des ”speedups” réelles par rapport aux implémentations séquentielles de Pro-
log. Nous présenterons également les thémes de recherches actuels et prospectifs destinés a étendre
I’applicabilité et I’efficacité des systémes existants, tels les modéles qui combinent parallélisme trans-
parent et langages logiques concurrents, I’extension de la programmation logique avec contraintes
par le parallélisme, et ’utilisation des machines massivement paralléles.

Parallel Logic Programming Systems

Jacques Chassin de Kergommeaux Philippe Codognet
CMaP Group, INRIA,
IMAG/LGI, Domaine de Voluceau,
46 avenue Félix Viallet, Rocquencourt,
F-38031 Grenoble Cedex, France. [*-78153 Le Chesnay Cedex
chassin@imag.fr codognet@minos.inria.fr
Abstract

Parallelizing logic programming has attracted much interest in the research com-
munity, because of the intrinsic OR- and AND-parallelisms of logic programs. One
research stream aims at transparent exploitation of parallelism in existing logic pro-
gramming languages such as Prolog while the family of Concurrent Logic Languages
develops language constructs allowing programmers to express the concurrency, that
is the communication and synchronization between parallel processes, within their al-
gorithms. This paper concentrates mainly on transparent exploitation of parallelism
and surveys the most mature solutions to the problems to be solved in order to obtain
efficient implementations. These solutions have been implemented and the most effi-
cient parallel logic programming systems reach eflective speedups over state-of-the-art
sequential Prolog implementations. The paper also addresses current and prospective
research issues aiming to extend the applicability and the efficiency of existing sys-
tems, such as models merging the transparent parallelism and the concurrent logic
languages approaches, combination of constraint logic programming with parallelism
and use of highly parallel architectures.

1 Introduction

Logic programs can be computed sequentially or in parallel without changing their declar-
ative semantics. For this reason, they are often considered as well suited to programming
multiprocessors. At the same time, parallel architectures represent the most promising so-
lution to increase the computing power of computers in the future. Since multiprocessors
remain difficult to use efficiently, an implicitly parallel programming language offers a very
attractive mean of exercising the parallelism of multiprocessors of today and tomorrow.

Logic programming languages are very high level languages enabling programs to be
developed more rapidly and concisely than using imperative languages. However, in spite
of important progresses of the compilation techniques for these languages, they remain
less efficient than imperative languages and their use is mainly constrained to prototyping.
Increasing the efficiency of logic programming to the level of imperative languages would
certainly enlarge their domain of use and could therefore contribute to solve the so-called
“software crisis” by raising the productivity of programmers.

These reasons have persuaded the ICOT to choose logic programming as the basic
programming language of the Fifth Generation Computer Systems project (FGCS). One
aim of this project is to produce multiprocessors delivering more than one giga-lips, one

“lip” being one logical inference per second and one inference being similar to a procedure
call of an imperative language. The giga-lips level of performance seemed out of scope when
the FGCS project started in 1982, since the most efficient Prolog systems of this period
were limited to several kilo-lips of performance. This is not the case any more, mainly
because of the spectacular progresses made by the hardware technology. The performances
of the most efficient Prolog implementations exceed one mega-lips on the most powerful
RISC micro-processors of today while massively parallel multiprocessors can include more
than 1000 of them. However, achieving giga-lips level of performance on massively parallel
multiprocessors will only be possible if parallelizing techniques capture enough parallelism
of logic programs while keeping limited the overhead of parallel execution. In addition, it
is not clear whether a large number of logic programs can benefit from massive parallelism.

There exists two main schools of thought in the logic programming community, con-
sidering either that parallelism should be made explicit or on the contrary that it should
be kept implicit. Explicit parallelism is the approach developed in concurrent logic lan-
guages, aimed at being the basic programming languages of future multiprocessors and
already successfully used to program parallel problems such as operating systems and par-
allel simulators. The aim of implicit parallelism is instead to speedup existing or future
logic programs without troubling programmers with parallelism. Both approaches will
be presented in this paper, although more emphasis will be placed on systems exploiting
parallelism implicitly.

Parallel logic programming has benefited from a considerable amount of resecarch activ-
ities which resulted in the definition of a large number of parallel computational models.
These models cannot be all presented in this paper which will concentrate on the most
mature ones, already used in efficient parallel implementations.

The organisation of the paper is the following. The first sections are introductive,
defining the different types of parallelism that can be exploited in logic programming,
introducing the language issues involved in implicit versus explicit parallelism and raising
implementation issues involved in implementing efficiently logic programming in parallel.
The two following sections survey representative systems exploiting one type of parallelism
or combining several types of them. Several important research topics and perspectives
are then sketched before the conclusion of the paper.

2 Parallelisms in Logic Programming

Due to their declarative and logical essence, different kinds of parallelism naturally arise in
logic programs. Each type of parallelism will indeed lead to a specific model of execution
which builds the foundations for the systems that will be presented later.

2.1 Logic programs

This brief and intuitive presentation of the basic notions of logic programs is intended to
make the paper self-contained. A more complete introduction to logic programming can
be found in John Lloyd’s book [65].

A logic program is a set of definite clauses such as:

A — By,.., DB, (1)
A — (2)

and one gquery
- le'",Q]) (3)

The A; and B; are atomic formulas such as p(X7, ..., X;n), where pis a predicate symbol
and Xi,...,X,, are compound terms, constants or simple variables. (1) can be logically
read as “ if By and B; ... and B, are true, then A is true ”, and (2) as “ A is a fact always
true ". In (1), A is the head of the clause while the conjunction of the B; is called its body.
Each of the B; is called a goal. Executing a logic program P amounts to proving that (3)
is a logical consequence of the conjunction of the clauses of P.

The procedural interpretation of Horn clauses forms the basis of the operational se-
mantics of logic programming. Indeed, the set of all clauses with the same head predicate
symbol p can be considered as the definition of the procedure p. Each goal of the body of
a clause can thus be considered as a procedure call. At a given step of the execution of
a logic program, the set of goals that remain to be executed, i.e. the continuation of the
computation, is called the current resolvent. The execution of a logic program starts by
taking the query as initial resolvent and proceeds by transforming the current resolvent
into a new one as follows. First select any goal G of the resolvent. and apply a resolution
step, which consists in finding a clause of the program whose head unifies with Gy, and
then replacing G by the body of the unifying clause to produce a new resolvent. The
bindings of variables resulting from the unification apply to the whole resolvent. This
process iterates until either the resolvent is empty, in which case the computation ends
with success, or no unifying clause can be found during a resolution step, in which case a
failure occurs and backtracking takes place. Backtracking consists in restoring the previous
resolvent and selecting an alternative unifying clause in order to perform an alternative
resolution step. If all possible alternatives have been tried unsuccessfully and it is not
possible to backtrack further, the computation terminates with failure.

Let us detail this machinery by a simple example.

Example 2.1

Consider the following “genealogy” program, written with Prolog’s identifier convention :
variables begin with a capital letter, while predicate and function symbols begin with a
lower-case letter.

grandfather(X, Z) — father(X, Y), father(Y, 2)

father(john, philip)
father(peter, andy)
father (andy, mark)

with the query
~— grandfather(X, mark)

The query is equivalent to the request : “Find a person, whose grandfather is Mark”.
Let us detail the execution of this program by examining the resolvents produced at
each step.

grandfather(X,mark)

father(X,Y) , father(Y,mark)

Y =philip Y=andy Y=mark
father(philip,mark) father(andy,mark) father(mark,mark)
fail success fail

(X = peter)

Figure 1: Search tree for tutorial example

First resolvent: « grandfather(X, mark)

Second resolvent: «— father(X, Y), father(Y, mark)

Third resolvent: — father(philip, mark)

No head clause of the program unifies with the unique goal of the resolvent. Therefore
backtracking occurs and the last choice, the second resolvent, is restored :

~ father(X, Y), father(Y, mark)

Fourth resolvent: father(andy, mark)

Fifth resolvent: o (empty clause)

The execution of this logic program is successful and the result is the binding of the
variable of the query, that is X = peter, which is called an answer substitution.

This computation can be graphically summarized by depicting the associated search
tree, shown in Figure 1. The nodes of the tree are the resolvents occuring in the com-
putation, and the arcs are labeled by the set of bindings of the corresponding resolution
step.

A sequential computation according to Prolog’s strategy simply consists in a depth-first
left-to-right search of the tree.

2.2 Sources of parallelism in logic programs

There are two intrinsic sources of parallelism in the above execution model, that correspond
to the two choices that have to be made to enforce the sequentialization of an inherently

parallel model.
The first choice is the selection of a goal in the resolvent in order to perform a reso-

-)

.t

lution step. One may envisage selecting several goals of the resolvent and performing all
resolution steps simultaneously. Such parallelism is called AND-parallelism, as it consists
of developing in parallel goals that are connected by a logical AND operator.

The second one is the selection of a unifying clause in the program when performing
a resolution step and proceeding to a new resolvent. If there exist several such unify-
ing clauses, it is then possible to perform several alternative resolution steps in parallel,
creating therefore several new resolvents upon which the computation to proceed. Such
a mechanism is called OR-parallelism, as it amounts to develop simultaneously different
alternative computations, and more precisely different OR-branches of the search tree as
will now be detailed.

2.3 OR-parallelism in Prolog

OR-parallelism consists in the simultaneous development of several resolvents that would
be computed successively by backtracking in a sequential execution. Examining the search
tree (Figure 1), an OR-parallel search consists of exploring in parallel each branch of the
tree, these branches being indeed OR-branches representing alternative computations. In
our example, the computation may split into three OR-branches when computing the
second resolvent, using the three clauses of the father procedure. Of course, only the
second branch succeeds at the next computation step.

It is worth noticing that in our definition of OR-parallelisin, simultaneous independent
execution is not limited to a single resolution step, and thus reduced to a mere database
parallelism while searching for a matching clause, but applies to the entire computation
of complete resolvents. Thus, if the OR-split occurs early enough in the computation,
the remaining alternative resolvents might involve large computations, yielding therefore
coarse grain parallelism.

The main problem in OR-parallelism is to manage different independent resolvents
in parallel, in each of the OR branches. This is not a problem in the example above
where the resolvents are very small but in general care must be taken to avoid inefficient
copying of large data structures, such as the current set of variables bindings. Sophisticated
algorithms and data structures have been designed to overcome this problem, which will
be presented later. Another issue to be addressed in this “eager evaluation” of alternative
choices is to tune the amount of parallelism in order to avoid the system to collapse under
too many processes. Efficient solutions mix backtracking and on-demand OR-parallelism
(by idle processors) in so-called “multi-sequential” models.

2.4 AND-parallelism in Prolog

AND-parallelism consists in the simultaneous computation of several goals of a resolvent.
Nevertheless, if each subcomputation is followed independently. one needs to ensure the
compatibility of the binding sets produced by each parallel branch.

Consider again the computation in example 2.1. and more precisely the second sub-

‘goal — father(X, Y), father(Y, mark) , which has potential AND-parallelism. The

execution of the two parallel AND branches results in the following candidate solution sets:

Branch 1: goal : father(X, Y)
Variable bindings: {X=john, Y=philip}, {X=peter, Y=andy}, {X=andy, Y=mark}
Branch 2: goal : father(Y, mark)

Variable binding:{Y=andy}
Obviously, only the second set of bindings of the first branch is compatible with the
unique binding produced by the second branch. One must “join” binding sets coming
from difterent AND-branches in order to form a valid solution for the entire resolvent.
The main difficulty with AND-parallelism is indeed to obtain coherent bindings for
the variables shared by several goals executed in parallel. Runtime checks can be very
expensive. This has lead to design execution models where goals which may possibly
bind shared variables to conflicting values are either serialized or synchronized. The first
solution leads to independent AND-parallelisin: only independent goals which do not share
any variable are developed in parallel. The second solution leads to dependent AND-
parallelism: concurrent execution of goals sharing variables is possible. Such goals are
synchronized by producer/consumer relationships on the shared variables. This approach
has been developed in “Concurrent Logic Programming languages” such as Parlog, KL1
and Concurrent Prolog.

3 Language issues

The first attempts in the early 80’s to parallelize Prolog and to define new models of
execution for logic programs raised a number of issues, including some key points in
language design. The main debate can be summarized by the following question: “Do we
need a new language with specific constructs to express concurrency and parallelism or
should we stick to Prolog and exploit parallelism transparently?”

Prolog has been in use for nearly two decades and has established itself as a useful
tool for a wide range of problems. Declarative languages are always in demand for more
and more computing power, due to the displacement of thie complexity of programming
from the user to the internal computation mechanism. Efficient parallel implementations
of existing languages are thus desirable to speed applications that are already developped,
and they can moreover lead logic programming a step further in covering effective “real-
world” applications.

