N
N

N

HAL

open science

A General scheme for token and tree based distributed
mutual exclusion algorithms
Jean-Michel Hélary, Achour Mostefaoui, Michel Raynal

» To cite this version:

Jean-Michel Hélary, Achour Mostefaoui, Michel Raynal. A General scheme for token and tree based
distributed mutual exclusion algorithms. [Research Report] RR-1692, INRIA. 1992. inria-00076927

HAL Id: inria-00076927
https://inria.hal.science/inria-00076927
Submitted on 29 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00076927
https://hal.archives-ouvertes.fr

UNITE DE RECHERCHE
INRIA-RENNES

Institut National

de Recherche

en Informatique
et en Automatique

Domaine de Voluceau
Rocquencourt

Vfwm%&%n

Rapports de Recherche

J | enme
ei« Anniversaire

N° 1692

Programme 1
Architectures paralléles, Bases de données,
Réseaux et Systémes distribués

A GENERAL SCHEME FOR
TOKEN AND TREE BASED
DISTRIBUTED MUTUAL
EXCLUSION ALGORITHMS

Jean-Michel HELARY
Achour MOSTEFAOUI
Michel RAYNAL

VAR

RR_1682

IRISA

INSTITUT DE RECHERCHE EN INFORMATIQUE
* ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX FRANCE
Tél. - 99 84 71 00 - Télex : UNIRISA 950 473 F
Telécopie : 99 38 38 32

Programme 1, projet ADP (Algorithmes Distribués et aPplications)
mai 1992

oy

A general scheme for token and tree
based distributed mutual exclusion
algorithms

Jean-Michel HELARY, Achour MOSTEFAOUL, Michel RAYNAL

IRISA Campus dc Beaulicu - 35042 RENNES cedex - FRANCE

* {hclary, mostcfaoui, raynal j@irisa.fr *
Abstract:

In a distributed context, mutual exclusion algorithms can be divided into two families according 1o their
underlying algorithmic principles: those which are permission-based and those which are token-based. Within
the latter family a lot of algorithms use a rooted tree structure to move the requests and the unique token. This
paper presents a very gencral information structure (and the associated generic algorithm) for token- and tree-
based mutual exclusion algorithms. This general structure does not only cover, as particular cases, several
known algorithms but also allows to design new algorithms well suited 10 1opology requirements.

Index terms: distributed algorithm, information structurc, mutual cxclusion, loken, tree structurc.

Un schéma général pour les algorithmes d’exclusion
mutuelle a jeton fondés sur une arborescence

Résumé :

Dans le cadre des sysiémes répariis, les algorithmes d’ exclusion mutuelle peuvent éire regroupés en
deux grandes familles selon leur fondement algorithmique: le principe des permissions ou I’ utilisation d' un je-
ton en unique exemplaire. Un certain nombre d’algorithmes a jeton wtilisent une structure arborescente afin de
véhiculer les requétes de demande du jeton. Cel article présente un schéma trés général (i.e. une structure d'in-
Jormation et U algorithme associé) pour les algorithmes a jeton wtilisant un telle arborescence. Ce schéma per-
met non seulement de retrouver et d’'expliquer, comme cas particuliers, des algorithmes connus mais également
de déduire de nouveaux algorithmes, adaptables a la topologie du réseau sous-jacent. Le schéma proposé con-
stitue donc le modéle générique pour loute une famille d' algorithmes d' exclusion mutuelle a jeton.

Mots-clefs: algorithmiquc répartic, structurc d'information, cxclusion mutuclle, jcton, structurc ar-
borcscente. '

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIOUE (U R.A. é27) UNIVERSITE DE RENNES | INSA DE RENNES
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ({ UNITE DE RECHERCHE DE RENNES)

1 Introduction

This paper deals with mutual exclusion problem in distributed sysiems. A distributed system is charac-
terized by a set of nodes, denoted by 1, 2, ..., n. The nodes communicate only by messages exchanged
through communication channels; they don’t share any memory nor global clock. Channels are supposed
to be reliable (messages are neither lost nor corrupted) and communication is asynchronous (message
propagation delay is finite but unpredictable). Between any pair of nodes, messages can be delivered out
of order (channels can be FIFO or not). Finally, without loss of generality for our purpose, we suppose
that there is exacUy one process per node: so in the following we consider these two terms as synonyms.

Within such a context, mutual exclusion algorithms can be classified as permission or token based
[8] depending on how the mutual exclusion safety property is achieved (recall that this safety property
requires that, at any time, at most one process can be in critical section). The first class is based on the
concept of permission. A process of identity i (process { for short) which wants to cnter the critical sec-
tion (CS), has to require and obtain pcrmissions from some other processes constituting a set R; (the re-
questing set for). According to the structure of sets R;, 1<i<n, the class can be divided into two sub-
classes. In the first sub-class, conflicts are settled between every pair of nodes and thus permissions are
individual: when j grants a permission to i, it involves only j. In the second sub-class, permissions have
a different meaning and are known as arbiter permissions: when j grants a permission to , this involves
all the processes having j in their requesting set; when { will exit the critical section, it will have to res-
titute this permission to j, in order to let j satisfy other requests. Each of these two kinds of permission
entails constraints that must be satisfied by sets R; {11]. Typical algorithms for these sub-classes are
Ricart and Agrawala’s [9] for the individual permissions and Mackawa’s [4] for arbiter pcrmissions. The
liveness property (stating that every request for entering the CS will be satisfied within a finite time) is
ensured thanks to a time-stamping mechanism {2] or to the management of an acyclic graph implement-
ing a precedence relation on the processes [1]. These techniques allow to maintain a total order relation
on rcquests, used to prevent cycles in the wait-for relation, thus ensuring the satisfaction of all the re-
quests in finite timce,

The second class of mutual exclusion algorithms is based on the use of a token. Uniqueness of the
token guarantees the safety property by subjecting the right to enter the CS to the possession of this to-
ken. The main problem which remains to solve is related to the liveness property. Several solutions have
been proposed; they differ each from the other in the way the request messages are routed to reach the
token. In ring-based algorithms such as [3], the token moves around the ring, granting the right to enter
CS to the node currently visited: no explicit request message is needed. In diffusing algorithms [10] re-
quests are sent to all other nodes. In tree-based algorithms, each node sends its requests to one qualified
neighbor (its “‘father”) which makes the request progress towards the token [5, 7, 6]. The present paper
is devoted to the latter sub-class of distributed mutual exclusion algorithms.