On the other hand one may sometimes prefer a more flexible control of the search
mechanism to the the simple but somehow rigid search control of Prolog. This brings up
the problem of communication and synchronization in logic programs that calls for new
features and changes in language design. Thus was born the new domain of concurrent
logic languages, also called sometimes committed-choice languages. It has paved the way
to a wide range of new applications that are more easily modeled by multiple cooperating
concurrent processes.

3.1 Parallelizing Prolog

Prolog was originally designed with a sequential target machine in mind. Ilowever, paral-
lelizing the language without change is an appealling approach for the following reasons:

o parallelism can be transparently achieved with “minimal” changes to the initial
model, at least at the abstract level, as described in the previous section. All the
implementation technology developed for sequential Prolog systems, such as the
WAM abstract machine [102], can thus be reused. The most successful offsprings
of this approach are the multi-sequential models for both OR and AND parallelism
that will be presented in section 4.

L))

”

e parallel execution does not add any complexity to the programming language; it helps
the user to concentrate on declarative statements without hothering with control
issues. This view keeps up with the separation of logic and control advocated by
Kowalski in his well-known formula “program = logic + control” [60].

e the corpus of Prolog programs already developed can be executed without any mod-
ification to the programs’ source code by parallel systems.

Some problems however arise when considering the Prolog constructs that are order-
sensitive. Most side-effect primitives, as for instance read or write, require what could be
called AND-sequentiality, and are thus necessary sequentialization points for AND-parallel
models. OR-parallel models however, which keep the sequential order of execution of goals,
are not sensitive to the problems due to AND-sequentiality.

Some OR-sequentiality is nevertheless required by some “impure” or “non-logical”
features such as the cut operator or the assert/retract primitives which dynamically ma-
nipulate program clauses. These constructs will cause problems in OR-parallel execution,
because they are sensitive to the order in which OR-branches are explored. The cut op-
erator is used to make determinate parts of the computation. It appears syntactically
as a special goal in the body of a clause and will affect, when executed, the part of the
computation performed after the entry of the clause, by removing all choice-points that
have been created since. No backtracking in this part of the computation is then possible.
All the computation work corresponding to the development of the alternative clauses,
that may be pruned by the cut, is called speculative work. Scheduling speculative work is
difficult in OR-parallel models [48], since anticipation may amount to useless computation
while expectancy may prevent from parallel execution. To avoid the inherent sequentiality
of the cut operator, it is useful to introduce in OR-parallel Prolog a “symmetric cut” that
prunes all the alternatives of a predicate, whether they appear hefore of after the clause
containing the operator. Another possibility is to enforce a discipline of programming in
order to use cut operators in all clauses of a predicate or in none of them, thus introducing
the “commit” operator of concurrent logic languages.

3.2 From Coroutining to Concurrency

In Prolog, control of forward execution is given by the order of the goals inside a clause and
that of the clauses in the program. However. a more flexible control strategy is sometimes
needed. Dialects such as Prolog-1I. MU-Prolog or Sicstus Prolog provide primitives to
explicitely delay the execution of some goals. Roughly speaking, a predicate can be given a
wait declaration specifying that it should not be executed before some of its arguments are
instantiated. This corresponds to declaring this goal as consumer-only on those arguments.

A more direct and precise control mechanism has been introduced by the family of
concurrent logic languages. All these languages have some syntactic way to declare that a
process (goal) is either producer or consumer of some its arguments. Such declarations are
thus used to produce a synchronization mechanisin bhetween active processes, i.e. goals of
the resolvent. When unification leads a goal to instantiate a consumed variable, this goal
is suspended until that variable is sufficiently instantiated (by some other goal).

3.3 Concurrent Logic Languages

The usual logic programming framework is limited to transformational systems, i.e. sys-
tems that, given an original input, transform it to yield some output at the end, and as
the end. This framework is not well suited to reactive systems, i.e. “open” systems able
to react to a continuous stream of inputs from the *real world”. In other words, if Prolog
is perfectly adequate for problem solving, it is not suited to “dynamic” or “reactive” sys-
tems, which are more easily modelized by interacting agents. To address these problems,
communication and synchronization techniques derived from the concurrency theory [33]
have been introduced in logic programming, giving rise to concurrent logic programming.

The basic notions for the integration of concurrency into logic programs can be traced
back to Relational Language [19], the ancestor of (con)current languages such as Parlog
(20}, GHC and KL1 [97], Concurrent Prolog {89] and FCP [90], or CP [84]. The reader
should consult [90] for a detailed genealogy, history and a complete presentation of this
programming paradigm.

The main programming concepts behind those languages can be summarized up as
follows:

o The process interpretation of logic programs [89] replaces the traditional procedural
interpretation. Each goal is seen as a distinct process, AND-connected goals are
assumed to run concurrently. This form of AND-parallelism is called dependent
AND-parallelism, as goals that share variables (lence “linked” or dependent) can
run in parallel.

¢ Communication is achieved through logical variables: each variable shared by several
goals/processes act as a communication channel, leading to a very powerful and
elegant communication mechanism.

o Synchronizationis achieved by using a producer/consumer relationship between pro-
cesses. A process may be blocked during a resolution step until the variables that it
consumes are sufficiently instantiated (by some other processes).

Several new major language features are therefore introduced (see example below):

1. some way of stating a producer/consumer mode for each variable has to be intro-
duced. Each language has his own way to declare the access mode { Read or Write) of
a variable in the predicate declaration that we will not detail here. These modes are
used dynamically to induce a producer/consumer relationship between active pro-
cesses (goal of the resolvent) on each shared variable. i.e. on each communication
channel. This technique amounts to replacing the unification procedure involved at
each resolution step by a matching procedure for consumer goals. This notion can
be in fact rephrased and generalized in the Ask-and-Tell mechanism of concurrent
constraint languages that will be presented later.

2. the concept of guard introduced by Dijkstra and used for imperative languages such
as ADA and Occam is adapted to logic programming. A guard is a switch construct
of condition/action pairs, which delays execution until one of the conditions is true,
and executes the corresponding action as soon as a single condition is verified. This
translates to logic programs as follows: each clause is given an additional guard part
which takes place between the head and the body. A guard is simply a sequence of

*

r

o

goals that must be executed successfuly before the body of the clause is entered (i.e.
all body goals are spawned in parallel). Implementation considerations have led the
last generation of languages such as KL1 or FCP (Flat Concurrent Prolog) to accept
only flat guards, i.e. guards composed only with buit-in predicates. This ensures
that no hierarchy of guard systems will ever be created (hence the name) and that
guard check will be a reasonably fast and basic operation.

3. “Don’t care” non-determinism replaces the traditional “Don’t know” non determin-
ism of logic languages. This means that at each clause try, only one alternative
is pursued (and we don’t care which) as opposed to pursuing all of them (as we
don’t know which one to choose). Alternative terminologies are “indeterminism”
for Don’t care non-determinism and “angelic non-determinism” for Don’t know non-
determinism. Hence no choice point is ever created and no backtracking ever takes
place, resulting in a deterministic language. The only amount of non-determinism
lies in the guard check, as all guards are evaluated in parallel. Among all satisfiable
guards, one of them is chosen and the computation is committed to the correspond-
ing clause, neglecting alternative ones. This mechanism is syntactically expressed by
the presence of a commit operator between the guard and the body of each clause.
The commit indeed corresponds to a generalized “cut™ operator.

Concurrent Logic Languages hence depart from traditional logic languages in several
ways, most notably by the replacement of unification by matching and by the abandonment
of Don’t know (“angelic”) non-determinism. The former is the key mechanism for the
synchronization mechanism and is the price to pay for a new programming style. The
latter is however only supported by implementation reasons, as a simple backtracking
scheme (such as the chronological backtracking of Prolog) was not easy in a concurrent
environment.

To give a flavor of what a concurrent logic program is, let us consider the following
merge program, written following the syntax of KL! or FCP(—). This program merges
the two input streams (lists) in its first two arguments to produce an output stream in its
third argument.

merge([X|In1l,In2,0ut) <- true | Out=[X|0Out’], merge(Inl,In2,0ut’)
merge(Ini, [X|In2],0ut) <- true | Out=[X|Out’], merge(Ini,In2,0ut’)
merge([],In2,0ut) <- true | Out=In2
merge(Ini, [J,0ut) <- true | Out=Inl

This program is very simple: all guards being empty (true predicates indicate empty
guard), synchronization will be enforced by the compound terms present in the head of
the clauses. Since unification is replaced by matching, the presence of a compound term
in the head of a clause for an argument place enforces a consumer mode for this argument.
Thus a merge process will wait until some data arrives on one of its input streams (i.e. a
“cons” is produced in one input list). When an input chanel is closed, the input stream is
reduced to the empty list, merge simply produces what it is feeded with by the remaining
input channel. This program preserves the order of the elements in both input streams,
but guarantees nothing about the rate at which each stream will be served. More complex
programs, such as a fair merger which guarantees that every data produced by one input
stream will eventually be written on the output stream, are presented in [90].

3.4 Unifying Prolog and Concurrent Logic Languages

As described above, parallel Prolog and Concurrent Logic Languages address two distinct
application areas:

¢ Prologis more suited for declarative higher-level programs, such as non-deterministic,
search-intensive problem solving.

¢ Concurrent logic languages are more suited when explicit control matters and fine-
grain coordination is essential, when the problem is more easily modelled by com-
municating agents.

It was thus natural to try to encompass both paradigms in a single language, for the
best of both worlds!

The Andorra model was proposed by D.H.D. Warren [100] to combine OR-parallelism
and dependent AND-parallelism, and it has now bred a variety of idioms and extensions
developed by different research groups. The essential idea is to execute determinate goals
first and in parallel, delaying the execution of non-determinate goals until no determinate
goal can proceed any more. This was inspired by the design of the concurrent language P-
Prolog {107] where synchronization between goals was based on the concept of determinacy
of guard systems. However the roots of such a concept can be trailed back further to the
early developments of Prolog, as for instance in the sidetracking search procedure of [79]
which favors the development of goals with the fewer alternatives (and hence determinate
goals as a special case). This is indeed but another instance of the old “first fail” heuristic
often used in problem solving. An interesting aspect of the Andorra principle, is its
capability to reduce the size of the computation when compared to standard Prolog, as
early execution of determinate goals can amount to an a priori pruning of the search space
(see section 6.2).

The ability of delaying non-determinate goals as long as determinate ones can proceed
amounts to a synchronization mechanism managed by determinacy. The programming
style of concurrent logic languages, such as cooperation between a producer process and
a consumer process, can thus be achieved by making the consumer non-determinate (and
hence blocked) as long as the producer has not produced a value, which would then wake
up the consumer by making him determinate. Andorra-based models, such as Andorra-I
[25] or Andorra Kernel Language [45], thus support both Prolog and Concurrent Logic
Languages styles of programming. Moreover, the Andorra Kernel Language is an attempt
to fully encompass both Prolog and concurrent logic languages. The main new language
feature is the introduction of the guard construct borrowed {rom the concurrent logic
paradigm, and its associated guard operator. Both don’t care and don’t know non deter-
minism are possible by using as guard operators either “commit”, “cut” or “wait” (which
does not prune alternatives). Guards are not restricted to build-in predicates but can be
program goals, leading to non flat guards. The introduction of guards in the program’s
clauses is indeed a way to extend the determinacy test, which is at the core of the An-
dorra model, since a goal is determinate whenever a sole guard check succeeds, among all
possible alternatives, and not only a sole head unification.

10

grandfather (X, mark)

T[X=pclcr]
grandfather (X, mark)

[X=peter]

father (X, Y) father (Y, mark)

Figure 2: Processes generated by the AND-OR process model

The OR process computing father(X,Y)is not created by its father AND process until Y has
been bound by the OR process computing father(Y, mark)

4 Implementation issues

This section emphasizes the main problems arising in implementing efficiently parallel
logic programming systems.

4.1 Early models

Early computational models [24] [15] proposed to parallelize logic programming systems
were based on “natural” data-flow process models. In the AND-OR process model [24],
AND processes are created to compute the body of clauses while OR processes are created
for each goal of clause bodies (see Figure 2). Each of these processes itself creates child
processes, therefore building a tree of processes which exchange messages such as partial
solutions. AND processes use complex algorithms to dvnamically reorder the goals of
their clause body, such that no two OR processes which could bind variables to conflicting
values get activated at the same time.

Early models have in common the drawback of generating a large number of processes of
small granularity which perform a considerable amount of runtime checks and unbounded
length communications.

4.2 Multisequential systems

The aim of multisequential systems is to limit the overlieads arising from process creation
and communication and from runtime checks. In these systems, the amount of parallelism
used is adapted automatically to the resources available. Computation is performed by a
number of workers, the amount of which being close to the number of processing elements
available at runtime. In the course of the computation. workers may be “active”, that is

11

process_fathers(Y) :-~ father (X, Y), long computation(Y).
long computation (P) 1=
father (john, philip).

father (peter, andy).
father (andy, mark).

Wi

process_fathers (Y)

father (X, Y)

VV:/ ~. long_computation(mark)
long_computation (philip

W, long_computation (andy)

Figure 3: Multisequential OR-parallel computation by two workers

Workers W) and W, cooperate to process the computation tree of the program. The third
branch originating from the father node will be processed by the first one of the two workers
available to process it.

computing part of the program, or “idle”, that is searching for work from the active
workers or from other parts of the computational state. Untried alternatives, recorded at
OR nodes of the search tree, represent potential OR-work (see I'igure 3).

Multisequential systems use the most efficient implementation techniques of sequential
Prolog systems. Most existing multisequential systems are based on the compilation of
source programs into a particular abstract machine called Warren Abstract Machine or
WAM [102]. Each worker of a multisequential system includes an efficient sequential logic
computation engine.

The WAM is composed of a set of instructions operating on registers and data struc-
tures managed in several stacks. Source Prolog programs are compiled into instructions
which may be interpreted or translated into target machine code. Most of the instructions
correspond to compiling the unification, which is the core operation of Prolog systems. In
addition, indexing instructions compile the selection of the candidate clause (callee) de-
pending on the arguments of the current goal (caller). The other instructions are used for
control, the first type of control being similar to the procedure call of imperative languages,
the other type, backtracking, being specific to logic programming.

i2

The WAM manipulates three stacks called local, global and trail stacks (see Figure 4).
The local and global stacks are similar to the stack and heap used in the implementations
of imperative languages. The local stack contains the clause activation records called
environments. The global stack is used to store persistent bindings and is often managed
as a heap. In addition, several data structures are needed to manage the Prolog don’t
know non-determinism, that is to perform backtracking efficiently. When a backtrackable
choice is performed in the course of the computation of a Prolog program, the values of
the registers, describing the state of the computation, are pushed on the local stack, in
a data structure called choice-point. When there is no candidate clause for the current
goal, the registers are restored from the latest choice-point, local and global stacks are
popped to their previous contents and computation proceeds with an untried alternative.
However, several bindings of the remaining sections of the local and global stacks may
also need to be undone if they did not exist in the previous state being restored. The aim
of the trail stack is to keep track of such bindings. Whenever a variable, older than the
latest choice-point, is bound on a stack, its address is recorded in the trail stack. When
backtracking occurs, all variables whose addresses have been recorded in the trail since
the last choice-point, are reset.

4.3 Problems with OR-parallelism

The main problem to be solved by multisequential OR-parallel logic systems originates in
the implementation techniques used for efficiency reasons by Prolog implementations. In
theory, a new resolvent is generated at each unification of a goal against the head of a
clause, by renaming all the variables of the current resolvent. In practice, resolvents are
not copied and the same memory locations are used to compute alternative resolvents.
This is made possible by the backtracking operation (see section 2.1). The backtracking
operation restores a previous state of the computation and in particular pops the stacks.

In most sequential Prolog implementations, variables are identified by their memory
locations. At any given time during the computation, no more than one variable is associ-
ated to a variable location in the (local or global) stack. When backtracking occurs, some
variable locations do not belong to the stack space being popped and need to be reset so
that they can be reused to store new variables. The addresses of the variables needing to
be reset are stored in the trail stack (see Figure 4).

In OR-parallel systems, concurrent computations may be performed instead of a series
of sequential computations interleaved with backtracking operations. Several workers may
therefore associate the same variable location of a stack to different logical variables.
Several solutions have been proposed to cope with this problem, one family of solutions
being based on copying of stacks, another family of solutions sharing the stacks instead,
the latest solution reconstructing the stacks by recomputation.

4.3.1 Copying of stacks

In the stack copying scheme, each worker maintains a complete copy of the stacks in its
workspace. When getting work, an idle worker copies the stacks of the computation state
down to the node providing work. In the example of Figure 3 and Figure 4, a worker
grabbing work from the father node would have to copy the stacks from the root to the
father node.

13

process_fathers (Y)

long_computation (P)

father (john, philip).
father (peter, andy).
father (andy, mark).

Local Stack

Activation record:

process_fathers (Y)

:- father (X, Y), long_computation(!).

Trail stack

Choice point:
father/2

Next untried:

father (peter, andy)

Activation racord:

long_computation (P)

Figure 4: Management of Prolog variables in OR parallelism

The location of Y, in the local stack, is used to store three different logical variables cor-
responding to each possible clause unifiable with the father(X, Y) goal. If the choice-point
father/2is used to provide work to an idle worker, location Y will be associated to more than
one logical variable. The global stack is not used in the toy program shown above.

14

ROOT

Identical
stack segments

Ccopy

Figure 5: Incremental copying of the stacks

One problem occurs with stack copying: the worker grabbing work needs to restore the
stacks to their previous state, when the OR node was created. In the example of Figure 3
and Figure 4, the binding of Y to philip has to be reset when 1, copies the stacks of W).
Two solutions have been proposed to solve this problem: the first one associates to each
binding the value of a counter of the number of OR nodes, such a counter being managed
by each worker [70]; the second solution uses the trail stack to restore the state of the
stack of the worker grabbing work [2]. The first solution results in some time and space
overhead to associate counter values with each binding while, in the second solution, an
idle worker copying the stacks from an active worker, slows down the latter since both
workers need to synchronize during the copying of the trail stack.

The overhead of stack copying can be reduced by remarking that any idle worker always
shares a part of the program search tree with any active worker. So, when an idle worker
W, gets work from an active one, there is no need to copy the complete stacks of the active
worker providing work W), since W, and W, already share a part of the program search
tree [2]. When incremental copying is used from an active worker 17 to an idle worker
W,, Wy backtracks to the last common choice-point (CCP) before copying the segments of
the stacks of W, that are younger than CCP and older than the choice-point WCP used to
provide work (see Figure 5). In addition, bindings performed by ¥ in the common parts
of the stacks, between the creations of CCP and WCP, must be installed in the stacks of
W, using the trail stack of Wy,

4.3.2 Sharing of stacks

In the stack-sharing scheme, workers share the parts of the stacks that they have in
common. Using this solution, several logical variables may have the same identification,
which is a location in a shared stack. In the example of Figure 3 and Figure 4, if enough
computing resources are available, up to three different logical variables can be associated
at the same time to the Y location of the stack.

In parallel logic systems sharing stacks, special data structure are used to store logical
variables that may have the same stack identification as other logical variables, used
simultaneously by another worker. Two types of data structures have been proposed:
binding arrays [103] and hash-windows [7] [34] [106].

A binding array is an array, private to each worker, which contains the logical variables
used by the worker and which have the same identification (stack address) as other logical
variables used by other workers. Instead of containing a value, a stack location shared by
several variables contains an index. This index refers to several different logical variables,
one in the binding array of each worker sharing this section of the stack (see Figure 6).

In the alternative solution, variables sharing the same identifications are stored in data
structures called hash-windows and attached to the branches of the search tree. An entry
in a hash-window is computed by hashing the variable shared identification (address in the
stack) of the variable. The concept of hash-window has led to several implementations.
All the bindings stored in the hash-windows attached to branches located in the path
leading from the root of the search tree to the current branch of the computation are valid
for the worker computing this branch. Therefore, hash-windows are linked and variable
lookup may imply to search a chain of hash-windows of unbounded length (see Figure 7).

An extension to this scheme restricts the creation of hash-windows to cases where
parallelism is actually used [14] [106] [29], when several branches of a node are computed
simultaneously. No hash-window is created when computation proceeds sequentially: vari-
ables are then stored in the stack by the worker computing the first branch, in such a way
that other workers will recognize the cell as unbound and search their hash-windows. In
[106], a scheme using time-stamps to distinguish the bindings valid for all branches is
described.

Another problem arises in stack-sharing schemes. since parallelism mixes breadth-first
strategy with the usual Prolog depth-first strategy. The computational state is no more
a stack but a cactus stack, since several branches of some nodes may be computed simul-
taneously. It is not always possible to pop the stack on backtracking (see Figure 8) and
the segments of memory that would be popped in a sequential system usually remains
unused (garbage slot problem), resulting in an increased memory consumption. This prob-
lem happens also in AND-parallel systems and is presented in [31] together with possible
solutions and associated tradeoffs.

4.3.3 Recomputation of stacks

To avoid the overheads associated with the two previous solutions, it is possible to have
the stacks recomputed by each of the workers contributing to the computation {21]. Each
worker computes a pre-determined path of the scarch tree described by an “oracle” al-
located by a specialized process called “controler”. Programs are rewritten to obtain an
arity 2 search tree so that oracles can be efficiently encoded as bitstrings (see Figure 9).

16

Shared Local Stack WORKER W,

First branch Trail stack

Activation record:

process_fathers (Y)

e e e i e e T T T T T e,

Binding array i

Choice point:
father/2 Binding array

Next untried:

father(andy, mark) philip

Activation record:
long_computation(P)

b - - e e e e c s crc e rcr e - —--

WORKER W,

Second branch
Trail stack

Activation record:
long_computation(P)

Binding array

i andy

Figure 6: Use of binding array ~

This simple representation of the computational state of the example of Figure 3 examplifies
the use of binding arrays. Two workers W, and W, share the portions of the stacks containing
the value cell located at address Y. The logical variable of the branch processed by Wi,
identified by the address Y, is bound to philip, while the logical variable of the branch
processed by W>, also identified by Y, is bound to andy.

17

ROOT

Figure 7: Hash-windows

Hash-windows are attached only to parallel branches. Variable lookup in branches 2, 3 and
4 may involve searching two hash-windows.

1 -
| garbage
' slat :
! :
| ;
|
2 --.
~ Worker 2
Worker 1
Worker 1 Worker 2 Worker 2 Worker 1

Figure 8: Garbage slot problem example

On the left-hand scheme of the example above, workers 1 and 2 compute two branches of
node 2. On the scheme of the centre, worker 1 backtracks to node 2 and since there is no
more work available on node 2, extends the stack to compute another branch of node 1.
When worker 2 completes the computation of its branch, it cannot pop the stack segment
comprised between node 1 and node 2 since this segment is not on the top of the stack.

4

Figure 9: Bitstring encoding of oracles

The oracle leading to branch 3 can be encoded as the bitstring 110.

4.4 Problems with AND-parallelism

In systems exploiting AND-parallelism, several workers may bind the same logical vari-
ables to conflicting values. Systems exploiting independent AND-parallelism avoid to join
dynamically partial AND-solutions and rather compute in parallel only independent goals.
The other AND-parallel systems exploit dependent A ND-parallelism instead.

4.4.1 Independent AND-parallelism

The main problem is the detection of independence between goals. Independence detection
can be done during the execution or in advance at compile time or partly at compile time
and partly during the execution.

Complex algorithms have been designed for runtime detection of parallelism [24]. If
several goals have ground arguments, they can be executed in AND-parallel. Independence
tests can be compiled as simple bit vector operations to be executed at runtime [64].

To limit the runtime overhead, it has been proposed to perform half of the detection
work at compile time [32]. In the Restricted AND parallelism, programs are compiled into
graphs called Conditional Graph Ezpressions (CGEs), including simple runtime indepen-
dence tests such as testing for the groundness of a variable. For example, the clause:

£(X) :- p(X), q(X), s(X).
will be compiled into the following graph expression:

f(X) = (ground(X)

p(x), :
(ground(X) q(X), s(X)).

If the argument of ground(X) is ground, the two following goals are computed in
parallel. Otherwise they are executed sequentially. Depending on the instantiation state
of X at runtime, three possible execution graphs may occur at runtime (see [Figure 10).

19

F
P
P
P Q S
Q S Q
S

Figure 10: Possible execution graphs resulting from Conditional Graph Expressions

If X is ground after {(X) is called, all three goals can be computed in parallel. Il X is grounded
by the computation of p(X) instead, the two last subgoals ¢(X) and s{X) can be executed in
parallel. Otherwise, all three goals are executed sequentially.

Conditional Graph Expressions may fail at capturing the potential independence be-
tween goals sharing the same variables. This occurs notably in programs where two goals
share a variable which is instantiated by only one of them such as in the quicksort program:

quicksort([X|L], SortedList, Acc): — partition(L, X, Littles, Bigs),
quicksort(Littles. SortedList,[X|Sorted Bigs]),
quicksort(DBigs, SortedBigs, Acc).

quicksort([], SortedList, SortedList).