A general scheme for permission-based algorithms has been proposed by B.Sanders {11]; already
known particular algorithms such as [9,4] as well as new ones [12] can be deduced from this general
scheme. It is based, on the one hand, on the notion of information structure (stating which information
about the others each process has to0 maintain), and on the other hand, on the definition of a general al-
gorithm using this information structure.

In the present paper, a general scheme (i.e. an information structure and the associated algorithm)
is proposed for the class of token-based algorithms using a rooted tree to move the requests. The pro-
poscd information structure includes, in particular, a dynamic rooted tree structure logically connecting
the nodes involved in the system, and a behavior attribute (transit or proxy) dynamically assigned to each

node, which is part in the tree evolution. Such a general scheme has not been previously proposed; one
of its interesting featurcs is that alrcady known algorithms (cited above), as well as new ones, are con-
tained within its frame: any static or dynamic assignment of the behavior attributes can be considered,
cach yiclding a particular algorithm. Morcover, safety and liveness of the general algorithm are generic
propertics, in the sense that they imply safety and liveness of all particular algorithms. The rest of the
paper contains three parts: the general algorithm is presented in Section 2 and proved in Section 3 (some
details are postponed to the Annex 1); particular cases and examples are given in Section 4 (two of them
are listed in Annexes 2 and 3). Failures of nodes or channels are not addressed in this paper.

2 The general algorithm

2.1 Principle

.Each node is endowed with local variables describing its local state (with regard to the token and to the
critical section), its position in thc logical rooted tree, and its behavior.

Local state of node i

The presence of the token is indicated by the boolean variable token_here; whose value is true if, and
only if, the node i has the token. Moreover, the boolean variable asked; has the value true if, and only if,
nodc i is currently waiting for the 1oken or executing a critical section. Managing these two variables is
rather easy.

Position in the logical rooted tree: asking and returning the token

Each node i is endowed with a variable father; with the following meaning: when a node { wants to get
the token, it sends a message request(i) to its qualified neighbor father; (then waits for the token arrival).
Initially, all father variables are set in such a way that they define a rooted tree structure over the nodes,
and, as long as therc is no request, this structural property remains unchanged. According to the occur-
rence of requests and to the behavior of nodes, this rooted tree will possibly evolve.

Each node has also a variable lender;; its value indicates the node to which i will have to give back
the token when leaving the critical section. The two variables father; and lender; have “dual” meanings
since the former indicates from which node the token should be requested, whereas the latter indicates
to which one give back this token (if lender;=nil, the token is kept by i). The token message carries either
the identity i of the node to which it has to be given back (lender) if any, or ail if there is no lendcr; it is
denoted by token(i) or token(nil) respectively.

Let us consider, as an example, a set of nodes logically connected by a star with node i as a center,
and static values: vje {1..n} - {i}: fatherj=i, lenderj=i. This corresponds to a centralized token-based
algorithm: the node i receives requests originated by the other nodes and grants them by sending a mes-
sage token(i); the token is given back to the lender node i upon each critical section exit, through the re-
turn of a message token(nil).

Behavior of a node

Consider the rooted tree in Figure 1:

O—OmQ
D

Figure 1. Rooted tree.

(i) (K)-

The edges of this tree represent the relation (i, father;). Consider the case where a node i, not pos-
sessing the token, rcceives a message request(j). The node { can react to this message with two different
behaviors:

« The transit behavior means that node § will only forward the message request(j) to father;. After-
wards, i considers that, in the future, it will have to send requests to j: consequently it scts father;:=j.
Morcover, a transit node cannot be lender of the token.

« The other behavior, proxy, means that nodc i considers j as its mandator and requests the token (to
father;) for itself, thus becoming an asking node (asked;:=true). When i will receive the token the
mandator’s request will be satisfied: i will send the token to j and consider its mandate for j as com-
pleted. Moreover when a proxy node receives token(nil) it becomes its lender. Conceming the vari-
able father;, a proxy node i sets it to &k when it receives token(j) from k (from now on k is the node to
which i will address its requests); when i receives token(nil), it sets father; to nil as it is now the lend-
cr.

Each node is thus endowed with a local variable behavior;, having at any time one of the two val-
ues: transit or proxy. It is important to note that this valuc can change at any time. The possibility of such
modification is a fundamental characteristic of the proposed general algorithm. Let us stress, moreover,
that these modifications are taken into account but not triggered by the algorithm. Each node is also en-
dowed with a variable mandator;. The value of this variable is a node identity and is meaningful only
when i has requested the token for satisfying a request. When mandator =i it means that { wants to enter
the critical section: whatever the value of behavior,, i is its own mandator; when mandator=j, j i, this
means that { has reccived a message request(j) in the context behavior=proxy. The variable mandator;
will be reset to nil when { will receive the requested token: i will cease its mandate for this request. So,
when mandator; =nil, this means that the node i has no current request.

Queues

If several nodes j are such that father =i, the node i can receive several “simultaneous™ requests; also, the
process associated with the node i may wish to enter the critical section. In order to deal with this mul-
tiplicity of requests, a waiting-queue is associated with each node. Its service policy is implicit: the only
assumption is fairness; hereby is meant that every waiting request will be processed in finite time (see
§3.4). For example, the FIFO policy is fair. No waiting request can be processed by ¢ unless the boolean
variable asked; has the value false. Thus, each node can be seen as a request server, whose busy periods
correspond to the time during which asked; is true, service corresponds to the request of the token (on
current mandator’s account), and clients are pending requests waiting in the queue. In the algorithmic
expression, the primitive “wait (not asked;)” expresses the precondition to the execution of actions re-
lated to events local call to enter_cs and receive request(j); it corresponds to the fact that process i is
occupicd to serve another request.