In this example, no parallelisin can be detected automatically between the two recursive
calls to quicksort in the first clause and systems exploiting only strict independence of goals
would fail at parallelizing this clause. However, there are situations where goals sharing
variables can be rewritten in such a way that no variables are shared between these goals
which can then be executed in parallel while preserving the correctness and efficiency
of sequential computation [53]. Such AND-parallelism is called non-strict independent
AND-parallelism. It can be exploited in the example above which can be rewritten as:

quicksort([X|L], SortedList, Acc): — partition(L, N, Littles, Bigs),
quicksort(Littles. SortedList,[X|Temp)),
quicksort(Bigs, SortedBigs, Acc),
Temp = SortedBigs.

quicksort([], SortedList, SortedList). '

In practice, even simple runtime checks can be very expensive, such as testing for
groundness of a complex nested Prolog term. To avoid runtime tests, current research
is being concentrated on purely static detection of the independence between subgoals
[75). Early results indicate that these methods capture almost as much parallelism as the
compilation into CGEs.

20

4.4.2 Dependent AND-parallelism

In the following we will assume that dependent AND-parallelism is only used between
determinate goals. This is the case with flat concurrent logic languages and with the
Andorra model of computation.

Most systems implementing dependent AND-parallelism use the goal process model.
A goal process is responsible for trying each candidate clause until one is found that
successfully commits and then creating the goal processes for the body goals of the clause.
The goal being determinate, at most one candidate clause head will unify with the goal.
Tentative unification of a goal process with a clause head will either fail, succeed or suspend
on a variable. Dependent AND-parallel systems need therefore to create, suspend, restart
and kill a potentially high number of fine-grained processes. These basic operations on
processes may be the source of considerable runtime overhead and need to be limited to
obtain an efficient implementation {27]. Process switching overhead can be limited by
reducing the use of the general scheduling procedure to assign a process to a worker: after
completing the last child of a process, a worker continues with the parent; similarly, after
spawning processes, a worker continues with the execution of its last child.

Another very important problem arising in concurrent logic programming systems is
the garbage collection. Since these systems do not support the Prolog don’t know non-
determinism, most of the garbage collection performed at backtracking in Prolog systems
cannot be done in these systems, resulting in considerable memory consumption and poor
data locality. General garbage collection algorithms, which compact the stack and the
heap, require that all workers synchronize on entering and exiting garbage collection [27).

In the PIM project, a less complete but more efficient incremental garbage collection
is used instead, to increase the locality of references and obtain a better cache-hit ratio.
In the Multiple Reference Bit (MRB) algorithm, used inside a processing element or a
group of processing elements sharing the same memory (cluster), each pointer has one bit
information to indicate whether it is the only pointer to the referenced data {18]. MRB
is supported efficiently in time and space by the hardware of the PIM machine [39] while
reclaiming more than 60 % of the garbage cells of stream parallel programs.

4.5 Scheduling of parallel tasks

The aim of the scheduling of parallel tasks in parallel logic systems is to optimize the global
behaviour of the parallel system. Therefore schedulers aim to balance the load between
workers while limiting as much as possible the overhead arising from task switching. This
overhead occurs when workers have exhausted their work and need to move in the compu-
tation tree to grab a new task. In order to keep this overhead low, schedulers attempt to
limit the number of task switching by maximizing the granularity of parallel tasks and to
minimize each task switching overhead. In addition, to avoid unnecessary computations,
schedulers need to manage carefully speculative work

Maximizing the granularity of parallel tasks would require the ability to estimate ei-
ther at compile time or at runtime the computation cost of goals (AND-parallelism) or
alternative clauses (OR-parallelism). Current research (see section on Abstract Interpre-
tation) mainly concentrates on compile time analysis of granularity (95] [83]. Because of
the limited results obtained so far in task granularity analvsis, most schedulers use heuris-
tics to select work. One common heuristic used by OR-parallel systems [4] [66] is that
idle workers are given the highest uncomputed alternative in the computation tree, there-

21

fore mixing breadth-first exploration strategy between workers to the depth first Prolog
computation rule within each worker.

To limit the number of task switches between workers, several schedulers share the
computation of several nodes of the tree between workers (3] [6]. The scheduler then
attempts to maximize the amount of shared work. Contrary to the granularity of an un-
explored alternative (OR-parallelism) or of a goal waiting to be computed, the amount of
sharable work in a branch can be easily estimated by the number of unexplored alterna-
tives. Once an active worker has performed sharing of all its available work with an idle
one, both workers resume the normal depth-first search of Prolog computation.

Workers of independent AND-parallel systems distribute in priority the closest work
from their current position in the computation tree: goals waiting to be solved are put on
a stack accessible from other workers [50].

In most OR-parallel logic systems, an idle worker switching to a new task needs to
install its binding array or to copy parts of the stacks of the active worker providing
work. In these systems, the cost of task switching depends on the relative positions
of both workers providing and receiving work. Schedulers designed for these systems
attempt to minimize the cost of task switching by selecting the closest possible work in
the computation tree [16}, [13] [3]. This is not necessary for systems designed to provide
task switching costs independent from the relative positions of both workers involved in
this operation [4].

Speculative work may be pruned by pending cuts. To avoid performing unnecessary
work, a scheduler should give preference to non-speculative work and if all available work
is speculative to the least speculative work available [47]. Speculative work is better
handled by schedulers performing dispatching of work based on sharing [3] [6] than top-
most dispatching of work [16] since the control of the former is closer to the depth-first
left-most computation of sequential Prolog systems.

5 Systems exploiting one type of parallelism

A large number of models have already been proposed to parallelize Prolog. In this
section, we will concentrate on the systems exploiting one type of parallelism which have
been efficiently implemented based on the multisequential approach.

5.1 Systems exploiting OR-parallelism

The Kabu-Wake! system [70] was the first to copy stacks when switching task and to use
time-stamps to discard invalid bindings. In Kabu-Wake. the worker giving work suspends
its execution to copy its stacks into the idle worker’s local memory, apparently without
the incremental copying optimization. The Kabu-Wake implementation, on special pur-
pose hardware, provides nearly linear speed-ups for large problems computed in parallel.
However, it is based on a rather slow interpreter.

The ANL-WAM system from the Argonne National Laboratories [14] [34] was the first
parallel Prolog system based on compiling techniques and implemented on shared memory
multiprocessor. All trailed logical variables are stored in hash-windows, even when no
parallel computation takes place. Being the first efficient parallel Prolog implementation,

1Kabu-Wake names a transplanting technique used to grow bonzai trees.

22

the ANL-WAM system has been widely used for experimental purpose. The performances
of the ANL-WAM system are limited by the rather low efficiency of the sequential WAM
engine used and by the overhead arising from its hash-window model.

In PEPSys [106] [4], hash-windows are only used if needed: when several logical vari-
ables having the same identification are bound simultaneously by several workers. Most
accesses to the values of variables are as efficient as sequentially but some accesses may
involve searching of hash-window chains of unbounded length. The cost of task installation
is independent of the respective positions of the work and of the idle worker in the search
tree. In spite of the sharing of the stacks, PEPSys does not require a global address space
and has been simulated on a scalable architecture combining shared memory in clusters
and message passing between clusters [5]. PEPSys has also been efficiently implemented
on shared-memory multiprocessor. Sequentially, the WAM-based PEPSys implementa-
tion runs 30 % to 40 % slower than SICStus Prolog. In parallel, it provides almost linear
speedups for programs having a large enough search space [-{]. Other experimental results
[28] indicate that long hash-window chains are rare and do not compromise the efficiency
of the implementation.

The Aurora system is based on the SRI model [103] where bindings to logical variables
sharing the same identification are performed in binding arrays (see previous section). Ac-
cessing to such variables is a constant overhead but contrary to PEPSys, it is a constant
time operation. An Aurora prototype, based on SICStus Prolog, has been implemented on
several commercial shared-memory multiprocessors. IFour different schedulers have been
implemented: three of them use various techniques for the idle worker to find the closest
top-most node of the search tree with available work (13] [L6] {9]. Since experimental
results [93] indicate that the work installation overhead remains fairly limited, the Bristol
scheduler [6] performs sharing of work similar to the Muse system {3], the objective being
to maximise the granularity of paralle] tasks and limit the task switching overhead. All
schedulers support the full Prolog language including side-effects. The system has suc-
cessfully run a large number of Prolog programs and the performances of some of them
have been reported in [93] [6] (see Table 1 and Figure 11). Sequentially, Aurora is slightly
more efficient than PEPSys and in average it also provides better speedups in parallel.

In the Muse model [2}], active workers share, with otherwise idle workers, several choice
points containing unprocessed alternatives. Sharing is performed by the active worker,
which creates an image of a portion of its choice-points stack, in a workspace shared with
previously idle workers. The stacks of the active worker are then copied from its local
memory to the local memory of the idle worker, most of the copying being performed
in parallel by the two workers, using incremental copving of the portions of the stacks
which are not similar. Unwinding and installation of bindings in the shared section uses
the trail stack instead of time-stamps in Kabu-Wake. Muse has been implemented on
several commercial multiprocessors with uniform and non uniform memory addressing
(see Section 7.4) and on the BC-Machine prototype constructed at SICS and providing
both shared and private memory [2] {3]. The Muse implementation is based on SICStus
Prolog [17]. It combines a very low sequential overhead over SICStus (5%) with parallel
speed-ups similar to Aurora.

K-LEAF [8] is a parallel Prolog system implemented on a Transputer-based multipro-
cessor. Contrary to other multisequential systems, it creates all possible OR-parallel tasks.
Combinatorial explosion of the number of tasks is avoided by using some language con-
structs to ensure sufficient grain size of parallel tasks. K-LEAF has been implemented on

23

Parallel Speedups of Aurora

Speedups
10.00 parsel *20
A
900 T @sEeTTTTT
S 8-queensl ~
8.00 , Safeens? _ _
A tna
7.00 / 7 ".‘ - L7 “
/ e
6.00 p " —~
/ "“.' , , ’
5.00 ..‘ : ’ “
,f‘ ,* ,'d
4.00 i
/."‘/ ‘ ‘
3.00 e —]
"s"l
2.00 /"
1.00
Workers
5.00 10.00

Figure 11: Parallel speedups of Aurora

Parallel speedups of Aurora with Bristol scheduler, executing the same benchmarks as in
table 1.

24

Table 1: Execution times of Aurora

The benchmark programs are executed by Aurora using the Bristol scheduler and SICStus
implementations on Sequent Symmetry. parsel, parse5, and dbs5 are parsing and data-base
queries of the Chat80 natural language data-base front-end program. 8-queens! computes all
the solutions to the 8-queens problem and tina is a tourism information program.

Program{* times] 1 2 4 8| 10| SICStus
0.6

parsel *20 1.97 | 1.09 | 0.70 | 0.67 | 0.71 1.57
1180|280} 293|276 1.25

parsed 4871247] 1.3010.70 | 0.63 3.82
1]1.9743.74]692] 7.72 1.27

dbs *10 3.74 | 1.94 | 1.04 | 0.59 | 0.51 2.73
1]1.93]3.58|6.29 | 7.34 1.37

8-queensl 8.46 | 4.26 | 2.14 1 1.07 | 0.88 6.77
11199395785 9.60 1.25

tina 19.79 1 9.54 | 4.87 | 2.53 | 2.06 13.78
11207 |4.06] 7.8119.59 1.43

an experimental Transputer-based multiprocessor providing a virtual global address space.
This implementation is based on the WAM, using the binding array technique. The WAM
code is either emulated or expanded into C, and then compiled using a commercial C
compiler, the latter solution being five times more efficient than the former.

5.2 System exploiting independent AND-parallelism: &-Prolog

Independent AND-parallelism has mainly been exploited by the &-Prolog system [52]
which covers several aspects of the problem, from the independence detection at compile-
time to the efficient implementation of AND-parallelism on shared memory multiproces-
SOTS.

Strict as well as non strict independent AND-parallelism are expressed using the &-
Prolog system. &-Prolog programs can also be generated automatically through compile-
time analysis of ordinary Prolog programs. &-Prolog is very similar to Prolog with the
addition of the parallel conjunction operator ~&" and of several builtin primitives to
perform the independence runtime tests of conditional graph expressions (see previous
section). For example the Prolog program

p(X):—qg(X). r(XN).
could be written in &-Prolog as:
p(X): =(ground(X) = ¢(X)&r(X)).

The compiler performs a number of static analyses to transform plain Prolog programs
into &-Prolog programs before compiling the latter into an extension of the WAM called
PWAM [50]. The static analyses aim at detecting the independence of litterals, even in

25

Table 2: Execution times of &-Prolog

The benchmark programs are executed by &-Prolog and SICStus imnplementations on Sequent
Balance and Quintus 2.2 on SUN3-110. The first benchmark is a matrix multiplication. The
three next benchmarks are different versions of the quicksort of a list of 1000 elements using
the predicate appendor difference-lists exploiting strict independent AND-parallelism (si) and
non-strict independent AND-parallelism (nsi). The last benchmark annotatoris a “realistic”
program of 1800 lines, the annotator being one of the static analysers used in the &-Prolog

compiler.

Program 1 4 8 10 | SICStus | Quintus

0.5 | Sun3-110
matrix(50)-int 103 | 25.9 | 13.0 | 10.45 99.8 7.98
qs(1000)-app || 13.23 | 4.43 | 3.08 | 3.03 13.6 1.7
qs(1000)-dl-si 119|119 ¢ 11.9 12.0 11.13 1.61
qs(1000)-dl-nsi jf 12.51 | 4.06 | 2.91 2.78 11.13 1.61
annotator(100) 4.09 | 1.27 |1 0.75 | 0.64 3.87 0.62

presence of side-effects [74] [73]. The main difference between the PWAM and the WAM
is the addition of a goal stack in the PWAM. The PWAM assumes a shared-memory
multiprocessor.

To adjust the computing resources to the amount of parallel work available, the &-
Prolog scheduler organises PWAMs in a ring. A worker searches for an idled PWAM in
the ring. If no idle PWAM is found and enough memory is available, the worker creates a
new PWAM, links it to the ring and look for work in the goal stacks of the other PWAMs.

The &-Prolog run-time systems is based on SICStus and has been implemented on
shared memory multiprocessors. The overhead of the &-Prolog system running sequen-
tially over SICStus arises mainly from the use of the goal stack and remains very limited
(less than 5%) for the majority of the benchmarks using unconditional parallelism (with-
out runtime tests which are actually fairly expensive). Parallel speedups depend on the
benchmark program but even when no parallelism is available. such as in the quicksort
program using difference-lists and exploiting only strict independent parallelism (see Ta-
ble 2), the &-Prolog system remains almost as efficient as the SICStus sequential Prolog
implementation.

5.3 Systems exploiting dependent AND-parallelism

Because of the importance of the efforts dedicated to concurrent logic languages, it is only
possible to mention here some of the implementations of these languages.

5.3.1 Parlog

The JAM abstract machine based on the WAM has heen designed to support concurrent
logic languages and the full Parlog language in particular. It has been implemented on a
shared-memory multiprocessor [27], reaching half of the efficiency of SICStus Prolog. In
parallel, the benchmarks containing important dependent AND-parallelism show speedups
of between 12 and 15 on 20 processors while benchmarks containing no dependent AND-

26

Table 3: Execution times of the JAM on Sequent Balance B21

Program || no. of 1) 10 19
calls

gsort 4708 | 3.7 091 06| 0.5

nrev 80601 [30.0 | 6.5 3.6 | 2.4

lqueens 23531 (378 7.6 391 24

tak 63609 | 71.4 [15.0| 7.9 4.8

queens 62082 | 85.9 | 87 88.7 1 90.1

parallelism such as the gueens program of Table 3, run at the same speed in parallel as
sequentially (see Table 3).

5.3.2 Flat Concurrent Prolog

FCP has been implemented on distributed memory multiprocessors Intel iPSC1 [94] [35].
The implementation provides limited speedups for fine-grained systolic computations and
good speedups for large-grained programs.

5.3.3 GHC and KL1

A large number of GHC and KL1 implementations have been done in the framework of
the Japanese Fifth Generation Computer Systems Project lead by the ICOT and it is only
possible to mention a few of them in this paper. KL1 has been implemented on com-
mercial shared-memory multiprocessor [88], this implementation being 2 to 9 times slower
than Aurora [96]. The most significant prototypes involve both hardware and software
development with the implementation of several highly parallel machines dedicated to the
execution of the concurrent logic language KL1. These inachines, known as Multi-PSI and
PIM-p are presented in another section of this paper (see section 7.4).

5.3.4 Commercial Concurrent Logic Language: Strand

A commercial product has been derived from Parlog and FCP: Strand (STReam AND-
parallelism) [36]. In the Strand language. there is no more unification but matching of
the head of a clause against a goal. The rule guards reduce to simple tests. An assign-
ment operation can be used in the bodies of the rules but, as in other logical languages,
Strand variables are single assignment variables. Processor allocation pragmas can be
used by programmers to control the degree of parallelism of their programs. A foreign
interface language enables the calling of Fortran or C modules from a Strand program.
Strand can thus be used to coordinate the execution of existing sequential programs on
multiprocessors, therefore avoiding to rewrite these programs to parallelize them.

The implementation of Strand is based on the Strand Abstract Machine or SAM,
designed to limit the target-dependent parts of the implementation. SAM is divided into
a reduction component, similar to a concurrent logic language simplified implementation
and a communication component performing matching (read) and assignments (write).
All machine specific features of the implementation are localized into the communication

27

component. Strand has been implemented on a variety of shared and distributed memory
multiprocessors. The Strand implementation runs approximately two times faster than
Parlog and three times faster than FCP.

5.4 Performances of systems exploiting one type of parallelism

The systems described above have demonstrated that it is possible to exploit efficiently
OR- and independent AND- parallelism on shared-memory multiprocessors including a
limited number (up to several tens) of processors. Efficiently means that in programs
which exhibit the suitable type of parallelism, almost linear speedups can be obtained
whereas in the worst case, when no parallelism can be exploited, its efficiency remains
similar to a state-of-the-art sequential Prolog implementation such as SICStus Prolog.
Dependent AND-parallel systems are less efficient but they enable to exploit finer-grained
parallelism thar OR- and independent AND-parallel systemns.

The majority of the parallel systems presented in this section compile logic programs
into abstract machine instructions which are most of the time executed by an interpreter
written in C, as it is the case in SICStus Prolog. Some commercially available Prolog sys-
tems execute abstract machine instructions more efficiently by using an abstract machine
interpreter written in assembly language (Quintus Prolog) or by generating target machine
code from the abstract machine instructions (BIM Prolog). Parallelizing techniques devel-
oped in the systems presented above remain valid to parallelize these efficient commercial
systems, although improving the efficiency of the sequential engine will probably decrease
the parallel speedup.

Whether it is cost-effective to use non scalable shared-memory multiprocessors to solve
symbolic problems programmed in logic languages is still questionable. This situation may
change when the multiprocessor technology becomes more mature and multiprocessor
workstations become as common as uniprocessor ones. Then a parallel logic programming
system, providing significant speedups in the best cases and no speed-down otherwise,
will be a good way of exploiting the computing power delivered by the multiprocessor
platform. The use of more scalable higly and massively parallel multiprocessors, to solve
larger size problems currently untractable sequentially, is discussed in section 7.4.

6 Systems combining several types of parallelism

Important benefits can be expected from the combination of several tyvpes of parallelisms
into a single parallel logic programming system implementation: these are mainly an
increase in the number of programs that can benefit from parallelism and a reduction of
the search space of some of them.

Although systems exploiting one type of parallelism have demonstrated their ability to
reach effective speedups over state-of-the-art sequential Prolog systems, a large amount of
parallel programs cannot benefit from speed improvements: this is the case of deterministic
programs in OR-parallel systems and of large search programs in AND-parallel systems. In
addition, while OR- and independent AND-parallel systems mainly exploit coarse-grained
parallelism, dependent AND-parallel systems have developed techniques to exploit fine-
grained parallelism, present in a large number of applications.

Combining OR- with AND-parallelism also results in significant reductions in the pro-
gram search space, when several recomputations of the same independent AND-branch,

28

Left-hand branch Right-hand branch: long

computation

\ Ly

-

Figure 12: Reduction of the search space by use of cross-product

In this example, two goals are computed in AND-parallel, the computation of the left-hand
branch being splitted into three OR-parallel branches. Combining AND with OR parallelism
and cross-producing the solutions produced by the right- and the left-hand branches saves
two re-computations of the right-hand branch, which would be recomputed with each of the
left-hand branches.

due to backtracking into a previous AND branch, can be avoided by “reusing” the solutions
already produced in each AND-branch (see Figure 12).

However, the combination of AND- with OR- parallelism raises difficult problems.
Control of the execution must guarantee that all solutions to the AND-branches are cross-
produced without introducing too much overhead to store partial solutions or to synchro-
nize workers. Merging of partial solutions during the cross-product of AND-branches is a
complex operation whatever binding scheme is being used: stack copying or stack sharing
using binding arrays or hash-windows. The solutions proposed to solve these problems
are too complex to be presented in this paper [106] [38] {41] [58] [25]. Indeed, the idea of
“sharing” solutions between OR-branches is not proper to parallel execution models, and
also appears in a few sequential Prolog systems that attempt to “memorize” and “reuse”
partial solutions in order to avoid recomputations, such as [30]. Such systems are not yet
mature and competitive enough with traditional Prolog systems to serve as a basis for
parallel models. Moreover, simulations of a variety of programs [92] indicate that only few
of them would benefit from reuse of partial solutions of independent AND-branches.

29

6.1 Systems combining independent AND- with OR-parallelism

The ROLOG system implements the Reduce OR Process Model (ROPM) [98] which com-
bines independent AND- with OR-parallelism. Programs are compiled into an abstract
machine inspired from the WAM [81]. The implementation uses a machine independent
run-time kernel called CHARE kernel which made possible the porting of ROLOG on a
variety of shared and distributed-memory parallel machines. Because of the complexity of
the execution model, sequential efficiency of ROLOG is several times lower than efficient
parallel logic systems exploiting one type of parallelism. In parallel, it provides linear
speedups for benchmarks where programmer annotations ensure sufficient granularity of
tasks. Experimental results also indicate that significant reductions of the search space
can also be obtained in several programs, by avoiding the recomputation of AND-parallel
branches due to backtracking (80].

The ACE model [42] aims to combine the independent AND-parallel approach of the
&-Prolog system with the OR-parallel approach of the Muse sytem. Thus no effort is
made to reuse results of independent AND-subcomputations in different OR-branches, as
described above, but the strength of this model lies in its (rejuse of simple techniques
whose efficiency has already been proved.

6.2 Systems Combining dependent AND- with OR-parallelisms

As presented in section 3.4, execution models based on the Andorra principle has been
proposed to combine OR- and dependent AND-parallelism. They intend to subsume both
the Prolog and the concurrent programming paradigms. There exist two main streams of
research in this area, depending on the language being supported: the first one, based on
the Basic Andorra Model, supports the Prolog language, while another one, based on the
Andorra Kernel Language, integrates concurrent languages constructs.

6.2.1 Basic Andorra Model

The Basic Andorra Model has been initially proposed by D.H.D. Warren as an execution
model for Prolog [100], in order to exploit both OR- and dependent AND-parallelism
and to have a better pruning of the search space, by favoring deterministic computation
over non-determinate one. It has been implemented in the Andorra-I prototype [25] which
runs on both sequential machines and shared-memory multiprocessors such as the Sequent
Symmetry. The current system consist of an interpreter, similar in speed with comparable
Prolog interpreters such as C-Prolog, while a compiler version is under development. OR-
parallelisin is achieved by using techniques borrowed form the Aurora system, and the
exploitation of dependent AND-parallelism is derived from Crammond’s abstract machine
[27] tailored to concurrent logic languages (see section 5.3.1).

Andorra-I programs are executed by teams of workers (abstract processing agents).
Each team is associated with a separate OR-branch in the computation tree, and undertake
the parallel execution of determinate goals in that branch, if any. Else a non-determinate
goal is chosen, usually the leftmost goal to follow Prolog’'s stategy, and a choice-point
is created. The team will then explore one of the OR-branches. If several teams are
available, OR-branches are explored in parallel using the SRI model as in Aurora, the
scheduler of which is also used to distribute work. Within a team, all workers share the
same execution stacks, but manage their own run queue of goals waiting for execution.

30

When a local queue becomes empty, the worker will try to find work within the team, as
in the implementation of Parlog [27].

The integration of full Prolog, including cut and side-effects, is possible in Andorra-I,
but requires a careful preprocessing phase [25]. A program analysis, based on abstract
interpretation techniques, is performed in order to determine, for each procedure, the mode
of its arguments, i.e. the possible instanciation types. This information is used, together
with the analysis of pruning operators and side-effects to generate sequencing instructions
that should be taken into account by the execution model. The preprocessor also generates
specialized code intented to efficiently regonize the determinacy of procedures.

Performance evaluation of Andorra-I on a Sequent Symmetry shows that it can exploit
efficiently either pure AND- or pure OR-parallelisin, the latter with results comparable
with Aurora. For instance, with 11 processors AND-parallel speedups w.r.t. sequential
implementation range from 5.2 to 9.1 for suitable programs, while OR-parallel speedups
range from 5.2 to 10.3. The ability of Andorra to reduce the amount of computation was
estimated by mesuring the total number of inferences executed for several problem solving
examples[25]. The reduction can attain one order of magnitude. Therefore, when both
AND- and OR-parallelism are exploited, the overall speedup is always greater than that
achievable with one kind of parallelism alone.