Example

The set of variables defined above constitutes the information structure of token algorithms based on a
rooted tree. The following example throws light upon their management. The Figure 2 below depicts the
initial situation. Node numbered 8 wishes to enter the critical section, and the token is kept by node num-
bered 1; only nodes belonging to the oriented path (defined by the successive variables father) linking
node 8 to node 1 are drawn. Nodes 3, S and 6 are supposed to be permanently proxy (they are circled in
the figures), whereas nodes 1, 2, 4, 7, 8 are supposed to be permanently transit.

8——>7 4—»@—» 2— |

Figure 2. Initial situation.

Node 8 wishes to enter the critical section and not token_hereg and not askedy:
send request(8) to fatherg=T; askedg:=true, mandatorg:=8

Node 7 receives request(8) and behavior=transit and not token_here; and not askedy:
send request(8) to fatherq=6; father;.=8

Node 6 receives request(8) and behaviorg=proxy and not token_hereg and not askedg;
%6 takes the request on its own account % send request(6) 10 fatherg=5; askedg.=true;, man-
datorg.=8
Node S receives request(6) and behaviors=proxy and not token_heres and not askeds:
%5 takes the request on its own account % send request(S) 1o fathers=4, askeds.=true; man-
dator5:=6
Node 4 reccives request(5) and behaviors=transit and not token_herey and not asked,:
send request(S) to father4=3; father4:=5
Node 3 receives requesi(5) and behaviors=proxy and not token_here, and not askeds:
%3 takes the request on its own account % send request(3) 1o fathers=2; askedsy:=true, man-
dators:=5
Node 2 reccives request(3) and behaviory=transit and not token_here, and not askedy:
send request(3) 10 fathery=1; fathery.=3
Node 1 receives request(3) and behavior,=transit and token_here, and not asked, :
%1 gives up the token to 3 since its behavior is transit % send token(nil) to 3;
fathery:=3; token_here,:=false
Node 3 reccives token(nil) and mandators=5:

% 3 becomes the lender % fathers:=nil; send token(3) to mandator;=5, mandators:=nil
% its mandate for node S is now completed but asked; remains true %

Node § receives token(3) and mandators=6:
fathers:=3 % the token comes from node 3 %;
% complete the mandate for node 6 % send token(3) t0 mandators=6; mandators:=nil,
askeds.=false
Node 6 receives token(3) and mandatorg=38.:
fatherg:=5 % the token comes from node S %;
% complete the mandate for node 8 % send token(3) to mandatorg=8; mandatorg.=nil,
askedg.=false
Node 8 receives token(3) and mandatorg=8:
fatherg:=6 % the token comes from node 6 %;
lenderg:=3 % the token will be returned to node 3 %; token_hereg:=true
<Critical Section>
send token(nil) to lenderg=3; token_hereg:=false, askedg:=false

Node 3 receives token(nil) and mandatory=nil.
token_herey:=true; askedy.=false

At the end of these exchanges, constituting the execution of a single critical section claim (CSC

for short) by process 8, the new rooted tree is shown in Figure 3.
1

77— 8 (6) (5) (3)
Nl

Figure 3. Final situation.

Note that:

* Only the tree concemed with request messages is modified; moreover, the modifications depend
only on the behavior of nodes. At the extreme two situations can be considered: all the nodes are
proxy, or all the nodes are transit; in the latter case, node 8 will keep the token when exiting the crit-
ical section.

« The token, initially kept by the root (node 1 in Figure 2), will be kept by the new root (node 3 in
Figure 3) at the end of the CSC.

2.2 The algorithm

The six local variables of each node are all bounded. Two of them are boolean (token_here, asked), be-
havior has only two values, and the others (father, lender, mandator) have their values in the domain
{1.. n}y nil.

Initialization consists in building a rooted tree by setting the father variables; the root r keeps the
token, i.e. r is the only node such that father,=nil and token_here,=true and lender,=r. All the other lend-
er variables are set to nil. Moreover, all the mandator variables are set to nil and asked to false.

The text of the algorithm describes the actions performed by each node i upon the occurrence of
each of the four possible events: i wishes to enter the critical section (local call to procedure enter_cs),
i exits the critical section (local call to the procedure exit_cs), i receives a request message, i receives a
token message. Apart from the precondition wait (not asked;) which may delay the beginning of the ac-
tions enter_cs and receive request, each of these four actions is processed atomically, i.e. without inter-
ruption.

Upon a call to enter_cs by i

begin
wait (not asked,);
asked;:=true; (1
if not token_here; then mandator;:=i;
send request(i) to father;; 2)
wait (token_here;) % receipt of token sets lender; %
endif

end % enter_cs %

Upon a call to exit_csby i

begin
if lender #i then send token(nil) to lender;; token_here;=false endif, 3
asked;=false 4)

end % exit_cs %

Upon receipt of request(j) by i
begin
wait (not asked,),
case of behavior =proxy
begin % i becomes proxy for j %
asked;:=true; (5)
if token_here;
then % i temporarily lends the token %

send token(i) to j; token_here; =false ©)
else % i requires the token %
mandator;:=j;
send request(i) to father; €)
endif
end
behavior=transit
begin

if token_here;
then % i gives up the token %

lender:=nil; ®)
send token(nil) to j; token_here;=false &)
else % i forwards the request %
send request(j) to father; 10)
endif;
father;.=j
end

endcase
end % request %

As far as receipt of the token by a node i is concemed, three cases are to be considered (at that time, aske-
d; is true):
o) i is the lender and the token is given back to i after a loan (at that time, mandator;=nil).

[3) this receipt is an answer to a claim by i to enter the critical section (at that time, mandator;=i);
variables lender; and father; are updated before entering the critical section.

Y) this receipt is an answer to a request made by i on the account of an other node j (at that time, man-
dator;=j with j#i,nil). This means that i was proxy when it received request(j); at the present time, it

can be either proxy or transit. In both cascs, it redefines its position in the tree (father)), scts in the
token a value depending on its current behavior and on the value brought up by the token, and sends
the token to its mandator.

Upon the receipt of token(j) from k by i
% j is the token lender; if j=nil the token does not have to be given back%
% here, asked; is true, see property 1 below %
begin
token_here;=true; an
case of mandator =nil
begin % case o return of the token after loan %
asked;:=false (12)
end % of case o. %
mandator;=i
begin % case B: the claim of i will be satisfied %
% i updates the position variables %
if j=nil then % the token has no lender, i becomes the lender%
lender,:=i; father;:=nil (13)
else % i will have to give back the token %
% it updates the path towards lender %
lender;:=j; father;:=k (14)
endif;
mandator ;:=nil
end% of case B %
mandator #i nil
begin % case Y: i honors the request of its mandator %
% meanwhile, its behavior can be changed %

asked;:=false; (15)
case of behavior =proxy
begin
if j=nil then % the token has no lender, i becomes the lender and lends the token %
lender;:=i; father;:=nil; (16)
send token(i) to mandator,; Qamn
asked;.=true
else % jis the lender of the token %
father;:=k;
send token(j) to mandator; (18)
endif
end
behavior=transit
begin
if j=nil then % the token has no lender %
lender;.=nil; father;=mandator;, 19
send roken(nil) to mandator,; (20)
else % j is the lender of the token %
father;:=k;
send token(j) to mandator; (21
endif
end
endcase
mandator;:=nil; token_here;=false (22)
end% of case Y %

endcase
end % token %

3 Proof of safety and liveness properties

3.1 Safety

Since at any time, a nodc i cannot be in the critical section unless token_here; is true, safcty follows from
the property: there cxists at most one node i such that token_here; is true. Now, this property is easily
established. By construction, it holds in the initial state. Afterwards, every sending of the token is possi-
ble only by a node x satisfying token_here, and this sending triggers token_here, to false; also, a variable
token_here, cannot be sct 1o true unless y receives the token. As the action associated with this reception
is atomic, the required property holds.

3.2 Liveness: preliminary properties

Liveness mcans that every claim to enter the critical section (CSC) will be satisfiecd within finite time.
Recall, this ensures that neither deadlock nor starvation can occur: the system is deadlocked when no
node is in the critical section and all the nodes wishing to enter the critical section will be forever pre-
vented to do so; starvation occurs when a node, wishing to enter the critical section, can be forever unable
to do so while other nodes enter and exit.

Three invariant properties are established thereafter.

Property 1
Any node i receiving the token satisfies asked;=true.

Proof
When a node i receives the token, this event is the consequence of one of the three possible events:

i. the sending of a message request(i) corresponding to a local call to enter_cs (line 2); at that
time, mandator =i,

ii. the sending of a message request(i) by the proxy node i when it received request(j) (line 7); at
that time, mandator =j,

iii. the loan of the token by the proxy node i answering to a message request(j) (lines 6, 17); at that
time, mandator=nil.

Whatever the event, it sets asked; to true (lines 1, 5, 17) and this value remains until one of the lines 4,
12 or 15 is processed. But, 12 and 15 are part of the atomic action triggered by the receipt of the token,
and 15 is processed only when i exits the critical section, hence after i has received the token (this cor-
responds to the case mandator;=i). Thus, in any case, asked; holds when i receives the token. Q

Property 2

There is at most one node r such that lender,=r. For such a node, we have father,=nil and
mandator,=nil.

Proof
« This property holds in the initial state, by construction; r is the root of the tree.

* No node but the only one such that foken_here; can perform lender;:=i, and it can only occur during
the execution associated with the receipt of the token (lines 13, 16); at that time it sets father;:=nil,
mandator;:=nil, and morcover:

i. i has necessarily reccived token(nil) and, cvery time a node j sends such a message, it has
lenderj;tj (lines 3, 9, 20)

ii. According to the value of mandator; upon the receipt of token(nil), two cascs are to consider:

a. mandatorg=i (line 13): the node i is granted to enter the critical section and, when it exits,
keeps the token (since lender=i) until the next processing of a request message.

b. mandator i, nil (line 16): the node i sends token(i) 1o mandator;=j whence the latter
will perform, upon receipt of the token, lender;:=i, i#] Q

Property 3

(i) Vi: — asked; A token_here; = father;=nil
conversely,

(ii) Vi: — asked; A father;=nil => token_here;

Proof

(i) token_here; becomes true when i receives the token (line 8). At that time, asked=true (property 1).
When the action associated with this receipt is completed, the assertion — asked; A token_here; cannot
hold unless mandator=nil (case a): the case B cannot occur since it leaves asked; to true, and the case y
cannot occur since it resets token_here; to false (line 22). But the case o corresponds to the retumn of the
token after a loan, whence lender,=i and, from property 2, father=nil.

(i) asked; becomcs false upon one of the following events:

- i exits the critical section (line 4). If, at that time father=nil, two cases are possible according to the
context prevailing when i called enter_cs:

c1) token_here;: in that case, father=nil when i called enter_cs (from case (i)).

C2) — token_here;: in that case, i has requested the token and has performed mandator;:=i. This
corresponds to the case 3, whence, upon the receipt of the token, lender; has been set to ¢ (line
13).

In both situations, i will keep the token upon the exit of critical section, as long as asked; remains
false.

- upon the receipt of the token (lines 12, 15). At that time, token_here; is set to true (line 11). If the
line 12 is processed, it corresponds to the case ¢ the token is not sent, thus token_here; remains true.
If line 15 is processed, it corresponds to the case y. But at the end of vy, the assertion
— asked; A father=nil is false.