The basic Andorra model has also been implemented as an extension of the Parallel
NU-Prolog system (78] [76], which implements dependent AND-parallelism. A simple
variant of the compilation techniques developed for concurrent logic languages [59] is used
to construct a decision tree of the conditions under which a goal is determinate. First
parallel experiments are limited to 4 processors, giving speedups comprised between 2 and
3.4 for simple test programs.

6.2.2 Extensions to the Basic Andorra Model

D. H. D. Warren has recently proposed a new execution model [101] that extends the basic
one by allowing parallel execution between non-determinate goals as long as they perform
“local” computations, i.e. as they do not instanciate non-local variables. In this way
non-determinate goals are synchronized (i.e. blocked) only when they try to “guess” the
value of some external variable. Observe that such extra-parallelism contains independent
AND-parallelism as a subcase. The Extended Andorra Model combines thus all three
kinds of parallelism: OR-, dependent AND- and independent AND-parallelism.

Another combination of the three kinds of parallelism is proposed by the IDIOM
model {43]. It uses Conditional Graph Expressions (CGLE) to express independent AND-
parallelism as in &-Prolog, and execution proceeds as follows. First occur the Dependent
AND-parallel phase where all determinate goals are evaluated in parallel. When no more
determinate goals exist, the leftmost goal is sclected for expansion: if it is a CGE, then an
independent AND-parallel phase is entered, otherwise a choice-point is created as in the
basic Andorra model. Solution sharing is handled by cross producing partial solutions of
independent subcomputations.

The two extended models presented above have not yet been implemented.

6.2.3 Andorra Kernel Language

The Andorra Kernel Language (AKL) [56] extends the basic andorra model by borrowing
some of the concurrent languages constructs (see section 3.4). The semantics of AKL [45]

31

is given by a set of simple rewrite rules on an AND/OR tree, which has led to the design
of a simple abstract machine and sequential implementation. Parallel implementations
are currently under developement, based on the integration of a MUSE-like mechanism
for handling OR-parallelism.

Independently, a new abstract machine is developed from [78] to accomodate the new
constructs of AKL. It is inspired by the JAM [27], as the Andorra-I implementation. An-
other execution model [44] exploits mostly OR-parallelism and uses hash-windows similar
to Pepsys’, which seem more suited to the OR-parallel execution of AKL than binding
arrays.

7 Current research and perspectives

7.1 Static analysis of logic programs

An important topic recently developed in logic programming is that of static program
analysis, which aims at uncovering various program properties. Compile-time analysis can
be applied to parallel execution models to predict runtime behavior so that compilation of
programs may be optimized. This analysis is usually based on the abstract interpretation
techniques, introduced by the seminal work of the Cousot’s [26] for flowchart languages and
developed in the domain of logic programming since the mid-80’s [71] [57] [12]. Abstract
interpretation is a general scheme for static data-flow analysis of programs. Such analysis
consists primarily of executing a program on some special domain called “abstract” because
it abstracts only some desired property of the concrete domain of computation.

The use of abstract interpretation for parallel execution falls roughly into three major
kinds of analysis :

o the dependency analysis, which aims at approximating data-dependencies between
literals due to shared variables,

e the granularily analysis, which aims at approximating the size of computations,

¢ the determinacy analysis, which aims at identifying deterministic parts of the pro-
grams.

Various abstract domains have been designed that approximate values of logical vari-
ables into only some groundness and sharing information. This is currently used in in-
dependent AND-parallel models such as [52] in order to find out at compile-time which
predicates will run in parallel [75], thus avoiding costly runtime tests (see section 4.4.1).
Experimental results indicate that a large part of the potential parallelism of programs is
captured, although some potential parallelism may be lost, compared to a method per-
forming precise but costly runtime analysis. In dependent AND-parallel models, the same
kind of information can be used to determine an advantageous scheduling order among
active processes and to avoid useless process creation and suspension. Another useful
application is static detection of deadlocks in concurrent programs [22]. Task granularity
analysis, by discriminating large tasks from small tasks not worth parallelization, strives
to improve the scheduling policy of AND and OR-parallel models. Research has only just
begun on this important topic {83]. Determinacy analysis is required by Andorra based
models, in order to simplify runtime tests.

32

As execution models become more and more complex with the combination of several
kinds of parallelism, the need for compile-time analysis increases in order to compile
programs more simply and more efficiently.

7.2 Parallelism and Constraint Logic Programming

Constraint Logic Programming (CLP) languages provide an attractive paradigm which
combines the advantages of Logic Programming (declarative semantics, non-determinism,
logical variables, partial answer solution) with the efficiency of special-purpose constraint-
solving algorithms over specific domains such as reals, rationals, finite domains, or booleans.
The key point of this paradigm is to extend Prolog with the power of dealing with do-
mains other than (uninterpreted) terms and to replace the concept of unification with
the general concept of constraint solving [55]. Several languages, such as CLP(R) [55],
CHIP [67] {49], Prolog-III [23] show the usefulness of this approach for real industrial ap-
plications in various domains: combinatorial problems, scheduling, cutting-stock, circuit
simulation, diagnosis, finance, etc. The use of constraints indeed leads to a more natural
representation of complex problems.

A most promising perspective for CLP languages is the parallel execution of such
languages, where both OR- and AND-parallelism can be applied. The simultaneous ex-
ploration of alternative paths in the search tree provided by OR-parallelism can be par-
ticularly useful in problems such as optimisation problems. Sequential CLP sytems use
a branch-and-bound method that involves searching for one solution and then starting
over with the added constraint that the next solution should be hetter than the first one,
ensuring thus an a priori pruning of non-optimal branches. With OR-parallelism, such
a scheme allows for super-linear speedups, as the simultaneous search is more likely to
quickly find a better solution, therefore improving the pruning of the search space and
the overall performance. Experiments done by combining the finite domains solver of
CHIP and the Pepsys OR-parallel system [99] and the Elipsys system [82] already show
that impressive speedups with respect to an efficient sequential implementation can be
achieved.

AND-parallelism can also be used for better performance. Independent AND-parallelism
corresponds to partitioning the global constraint system into several smaller (independent)
subsystems that can be solved more easily. Since problems tackled by constraint systems
are usually very large and NP-hard, breaking a global problem in several subproblems
that can be solved independently, is an important issue.

Andorra-based models by favoring deterministic computations, can also greatly im-
prove CLP. They provide a good heuristic to guide the constraint solving process. This is
the case for instance when solving disjunctive constraints. In CLP languages, disjunctive
constraints are treated by using the non-determinism of the underlying Prolog language.
A choice-point is thus created for each disjunctive constraint, and different alternatives are
then explored by backtracking. The (static) order in which the disjunctive constraints are
stated will enforce the order in which the choice-points will be created and therefore the
overall search mecanism. A poor order could lead to bad performance due to useless back-
tracking. The Andorra principle, by delaying choice-point creation, will amount to render
deterministic the problem as much as possible before handling the disjunctive constraints.
In this way, computations are factorized between alternatives and some disjunctions may
even be rendered deterministic, thus reducing the complexity of the problem.

33

7.3 Concurrent Constraint Languages

The current CLP framework is based on Prolog-like languages and hence limited to trans-
formational systems (see section 3). New research has begun to extend this to reactive
systems, by investigating Concurrent Constraint Languages. These languages have been
recently introduced by V. Saraswat [85] [86]. They are based on the ask-and-tell mechanism
(69] and generalize in an obvious manner both concurrent logic languages and constraint
logic languages. The key idea is to use constraints to extend the synchronization and
control mechanisms of concurrent logic languages. Briefly, multiple agents {processes) run
concurrently and interact by means of a shared store, i.e. a global set of constraints. Each
agent can either add a new constraint to the store (Tell operation) or check wether or not
the store entails a given constraint (Ask operation). Synchronization is achieved through
a blocking ask : an asking agent may block and suspend if one cannot state if the asked
constraint is entailed nor its negation is entailed. Thus nothing prevents the constraint
to be entailed, but the store does not yet contain enough information. The agent is sus-
pended until other concurrently running agents add (Tell) new constraints to the store to
make it strong enough to decide.

Obviously, the instantiation of this framework to unification constraints rephrases
nicely the usual concurrent logic languages of section 3, with matching corresponding
indeed to the Ask operation. Also restricting the language to only Tell operations repro-
duces the previous CLP languages.

These languages have not yet been implemented, but current research shows that
on some specific domains, such as the finite domains as proposed by CHIP [49], the
implementation technologies and know-how developed for both concurrent languages and
constraint languages can be merged and nicely integrated, so that efficient implementations
seem now at hand.

7.4 Use of highly and massively parallel multiprocessors

An ever increasing number of highly (in the order of 10%) and massively (in the order of
10%) parallel multiprocessors are becoming available. Highly parallel multiprocessors may
provide logically shared memory based on physically distributed memory, access time to
the shared memory being non uniform (NUMA: Non Uniform Memory Acess). An exam-
ple of such a multiprocessor is the BBN Butterfly, which includes up to 128 processing
elements, Motorola M68020 in the GP1000 or M8S100 in the TC2000. Massively paral-
lel multiprocessors have the NORMA (NO Remote Memory Access) architecture, where
inter-processor communication is performed by message passing. Among the commercial
massively parallel multiprocessors appearing on the market, the Supernode produced by
several European manufacturers and including up to 1,024 T800 Transputer processors
[46], AP1000 from Fujitsu, including up to 1,024 Sparc processors, CM-5 from Think-
ing Machines including up to 16,000 Sparc processors, the Intel Paragon, including up
to 4,000 processors, etc. Although intended primarily to solve number-crunching appli-
cations, these multiprocessors could help solving efliciently large symbolic applications,
currently untractable on sequential computers. In order for parallel logic programming
systems to use efficiently a large number of processing elements, it is necessary that the
techniques used in these systems scale well with the number of processing elements.

34

Table 4: Execution times of the MUSE prototype on Butterfly TC2000

Execution times and speedups of a knowledge based system checking the design of a circuit

board.
| No. of PEs || 1] 10] 20] 30] 37]
Time (s) 105.97 { 10.81 | 5.56 | 3.93 | 3.29
Speedup 1] 9.80| 19.0 | 26.96 | 32.2

7.4.1 Processor-memory connection issue

Systems performing sharing of computation stacks and designed for UMA (Uniform Mem-
ory Access) shared-memory multiprocessors may not be appropriate for NUMA multipro-
cessors such as the Butterfly GP1000 and Butterfly TC2000. On these machines, accessing
local memory on a node is one order of magnitude faster than accessing shared memory on
a remote node. In addition since cache coherency is not provided, shared memory cannot
be cached and local accesses to shared memory are slower than local accesses to private
memory. This is the case for all accesses to the execution stacks which cannot be cached
since they are shared amongst workers. This problem was exhibited by the Aurora proto-
type implementation on Butterfly [72] running sequentially 80 % slower than SICStus , to
be compared with the 20 % overhead of Aurora running on UMA shared memory Sequent
Symmetry. In spite of these problems, experiments performed demonstrated the possibil-
ity of obtaining almost linear speedups with S0 processing elements computing large size
problems.

Systems performing stack copying are better suited for NUMA multiprocessors. Ex-
perimental results of the MUSE prototype running on Butterfly TC2000 [1] indicate that
the overhead of MUSE running sequentially over SICStus Prolog remains limited to 5 %
while almost linear speedups are provided up to 40 processors (see Table).

7.4.2 Design of specialized architectures

Since NUMA architectures are not suitable for models sharing the computation stacks, one
track of research attempts to design a scalable UMA architecture. In the Data Diffusion
Machine {104], the location of a datum is decoupled from its virtual address and data
migrates automatically where it is needed: memory is actually organised like a very large
cache. The hardware organisation consists of a hierarchy of buses and data controllers
linking processors, each having a set-associative memory. The machine is scalable since
the number of levels in the hierarchy is not fixed and it should be possible to build a
multiprocessor including a large number of processing elements with a limited number of
levels.

The most important research activity in this area is performed by the ICOT, in the
Fifth Generation Computer Systems project. This project will deliver the PIM/p mul-
tiprocessor, including up to 512 specialized processors [40]. PIM/p is composed of up
to G4 clusters, each cluster being similar to a (physically) shared memory multiprocessor
including 8 processors. The implementation techniques of KL1 on the PIM/p machine
have been experienced with the Multi-PSI/V2 distributed memory multiprocessor [77].