0
3.3 The deep structure of the algorithm: an abstract tree

For the ease of exposition, let’s introduce some terminology. We will say that a critical section claim
(CSC) is created when a node expresses its wish to enter the critical section; this node is called the sink.
The CSC is satisfied when the sink enters the critical section, and is completed when the token has been
retumed to the lender. In-between, the CSC is in execution; this execution involves some actions. Exe-
cutions are sequential: at every time, it is materialized either by a request or token message, or localized
on one, and only one, node (the current node for this CSC). More precisely, this execution can be split
into two phases: the token searching phase (or outward phase) displayed in a routing of request messag-
es, constrained by possible waiting on busy nodes; the token routing phase (or retumn phase) displayed
in a routing of token messages, without waiting on nodes. The set of nodes traversed by the latter phasc

10

e

.

-

comprises exactly those nodes which were traversed by the outward phase and were proxy at that time.

Consider now the view of a node, which can be concemned with concurrent CSCs. The status of a
node i, with regards to thesc CSCs, depends on its local variables asked; and mandator;. As said previ-
ously, §2.1, it is convenient to consider a node as a requests server. When a receipt of message request(j)
(or alocal call to enter_cs) occurs on node i, this node will process the message (if asked,; is false) or will
keep it in its waiting-queuc (if asked; is true). If — asked;, the node i is idle (involved in no CSC); if, on
the contrary, asked;, the node i is currently serving a CSC, either on the account of mandator=j if j#nil,
or i is in the critical section if mandatori=nila token_here;, or i expects the retumn of the lent token if
mandator;=nilan —token_here;. When a message request(j) (or, if /=i, a local call to enter_cs by i) is wait-
ing in the queue, we will say that the node j is waiting on i. This waiting will end as soon as { will begin
processing node j’s waiting request.

An abstract tree

The following binary relation a_tree, defined over the set of nodes, captures the situation of nodes with
regard to the CSCs in execution.

Definition
(ij)e a_tree if, and only if, one of the following conditions holds:
(al) — asked; A father;=j.
(a2) asked; A there is a message request(i) in transit towards - or waiting on - node j.
(a3) asked; A mandator;=i A i#.
(ad) asked; ~ there is a message token(k), k#nil, in transit from j towards i.
(aS) asked; A father;=j A token_here;.

Condition (al) concems a node i without pending request: (i,j)e a_tree means that the next request
from i will be addressed to j. Conditions (a2) to (a5) concemn a node with a pending request (an asking
node); they correspond to the state and the position of the request currently served by i: (a2) or (a3) holds
during the token searching phase, (a4) holds during the token routing phase, and (aS) holds while i is in
the critical section.

Proposition 1
At any time, the relation a_tree is a rooted tree.

The proof of this important proposition is given in Annex 1. In the rest of the paper, a_tree; will denote
the father of { in the rooted tree a_tree.

Corollary 1

The path followed by the requests relative to a CSC is acyclic. The same property holds for the token.
Proof

When a node i sends a request message to father;, it satisfies —asked; and thus, from (al), a_tree=father;.
The path followed by the successive requests related to a CSC is thus a path in the tree a_tree. For the
token, the same reason holds: the token is sent by a node to one of its sons in a_tree. Q

3.4 Liveness proof

Liveness can be proved under the following commonly accepted assumptions:

Al). Transit delay of messages is finite (channels are reliable).

11

A2). No node can be indefinitely in the critical section.

A3). Each node manages its waiting-queue of requests with a fair policy (this assumption means that,
if service times are finite, every waiting request will wait only a finite time).

Under these assumptions, the four following lemmas imply liveness.

Lemma 1

Let j be a node such that asked; cannot remain indefinitely true. Then, every node waiting on j will
be served after a finite time.

Proof

Since a node cannot send any new request as long as it has a current request not yet satisfied, the number
of nodes waiting on j is bounded by n-1 (where n is the total number of nodes). By the assumption of the
lemma, time intervals between two successive ends of services on node j are finite (the end of a service
occurs when the variable asked; becomes false). Moreover, by (A3) the service policy is fair. Thus, every
node waiting on j will be served after a finite time. Q

Lemma 2
Let be the root of a_tree. Then asked, cannot remain indefinitely zrue.

Proof

Supposc asked,=true; since, by the assumption of the lemma, a_tree,=nil, none of the conditions (al)
to (a5) is satisfied by pairs (r x), for any x; thus, in particular, mandator,=nil. But, asked,nmandator,=nil
can be true only in one of the two cases:

-r is in the critical section. It will exit after a finite time, and then asked, will be resct to false.

-r is the lender of the token. In that case, the token will return after a finite time: in fact, when r lends
the token, the number of hops required to get the sink is finite (corollary 1), whence the token reaches
the sink in finite time (A1); moreover, the action performed upon the receipt of the token doesn’t in-
volve any clause wait. Thus, the sink can enter the critical section a finite time after » has sent the
token; from (A2), the sink will exit the critical section after a finite time, then retumns the token back
to the lender; this will take one token hop, of finite time by (A1). Q

Lemma 3

Let i be a node such that asked; remains continuously and indefinitely true. Then, in a finite time after
asked; becomes true, there will be a node i; such that (a_tree i = 1) A asked; holds indefinitely.
1

Proof

Supposc asked; becomes true and remains so indefinitely. The node i is neither in the critical section
(A2), nor the lender of the token (see proof of lemma 2), whence mandator=nil. In other words, i is busy
serving a request: this means that i has previously sent a request(i) message. Suppose that this request
reaches the root in finite time; from lemma 2, the root cannot remain indefinitely asking, thus the token
will be sent after a finite time; but, as shown in lemma 2, the number of nodes traversed by the token to
reach node { is finite, and the token never waits on a node; whence, the token will reach node i a finite
time after the latter’s request, and this contradicts the assumption of the lemma. We have just shown that
if node i remains indefinitely asking, then there is a request issued by i which cannot reach the root within
a finite time. But, from corollary 1, the number of nodes on the path followed by the request is finite;
thus, the only remaining possibility is that the request indefinitely waits on a node i; belonging to this
path. Such a node necessarily verifies (a_tree [T 1) A askedi1 indefinitely. a

12

Lemma 4
No node i can be such that asked; remains continuously and indefinitely true.
Proof

By contradiction: suppose there is i such that asked; remains indefinitely true. Recursive application of
lemma 3 allows to build a pathina_tree, say i, i}, i3, ... such that each node belonging to this path remains
indefinitely asking. From lemma 2, the root cannot belong to this path, and this is a contradiction with
the rooted tree structure. a

Theorem (liveness)
Every claim to enter the critical section is satisfied in a finite time.