35

The intra-cluster issues of the PIM/p machine are explored inside a Multi-PSI/V2 proces-
sor while inter-cluster issues of PIM/p are experienced between Multi-PSI/V2 processing
elements. This is the case for example with intra- [18] and inter-cluster [54] incremental
garbage collection techniques.

7.4.3 Scheduling issue

Several research projects address the scalability issues raised by scheduling and load bal-
ancing over massively multiprocessors. In order to avoid bottlenecks that could arise in
centralized or distributed solutions, multi-level hierarchical load-balancing schemes have
been proposed [10] [68]. Bottlenecks are expected to arise in centralized solutions with
a large number of processing elements accessing a central scheduler. Fully distributed
solutions are expected to require some shared data and result in bottlenecks to access
these shared data together with a large amount of inter-processor communications. Ex-
perimental results over 64 PEs Multi-PSI NORMA architectures, reported in [68], indicate
that multi-level load-balancing increases the speedups when using more than 32 PEs: a
speedup of 50, using 64 PEs, was obtained for a puzzle solving program.

An additionnal problem arising on massively parallel multiprocessors is the high cost
of maintaining an exact global state of the system. A scheduling strategy, using an ap-
proximate state of the system, has been proposed in [11].

8 Conclusion

An important research activity is being dedicated to parallelizing logic programming,
mainly because of the “intrinsic” parallelism of logic programming languages and of the
computational needs of symbolic problems. Parallel logic programming systems exploit
essentially OR-parallelism, simultaneous computation of several resolvents and AND-
parallelism, simultaneous computation of several goals of a clause. AND-parallel exe-
cution can be restricted to goals which do not share any variable, in which case it is called
independent. Otherwise, it is called dependent AND-parallelism.

Two main approaches can be distinguished: the first one aims at exploiting parallelism
transparently by parallelizing the Prolog language, while the second one develops language
constructs allowing programmers to express explicitly the parallelism of their applications.
The second approach is mainly represented by the family of Concurrent Logic Languages,
which aim at supporting the programming of applications not addressed by Prolog such
such as reactive systems and operating system programming.

In spite of the inherent parallelism of logic languages, implementing them efficiently
in parallel raises difficult problems. Optimisations arising from backtracking cannnot be
applied for OR-parallel systems. AND-parallel systems need to check that goals executed
in parallel assign their variables to coherent bindings. Independent AND-parallel goals
cannot bind the same variables. Independence can be computed at compile time, at run-
time or partly at compile time and partly at runtime. Most runtime independence tests
are time consuming and the most efficient results are obtained when the goal indepen-
dence can be computed at compile time. Dependent AND-parallel systems only compute
determinate goals in parallel, determinacy being enforced by the language in concurrent
logic systems or computed partly at compile time and partly at runtime in the Andorra
model of computation.

36

A large number of parallel computational models have been proposed for logic program-
ming and some of them have been implemented efficiently on multiprocessors. The most
mature systems exploit one type of parallelism. Systems exploiting OR- and independent
AND-parallelism obtain linear speedups for programs containing enough parallelism while
programs containing no exploitable parallelism run almost as efficiently as if executed by
an efficient Prolog system. Systems exploiting dependent AND-parallelism are usually
several times less efficient but they can exploit more parallelism of finer grain in logic pro-
grams. Systems combining several types of parallelisms are not for the moment as efficient
as systems exploiting a single type of parallelism but they may result in a reduction of the
search space of programs by avoiding useless computations. In addition, these systems
can speed up more logic programs than systems exploiting one type of parallelism.

Current and future research in the domain of logic programming is active in sev-
eral domains. One track of research is improving existing systems, mainly by developing
compile-time analysis techniques of logic programs to detect determinacy of goals and in-
dependence between goals and to anticipate the granularity of resolvents (OR-parallelism)
or goals (AND-parallelism). Another fruitful direction of research is the combination of
constraint logic programming with parallelism. The last direction of research mentioned in
this paper is the use of highly and massively parallel multiprocessors. The most important
activity in this area is performed by the Japanese Fifth Generation Computer Systems
project, where the PIM/p multiprocessor to be demonstrated in 1992, will deliver several
hundred millions of reductions per second (one reduction is equivalent to one lip) peak
performance.

In spite of the excellent performance results achieved by parallel logic systems, the cost-
effectiveness of parallel logic programming is still questionable. Parallel multiprocessors
generally do not use the most recent microprocessors already used in the most powerful
uniprocessor workstations. In other words, because of the rapid progresses in the VLSI
technology, a sequential Prolog system running on the most recent type of workstation is
hardly superseded by a parallel logic programming system running on a modestly parallel
multiprocessor based on the previous generation of microprocessors. This situation might
change rapidly since several parallel workstations using state-of-the-art microprocessors are
becoming commercially available. There are not yet enough applications likely to benefit
from highly and massively parallel systems, since the traditional use of logic programming
is constrained to making prototypes. This situation may change with the advent of highly
and massively parallel multiprocessors which will enable to address problems too large to
be solved by the most efficient sequential logic programming systems.

Parallel logic programming systems may become more cost-effective if multiprocessor
technology becomes more mature and incorporates the most recent microprocessors as soon
as uniprocessors. A more radical change may occur when progresses in VLSI technology
are limited by physical constraints such that parallel execution becomes the only possibility
of increasing the performances of computers. Parallel logic programming systems will then
be much more efficient than sequential systems for programs having exploitable parallelism
and not less for the other ones. In addition, parallelisin will be much easier to express with
these languages than using more “traditional” imperative languages, whose semantics is
much more sequential.

37

Acknowledgements

The authors would like to thank D.H.D. Warren for the idea of this paper and helpful
suggestions and corrections. They would also like to thank Jacques Cohen for reading the
paper in detail and proposing numerous improvements.

38

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

(9]
(10]

[11]

[12]

K. Al and R. Karlsson. OR-Parallel Speedups in a Knowledge Based system: on
Muse and Aurora. Submitted to the International Conference on Fifth Generation
Computer Systems 1992, 1992.

K. A. M. Ali and R. Karlsson. The Muse or-parallel Prolog model and its perfor-
mance. In Proceedings of the North American Conference on Logic Programming
NACLP’90, Austin, 1990. MIT Press series on Logic Programming.

Khayri A. M. Ali and Roland Karlsson. Scheduling Or-parallelism in muse. In
Furukawa {37], pages 807-821.

U. Baron, J. Chassin de Kergommeaux, M. Hailperin, M. Ratcliffe, P. Robert, J.C.
Syre, and H. Westphal. The parallel ecrc Prolog system PEPSys: An overview and
evaluation results. In Proceedings FGCS'8S, Tokyo, Nov-Dec 1988. International
Conference on Fifth Generation Computer Systems.

U.C. Baron, B. Ing, M. Ratcliffe, and P. Robert. A distributed architecture for
the PEPSys parallel logic programming system. In Proceedings ICPP’SS8, Chicago,
August 1988. International Conference on Parallel Processing.

A. Beaumont, S. Muthu Raman, P. Szeredi, and D.H.D. Warren. Flexible Scheduling
of OR-Parallelism in Aurora: The Bristol Scheduler. In PARLE’91 Parallel Archi-
tectures and Languages Europe, pages 403-420, Eindhoven, The Netherlands, 1991.
Springer-Verlag, Lecture Notes in Computer Science No. 506.

Peter Borgwardt. Parallel prolog using stack segments on shared memory multipro-
cessors. In 84 Int. Symposium on Logic Programming, pages 2-11. IEEE, February
1984.

P.G. Bosco, C. Cecchi, C. Moiso, M. Porta, and G. Sofi. Logic and functional
programming on distributed memory architectures. In Proceedings of the 6% Inter-
national Conference on Logic Programming, pages 325-339, Jerusalem, June 1990.

P. Brand. Wavefront scheduling. Internal report gigalips project, SICS, 1988.

J. Briat, M. Favre, C. Geyer, and J. Chassin de Kergommeaux. Scheduling of or-
parallel prolog on a scalable, reconfigurable, distributed memory multiprocessor. In
PARLE"’91 Parallel Architectures and Languages Europe, pages 385-402, Eindhoven,
The Netherlands, 1991. Springer-Verlag, Lecture Notes in Computer Science No. 506.

J. Briat, M. Favre, C. Geyer, and J. Chassin de Kergommeaux. OPERA: OR-Parallel
Prolog System on Supernode. In P. Kacsuk and M. Wise, editors, Implementation
of Distributed Prolog. John Wiley and Sons, to appear in 1992.

M. Bruynooghe. A practical framework for the abstract interpretation of logic pro-
grams. Journal of Logic Programming, 10(2):98-124, 1991. revised version of K.U.L.
technical report CW-62, 1987.

39

[13] R. Butler, T. Disz, E. Lusk, R. Olson, R. Overbeek, and R. Stevens. Scheduling or-
parallelism: An Argonne perspective. In K. Bowen R. Kowalski, editor, Proceedings
of the Fifth International Conference and Symposium on Logic Programming, pages
1590-1605, Seattle, August 1988,

(14] R. Butler, E.L. Lusk, R. Olson, and R.A. Overbeek. ANLWAM: A Parallel Imple-
mentation of the Warren Abstract Machine. Technical report, Argonne National
Laboratories, August 1986.

[15] L. Selle C. Percebois, N. Signes. An Actor-Oriented Computer for Logic and Its
Application. In P. Kacsuk and M. Wise, editors, Implementation of Distributed
Prolog. John Wiley and Sons, to appear in 1992.

[16] A. Calderwood and P. Szeredi. Scheduling or-parallelism in Aurora. In Proceedings
of the 6t International Conference on Logic Programming, Lisboa, June 1989.

[17]) M. Carlsson and J. Widen. SICStus Prolog user manual. Research report, SICS,
1988.

[18] T. Chikayama and Y. Kimura. Muiltiple reference management in flat GHC. In
Lassez (62], pages 276-293.

(19} K. Clark and S. Gregory. A relational language for parallel programming. In ACM
conference on Functional Languages and Computer Architecture. ACM Press, 1981.

[20]) K. Clark and S. Gregory. PARLOG : Parallel programming in logic. ACM TOPLAS,
8 (1), January 1986.

(21] W.F. Clocksin and H. Alshawi. A Method for Efficiently Executing Horn Clause
Programs Using Multiple Processors. New Generation Computing, 5:361-376, 1988.

[22] Christian Codognet, Philippe Codognet, and Marc-Michel Corsini. Abstract inter-
pretation for concurrent logic languages. In Debray and Hermenegildo [31], pages
215-232.

[23] A. Colmerauer. An introduction to Prolog-III. communications of the ACM, 1990.

[24] J. S. Conery. The AND/OR Process Model for Parallel Execution of Logic Programs.
PhD thesis, Univ. of California, Irvine, 1983. Tech. Report 204, Dept. of Computer
and Information Science, UCI.

(25] Vitor Santos Costa, David H. D. Warren, and Rong Yang. The Andorra-I engine:
A parallel implementation of the basic andorra model. In Furukawa [37], pages
825-839.

[26] P. Cousot and R. Cousot. Abstract interpretation : a unified framework for static
analysis of programs by approximation of fixpoint. In Jth ACM Symposium on
Principles of Programming Languages. ACM Press, 1977.

[27] J. Crammond. Implementation of Committed Choice Logic Languages on Shared
Memory Multiprocessors. PhD thesis, Department of Computer Science, Herriot-
Watt University, Edinburgh, May, 1988.

40

(28] J. Chassin de Kergommeaux. Measures of the PEPSys implementation on the
MX500. Technical Report CA-44, ECRC, January 1989.

[29] J. Chassin de Kergommeaux and P. Robert. An abstract machine to implement
efficiently or-and parallel prolog. Journal of Logic Programming, 8(3), 1990.

[30] E. Villemonte de la Clergerie. Dyalog: complete evaluation of Horn clauses by dy-
namic programming. PhD thesis, INRIA, to appear in 1992,

[31) Saumya Debray and Manuel Hermenegildo, editors. Proceedings of the 1990 North
American Conference on Logic Programming. MIT Press, 1990.

[32] Doug DeGroot. Restricted and-parallelism. In Proc. of FGCS’S4, pages 471-478.
ICOT, November 1984.

(33] E. W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of
programs. communications of the ACM, 18 (8), 1975.

[34] T. Disz, E. Lusk, and R. Overbeek. Experiments with or-parallel logic programs. In
4,5, Int. Conf. on Logic Programming, pages 576,599, Melbourne, May 1987.

[35] E. Shapiro (ed.). Concurrent Prolog: Collected Papers. MIT Press, Cambridge,
Massachussets, 1987.

[36] Ian Foster and Steven Taylor. Strand: New Concepts in Parallel Programming.
Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

(37] Koichi Furukawa, editor. Proceedings of the Eighth International Conference on
Logic Programming. MIT Press, 1991.