Proof

The theorem is a direct consequence of lemmas 4 and 1. Q

4 Some particular algorithms

According to the service policy associated with each node and the definition of rules to manage the be-
havior variables, particular algorithms can be deduced from the previous general algorithm.

4.1 Service policies for waiting-queues

The gencral algorithm associates with each node i an implicit waiting-queue from which an element
(waiting request) can be removed provided that the boolean asked; has the value false. The only assump-
tion about the service policy is faimess (assumption A3 in the liveness proof).

FIFO service policy constitutes a simple way to ensure this assumption. Other implementations
are also possible; for example, the so-called lift-policy consists in putting systematically at the head of
queue, the request corresponding to a local call of enter_cs generated by node i itself (this greedy policy
has been used in [5, 7]).

4.2 Adding rules for behavior variables

Centralized algorithm

If, for each node i, behavior; is statically fixed to proxy, the underlying tree structure is fixed. The root
node r is the allocator of the token: each CSC issued by a node i reaches r via the unique path connecting
i with r and the token reaches i via the reverse path; when i leaves the critical section, it returns the token
to r (see for example the star network example in §2.1).

‘Algorithm of Naimi and Trehel

If, for each node i, behavior; is statically fixed to transit we obtain a variant of Naimi and Trehel’s algo-
rithm {5]. In this algorithm a node issues requests only on its own account and, by anticipation, declares
itself as root (updating its variable father; to nil). Such an anticipation is possible here since the algorithm
is designed with the assumption that the proxy behavior does not exist; this anticipation couldn’t be con-
sidered in the general algorithm, as a node issuing a request doesn’t know a priori if it will or will not
have to retum the token. The text of Naimi and Trehel’s algorithm, as an instance of the general one, is
given in the Annex 2. Recall that its complexity, in term of number of messages, is O(log(n)) in the mean
and O(n) in the worst case.

13

Algorithms of Van de Snepsheut and of Raymond

If the behavior of cach node is transit when it has the token and proxy otherwise, i.e.
behavior=transit<>token_here;, we obtain the algorithm proposed by Van de Snepsheut [13] as well as
by Raymond [7]. The structure of the tree, initially defined, doesn’t change, except the direction of the
edges. A CSC issued by a node i follows the unique path connecting i to the root and the token follows
the reverse path, changing the direction when it traverses the edge; practically, when a node j receives
the token, its behavior changes from proxy to transit and thus, when j sends the token to a node k (at that
time, j is £'s father), node j updates father; 1o k; afterwards, behavior; is reset to proxy. The text of this
algorithm, as an instance of the general one, is given in Annex 3. Recall that its complexity, in term of
the number of messages, depends on the structure of the initially defined unrooted tree; in the worst case,
it is equal to 2d, where d is the diameter of the tree (longest path in the tree): at most d request messages
arc nceded to reach the token, and as much to bring the token to the requesting node. It is possible to
initially build a tree with d being O(log n).

Generality of the proposed algorithm

As far as the general algorithm is not restricted to a particular assignment of the variables behavior
(proxy or transit) to the nodes, any static or dynamic assignment can be considered, each yielding a par-
ticular algorithm. Actually a particular choice for the behavior of nodes can be controlled according to
the supposed evolution of the underlying tree (the efficiency of a tree-based mutual exclusion algorithm
indeed depends on this structure). In Naimi and Trehel’s, the tree can meet any possible configuration,
leading to a worst case message complexity O(n); in Raymond’s, the structure is fixed and accordingly
the amount of work performed by each node depends on its position in this tree.

More generally, the behavior of each node can be defined dynamically in order to fit the topology
of the underlying network. For example (see Figure 4), upon receiving a message request(j), node i can
be defined as transit if there exists a physical link between j and father;; otherwise, it behaves as a proxy.
Such a rule to define the behavior of a node allows the token to use shorter paths towards j; communi-
cation delays are thus decreased as much as the physical network makes it possible.

Figure 4: A possible short-cut

Let us still consider another practical situation: suppose we have two networks consisting of nodes
J1sJ2s - Jg and iy, i, ..., ip respectively. Let moreover two nodes of these networks act as gateways. If
the gateways are defined as proxy each of them only needs to know the identity of the other gateway as
far as it considers the other network. Consequently, the algorithm is well suited to composition of net-

works.

It should be stressed that the assignment of a behavior to a node can be static or dynamic, it can
take into account the underlying physical network, the position of the nodes, etc. Thus, the proposed al-
gorithm is very general and can be used to pmducé particular algorithms better-fitted to a particular sit-
uation. It is important to note that whatever are the situation and the criterion chosen to define the be-
havior of nodes, the resulting algorithm will be correct as a result of the genericity of the proof.

14

5 Conclusion

In this paper a very gencral scheme has been presented making a generic model for a class of mutual
cxclusion algorithms based on the use of a token for safety purpose and on a rooted tree structure carry-
ing the requests for liveness purpose. The interest is twofold: on the one hand, it puts forward the deep
structure underlying this class, providing some previously known algorithms (seen as instances of this
class) with an explanatory frame; on the other hand, it provides the designer with the possibility to define
algorithms better-fitted to particular physical supports.