[38] Gupta Gopal and Bharat Jayaraman. Optimizing And-Or Parallel implementations.
In Debray and Hermenegildo [31], pages 605-623.

[39] A. Goto, T. Shinogi, T. Chikayama, K. Kumon, and A. Hattori. Processor Ele-
ment Architecture for a Parallel Inference Machine, PIM/p. Journal of Information
Processing, 13(2), 1990.

[40] A. Goto, T. Shinogi, T. Chikayama, K. Kumon, and A. Hattori. Processor Ele-
ment Architecture for a Parallel Inference Machine, PIM/p. Journal of Information
Processing, 13(2):174-182, 1990.

[41] G. Gupta and M. Hermenegildo. ACE: And/Or-parallel Copying-based Execution
of Logic Programs. In ICLP’91 Workshop on Parallel Execution of Logic Programs,
Springer-Verlag, Paris, 1991.

(42] G. Gupta and M. Hermenegildo. Ace: And/Or-parallel copying-based execution of
logic programs. Technical report, Universidad Politécnica de Madrid, 1991.

[43] Gopal Gupta, Vitor Santos Costa, Rong Yang, and Manuel V. Hermenegildo.
IDIOM: Integrating dependent And-, independent And-, and Or-parallelism. In
Saraswat and Ueda [87], pages 152-166.

41

[44] R. Moolenar H. Van Hecker and B. Demoen. A parallel implementation of AKL.
In ILPS 91 workshop on Implementation of Parallel Logic Programming Systems,
1991.

[45] Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its computation model.
In Warren and Szeredi [105], pages 31-46.

[46] J.G. Harp, C.R. Jesshope, T. Muntean, and C. Whitby-Stevens. The development
and application of a low cost high performance multiprocessor machine. In Proceed-
ings ESPRIT‘86: Results and Achievements. Llsevier Science Publishers, 1986.

(47] B. Hausman. Pruning and scheduling speculative work in or-parallel system. In
PARLE’S9 Parallel Architectures and Languages Europe, Eindhoven, june 1989.
Springer-Verlag, Lecture Notes in Computer Science, No. 366.

[48] B. Hausman. Pruning and Speculative Work in OR-Parallel Prolog. PhD thesis,
Royal Institute of Technology, Stockholm, Sweden, 1990. SICS research report D-
90-9001.

[49] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[50] M. V. Hermenegildo. An abstract machine for restricted and-parallel execution of
logic programs. In 37¢ Int. Conf. on Logic Programming, pages 25-39, London, July
1986.

[51] M. V. Hermenegildo. Relating goal scheduling, precedence, and memory manage-
ment in and-parallel execution of logic programs. In 4** Int. Conf. on Logic Pro-
gramming, pages 556-575, Melbourne, May 1987.

[52] M. V. Hermenegildo and K. J. Greene. &-Prolog and its performance: Exploiting
independent And-Parallelism. In Warren and Szeredi [105], pages 253-268.

(53] Manuel Hermenegildo and Francesca Rossi. Non-strict independent and-parallelism.
In Warren and Szeredi [105], pages 237-252.

[54] N.Ichiyoshi, K. Rokusawa, K. Nakajima, and Y. Inamura. A New External Reference
Management and Distributed Unification for KL1. New Generation Computing,
7:159-177, 1990.

[55] J. Jaffar and J.-L. Lassez. Constraint logic programming. In 13th ACM symposium
on Principles of Programming Languages, POPL 87. ACM Press, 1987.

[56] Sverker Janson and Seif Haridi. Programming paradigms of the Andorra kernel
language. In Saraswat and Ueda [87], pages 167-186.

[57] N. Jones and H. Sondergaard. A semantic-based framework forthe abstract inter-
pretation of prolog. In S. Abramsky and C. Hankin, editors, Abstract Interpretation
of Declartative Languages, pages 123-142. Ellis Horwood, 1987.

(58] Laxmikant V. Kalé and Balkrishna Ramkumar. Joining AND Parallel solutions in
AND/OR Parallel systems. In Debray and Hermenegildo [31], pages 624-641.

42

(59} Shmuel Klinger and Ehud Shapiro. A decision tree compilation algorithm for FCP
(—,:, 7). In Kowalski and Bowen [61], pages 1315-1336.

[60] R.A. Kowalski. Logic for Problem Solving. Elsevier Science Publishing, 1979.

[61] Robert A. Kowalski and Kenneth A. Bowen, editors. Proceedings of the Fifth Inter-
national Conference and Symposium on Logic Programming. MIT Press, 1988.

[62] Jean-Louis Lassez, editor. Proceedings of the Fourth International Conference on
Logic Programming, MIT Press Series in Logic Programming. MIT Press, 1987.

[63] Giorgio Levi and Maurizio Martelli, editors. Proceedings of the Sizth International
Conference on Logic Programming. MIT Press, 1989.

[64] Y. J. Lin and V. Kumar. And-parallel execution of logic programs on a shared
memory multiprocessor: A summary of results. In K. Bowen R. Kowalski, editor,
Proceedings of the Fifth International Conference and Symposium on Logic Program-
ming, pages 1123-1141, Seattle, August 1988.

[65] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, Heidelberg,
New-York, London, Paris, Tokyo, 1987.

[66] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D.H.D. Warren,
A. Calderwodd, P. Szeredi, S. Haridi, P. Brand, M. Carlson, A. Ciepielewski, and
B. Hausman. The Aurora or-parallel Prolog system. In Proceedings FGCS’88, Tokyo,
Nov-Dec 1988. International Conference on Fifth Generation Computer Systems.

[67] H. Simonis M. Dincbas and P. van Hentenryck. Solving large combinatorial problems
in logic programming. Journal of Logic Programming, 8 (1-2), 1990.

(68] A N. Ichiyoshi M. Furuichi, K. Taki. A multi-level load balancing scheme for or-
parallel exhaustive search programs on the multi-psi. ACM SIGPLAN NOTICES,
25(3):50-59, march 1990.

[69] M. J. Maher. Logic semantics for a class of committed-choice programs. In Lassez
[62], pages 858-876.

[70] H. Masuzawa and et al. Kabu wake parallel inference mechanism and its evaluation.
In 1986 FJCC, pages 955-962. IEEE, November 1986.

[71} C. S. Mellish. Abstract interpretation of Prolog programs. In Shapiro [91], pages
463-474.

(72] Shyam Mudambi. Performances of aurora on NUMA machines. In Furukawa [37],
pages 793-806.

(73] K. Muthukumar and M. Hermenegildo. Complete and efficient methods for support-
ing side-effects in independent/restrict ed AND-Parallelism. In Levi and Martelli

[63], pages 80-97.

[74] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence In-
formation through Abstract Interpretation. In Ewing L. Lusk and Ross A. Overbeek,
editors, Proceedings of the North American Conference on Logic Programming, pages
166-188, 1989.

43

[75]) K. Muthukumar and M. V. Hermenegildo. The DCG, UDG, and MEL methods
for automatic compile-time parallelization of logic programs for independent and-
parallelism. In Warren and Szeredi [105], pages 221-236.

[76] Lee Naish. Parallelizing NU-Prolog. In Kowalski and Bowen [61], pages 1546-1564.

[77] K. Nakajima, Y. Inamura, N. Ichiyoshi, K. Rokusawa, and T. Chikayama. Dis-
tributed Implementation of KL1 on the Multi-PSI/V2. In 6** International Confer-
ence on Logic Programming, Lisboa, 1989.

(78] Doug Palmer and Lee Naish. NUA-Prolog: An extension to the WAM for parallel
andorra. In Furukawa [37], pages 429-442.

[79] L. M. Pereira and A. Porto. Intelligent backtracking and sidetracking in horn clause
programs. Technical report, Universitade Nuova de Lisboa, 1979. CINUL 2/79.

[80] B. Ramkumar. Machine Independent “AND” and “OR” Parallel Ezecution of Logic
Programs. PhD thesis, University of Illinois at Urbana-Champaign, 1991.

[81] B. Ramkumar and L. V. Kalé. Compiled Execution of the Reduce-OR Process Model
on Multiprocessors'In Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of
the North American Conference on Logic Programming, pages 313-331, 1989.

[82] K. Schuerman S. A. Delgado-Rannauro and J. Xu. The elipsys computation model.
Technical report, ECRC, Munich, 1990.

[83] M. Hermenegildo S. K. Debray, N-W Lin. Task granularity analysis in logic pro-
grams. In Proceedings of the ACM SIGPLAN’90 Conference on Programming Lan-
guage Design and Implementation, White Plains, New York, June 20-22 1990.

[84] V. A. Saraswat. The concurrent logic programming language cp: Definition and
operational semantics. In 13th ACM symposium on Principles of Programming Lan-
guages, POPL 87. ACM Press, 1987.

[85] V. A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis,
Carnagie-Mellon University, 1989. To appear, Doctoral Dissertation Award and
Logic Programming Series, MIT Press 1991.

[86] V. A. Saraswat and M. Rinard. Concurrent constraint programming. In 16th ACM
symposium on Principles of Programming Languages. POPL 90. ACM Press, 1990.

[87] Vijay Saraswat and Kazunori Ueda, editors. Proceedings of the 1991 International
Logic Programming Symposium. MIT Press, 1991.

[88] M. Sato and A. Goto. Evaluation of the KL1 Parallel System on shared memory mul-
tiprocessor. In Proceedings of the IFIP Working Conference on Parallel Processing.
North-Holland, may 1988.

[89] E. Shapiro. A subset of concurrent prolog and its interpreter. Technical report,
Weizmann Institute, Rehovot, Israel, 1983.

[90] E. Shapiro. The family of concurrent logic programming languages. A CM computing
surveys, 21(3), september 1989.

44

(LS

[91] Ehud Shapiro, editor. Proceedings of the Third International Conference on Logic
Programming, Lecture Notes in Computer Science. Springer-Verlag, 1986.

[92] Kish Shen and Manuel V. Hermenegildo. A simulation study of Or- and independent
And-parallelism. In Saraswat and Ueda [87], pages 135-151.

(93] Peter Szeredi. Performance analysis of the Aurora or-parallel Prolog system. In
Proceeding of the North American Conference on Logic Programming NACLP’89,
Cleveland, October 1989.

[94] S. Taylor, S. Safra, and E. Shapiro. A parallel implementation of Flat Concurrent
Prolog. Journal of Parallel Programming, 15(3), 245-275.

[95] E. Tick. Compile-Time Granularity Analysis for Parallel Logic Programming Lan-
guages. In Proceedings of the International Conference on Fifth Generation Com-
puter Systems, FGCS’88, pages 994-1000, Tokyo, 1988.

[96] E. Tick. Comparing two Parallel Logic Programming Architectures. IEEE Software,
July 1989.

[97]) K. Ueda and T. Chikayama. Design of the Kernel Language for the Parallel Inference
Machine. Computer Journal, 33 (6), 1990.

(98] Kalé L. V. The REDUCE-OR process model for parallel evaluation of logic programs.
In Lassez [62], pages 616-632.

[99] P. Van Hentenryck. Parallel constraint satisfaction in logic programming: Prelimi-
nary results of chip within PEPSys. In Levi and Martelli (63], pages 165-180.

[100] D. H. D. Warren. The andorra principle. Internal report, Gigalips Group, 1988.

(101} D. H. D. Warren. The Extended Andorra Model with implicit control. In ICLP 90
workshop on Parallel Logic Programming, 1990. presentation slides.

[102) David H. D. Warren. An Abstract Prolog Instruction Set. Technical Report tn309,
SRI, October 1983.

(103] D.H.D. Warren. The SRI model for or-parallel execution of Prolog. abstract design
and implementation issues. In 4** Symposium on Logic Programming, pages 46-53,
San Fransisco, Sept. 1987.

(104] D.H.D. Warren and S. Haridi. Data Diffusion Machine - A scalable shared virtual
memory multiprocessor. In Proceedings of the International Conference on Fifth
Generation Computer Systems 1988, pages 943-952, Tokyo, 1988.

[(105] D.H.D. Warren and P. Szeredi, editors. Proceedings of the Seventh International
Conference on Logic Programming. MIT Press, 1990.

[106] H. Westphal, P. Robert, J. Chassin, and J.-C. Syre. The pepsys model: Combining
backtracking, and- and or-parallelism. In 4t* Symposium on Logic Programming,
pages 436-448, San Fransisco, Sept. 1987.

[107] Rong Yang and Hideo Aiso. P-prolog: a parallel logic language based on exclusive
relation. In Shapiro [91], pages 255-269.

45

Imprimé en France
st . par .
. V' Institut National de Recherche en lnformatxque et en Automatique

ISSN 0249 -6399