Acknowledgments

Particular thanks are duc to J. Brzezinski for a very careful reading of the manuscript and to
M. Mizuno and M. Neilsen who suggested the gateway application. We also thank the French o project
devoted to the study of parallelism and distribution for its financial support.

References

[1] K. M. Chandy, J. Misra.
The drinking philosophers problem.
ACM Trans. on Prog. Languages and Systems, Vol. 6,4, (1984), pp 632-646.
(2] L. Lamport.
Time, clocks and the ordering of events in distributed systems.
Comm. of the ACM, Vol. 21,7, (1978), pp 558-564.
[3] G. Le Lann.
Distributed systems: towards a formal approach.
IFIP Congress, Toronto, (1977), pp 155-160.
[4] M. Maekawa.
A n algorithm for mutual exclusion in decentralized systems.
ACM Trans. on Comp. Systems, Vol. 3,2, (1985), pp 145-159.
[51 M. Naimi, M. Trehel.
An improvement of the log(n) distributed algorithm for mutual exclusion.
Proc. 7th IEEE Int. Conf. on Dist. Comp. Systems, Berlin, (1987), pp 371-375.
[6] M. L. Neilsen, M. Mizuno.
A dag based algorithm for distributed mutual exclusion.
Proc. 11th IEEE Int. Conf. on Dist. Comp. Systems, Austin, (1991), pp 354-360.
{71 K. Raymond.
A tree based algorithm for distributed mutual exclusion.
ACM Trans. on Comp. Systems, Vol. 7,1, (1989), pp 61-77.
[8) M. Raynal.
A simple taxonomy for distributed mutual exclusion algorithms.
ACM Op. Systems Review, Vol. 25,2, (1991), pp 47-50.
[9] G. Ricar, A, K. Agrawala.
An optimal algorithm for mutual exclusion in computer networks.
Comm. of the ACM, Vol. 24,1, (1981), pp 9-17.
[10] G. Ricart, A. K. Agrawala.
Author’s response to “On mutual exclusion in computer networks” by Carvalho and
Roucairol.
Comm. of the ACM, Vol. 26,2, (1983), pp 147-148.

15

[11] B. Sanders.
The information structure of distributed mutual exclusion algorithms.
ACM Trans. on Prog. Languages and Systems, Vol. 5,3, (1987), pp. 284-299.
[12] M. Singhal.
A dynamic information structure mutual exclusion algorithm for distributed systems.
IEEE Trans. on Parallel and Distributed Systems, Vol.3,1, (1992), pp.121-125.

[13] J. L. A. Van de Snepsheut.
Fair mutual exclusion on a graph of processes.
Distributed Computing, Vol. 2, (1987), pp 113-115.

Annex 1: proof of the proposition 1.
This proposition states that at any time, the relation a_tree is a rooted tree.

1. Initially, the collective variables father define a rooted tree; since all the variables asked are false,
relations a_tree and father are the same.

2. By induction, we show that all the evolutions of the relation a_tree maintains the rooted tree structure.
Assume that, at a given time, a_tree is a rooted tree, and let i and j be two nodes such that (i j)e a_tree.

Let’s examine the five conditions.
15 case. — asked; A father;=j.
Two events can disable this condition: asked; becomes true, or the value of father; is modified.

The first cvent necessarily corresponds to the sending of a message request(i) to j. In fact, from
property 3, — asked; A father#nil = — token_here;. After this action, the condition (a2) is satisfied by
the pair (i) and thus the edge (ij) remains. The graph a_tree is not modified.

The second event necessarily corresponds to the receipt of a message request(k) by i; actually
thanks to property 1 and to — asked; node i cannot receive the token. This event is similar to the one of
the next case (with the substitution of (ij) to (k,i)).

2" case. asked; A there is a message request(i) in transit towards - or waiting on - node ;.

Only one event can disable this relation: the node j begins to process the message request(i). In fact, the
variable asked; cannot change from true to false as long as this request has not been satisfied. When j
begins to process this message we have —asked;, and four cases have to be considered according to the
state of j:
cl) behaviorf:proxy
cl1) token_here;: the node j performs the following actions: (lines 5, 6)
askedj:=true; send roken(j) to i;
After these actions, condition (a4) holds for the pair (i,/) and thus the edge (i /) remains. More-
over, none of the (al) to (aS) condition is satisfied by the pair (j,i) and thus (j,i)¢ a_tree. The
graph a_tree is not modified.
c12) — token_here;. since — asked;, property 3 ensures father #nil. Relation (al) is satisfied by
the pair (j father;)e a_tree. Since, by induction, a_tree is a rooted tree, we have father#i. The
node j performs the following actions (lines 5, 7):
asked;=true; mandator;:=i (i#]); send request(j) to father;
After these actions, relation (a3) is satisfied by the pair (ij) and relation (a2) by the pair
(jfather;). The graph a_tree is unchanged.

16

7]

c2) behaviorj:transit ‘
C21) token_here;. since — asked; A token_here; property 3 ensures that father;=nil and thus, by
the definition of a_tree, j is the root (Figure 5.1).

j .
K\A'
Figure 5.1
Node j performs the following actions::
send token(nil) to i; fatherj:=i;
and askedj remains false. After these actions, none of the condition (al) to (aS) is satisfied by

the pair (i), but the pair (j,i) satisfies (al). Substitution of edge (j.i) to edge (iJ) in the rooted
tree a_tree gives a new tree, whosc root is ¢ (Figure 5.2).

j ,
A\Z‘
Figure 5.2

€22) — token_here;: as for c12, (jfatherj)e a_tree and fatheri#i. Let k=father;, the position of
the three nodes i, /, k in the rooted tree a_tree is depicted in the Figure 5.3.

i i k
Figure 5.3

Node j performs the following actions (line 10)
. send request(i) to father(=k); father;:=i;
and askedj remains false. After these actions, the condition (a2) is satisfied for the pair (i,k), (al)
for the pair (j,i), and none of the conditions (al) to (aS) for the pairs (i,j) and (f,k). The new graph
is depicted in Figure 5.4. and thus a_tree remains a rooted tree.
i) k
J

Figure 5.4

3" case. asked; A mandator;=i A i#j.

Only one event could disable this condition, namely when mandator; takes a value different from i (i.e.
becomes nil). In fact, asked; cannot become false as long as j's mandate for i is not completed. But the
modification of mandator; is bound to the receipt of the token since, as long as it hasn’t been received,
asked; remains true and thus no new request can be processed by j. When j receives token(p) (from some
k), its local context satisfies asked;=true and mandator;#j,nil thus four cases have to be considered ac-
cording to the state of j.

cl) behavior;=proxy

c11) p=nil: for any x, none of the conditions (al) to (aS) by pairs (jx) are satisfied, thus j is the
root of a_tree. The node j performs the following actions: (lines 16 and 17)
fatherj:=m’1; send token(j) to mandatorj (=i)

17

and asked; remains true. After this, j is still root of a_tree, and thus the graph of a_tree is not
changed.
c12) p#nil: condition (a4) is satisfied by (j,k), hence (j,k)e a_tree. The node j performs the fol-
lowing actions: (lines 15 and 18)
askedjzzfalse; father;:=k, send token(p) to mandator; % mandator;=i %
After these actions, condition (al) holds for the pair (j,k) and condition (a4) for the pair (i,j).The
graph a_tree is not changed.

c2) behavior=transit

c21) p=nil: asin cll, j is the root of a_tree (Figure 5.5). The node j performs the following ac-
tions (lines 15, 19 and 20)
askedj:=false,' fatherj:=mandatorj (=i); send token(nil) to mandatorj (=i).

5

Figure 5.5

After these actions, condition (al) holds for the pair (j,i) and none of the conditions (al) to (a5)
is satisfied by the pair (i,j). Substitution of edge (i j) by (/,i) leads to a new tree, with root i (Fig-

ure 5.6).
j .
A\Z‘

Figure 5.6
€22) p=nil: the proof is the same as in the case c12 above.

4'h cage, asked; A there is a message token(k), k#nil, in transit from j towards i.

Only the receipt of the token by i can disable this condition: the two terms of the conjunction will become
false at the same time. When this event occurs, asked; is true and mandator#nil since the received mes-
sage is token(k), k#nil. There are two cases, according to the value of mandator;:

c1) mandator;=i: node i performs the following actions: (lines 11 and 14)

token_here;:=true; father;:=j;

and asked; remains true. After this, condition (a5) is satisfied by the pair (ij) and thus a_tree doesn’t
change.

¢2) mandator;=Ii: condition (a3) is satisfied by the pair (,i). The configuration of a_tree is shown

in Figure 5.7,
1 i j
AN AA

Figure 5.7

Node i performs the following actions: (lines 15, 18 or 21, 22)

asked;.=false, father;.=j; send token(k) to mandator; (=l); mandator;:=nil;

After these actions, condition (a4) holds for the pair (/,i), condition (al) for (i,j) and none of the con-
ditions (al) to (aS) is satisfied by pairs (i,) and (j,i). The graph of a_tree remains the same.

5th cage. asked; ~ father;=j A token_here; (the node i is in the critical section).
Only one event can disable this condition: when asked; becomes false. In fact, as long as asked; is

18

true, i cannot process any request; moreover, having the token, i cannot receive it. Thus the terms
father;=j and token_here; cannot become false. Since father#nil, property 2 ensures lender#i. The
node i performs the following actions: (lines 4, 3)

asked;:=false; send token(nil) to lender;,

After these actions, condition (al) is satisfied for the pair (i j) and none of the conditions (al) to (a$)
is satisfied by the pair (lender;,i). Thus, the graph of a_tree remains the same.

Q

Annex 2

Below is the text of a variant of Naimi and Trehel’s algorithm, deduced from the general algorithm pro-
posed in this paper; all the nodes have a transit behavior. Hence, variables behavior;, lender; and man-
dator; are removed, and the token doesn’t carry any value.

Upon a call to enter_cs by i
begin
wait (not asked,);
asked;=true;
if not token_here; then send request(i) to father;,
wait (token_here;),
endif;
end % enter_cs %

Upon a call to exit csby i
begin

asked;.=false;
end % exit_cs %

Upon a receipt of request(j) by i
begin
wait (not asked,),
if token_here;
then
send (oken to j;
loken_here;.=false;
else
send request(j) to father;;
endif;
father;:=j;
end % request %

Upon a receipt of token by i

begin
token_here;=true;
Sather;=nil;

end % token %

19

Annex 3

Below is the text of a variant of Raymond’s algorithm, deduced from the general algorithm proposed in
this paper; all the nodes havc a transit behavior when they keep the token (token_here) and a proxy be-
havior otherwise. Hence, variables behavior; and lender; are removed, and the token doesn’t carry any

value.

Upon a call to enter_cs by i
begin
wait (not asked,);
asked;=true;
if not token_here; then mandator;:=i;
send request(i) to father;
wait (loken_here;);
endif;
end% enter _cs %
Upon a call to exit_csby i
begin
asked;=false;
end % exit_cs %

Upon a receipt of request(j) by i
begin
wait (not asked,),
if token_here; % here equivalent to: behavior=transit %
then
send token to j;
token_here;=false;

father;=j,
else
asked;:=true,

mandator;:=j;
send request(i) to father;,
endif’
end % request %

Upon a receipt of token by i
begin
token_here;.=true,
case of mandator;=i
begin
father;=nil;
end
mandator #i
begin
asked;:=false;
father;=mandator;,
send foken to mandator;;
token_here;:=false;
end
endcase
mandator;:=nil;
end % token %

20

lmprime' en France
. par
.|'Institut National de Recherche en Informatique et en Automatique

ISSN 0249 - 6399

