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Abstract

A theoretical framework and a practical algorithm are presented to solve discontinu-
ous piecewise linear optimization problems. A penalty approach allows one to consider
such problems subject to a wide range of constraints involving piecewise linear func-
tions. Although the theory is expounded in detail in the special case of discontinuous
piecewise linear functions, it is straightforwardly extendable, using standard nonlin-
ear programming techniques, to the nonlinear (discontinuous piecewise differentiable)
situation to yield a first order algorithm.

This work is presented in two parts. We introduce the theory in this first paper.
The descent algorithm which is elaborated uses active set and projected gradient ap-
proaches. It is a generalization of the ideas used by Conn to deal with nonsmoothness
in the /; exact penalty function, and it is based on the notion of decomposition of a
function into a smooth and a nonsmooth part.

In an accompanying paper, we shall tackle constraints via a penalty approach,
we shall discuss the degenerate situation, the implementation of the algorithm, and
numerical results will be presented.

1 Introduction

We consider the problem:
inf f(x)
subject to fi(z) = 0,7€ E (1)
fl(x) _>_ 03 ie I’

where the index sets E and I are finite and disjoint and f and f;, 1 € EU I are a collection
of (possibly discontinuous) piecewise linear functions that map IR™ to IR. A piecewise linear
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Optimisation discontinue différentiable par
morceaux [: Théorie
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Résumé

Un cadre théorique et un algorithme pratique sont présentés pour résoudre les problemes
d’optimisation linéaire par morceaux. L’utilisation d’une fonction de pénalité permet de
considérer de tels problemes sujets a des contraintes impliquant des fonctions linéaires par
morceaux. Quoique la théorie soit développée pour le cas particulier des fonctions lin€aires
par morceaux, elle est facilement généralisable, en utilisant des techniques usuelles de pro-
grammation non-linéaire, au cas non-linéaire (différentiable par morceaux) conduisant a un
algorithme de premier ordre.

Ce travail est présenté en deux parties, la théorie est présentée dans le présent rapport
de recherche. L’algorithme de descente élaboré utilise les approches de contraintes actives
et de gradient projeté. Notre approche généralise des idées utilisées par Conn pour traiter
les fonctions non-lisses propres aux méthodes de fonction de pénalité exacte I, et est hasée
sur la notion de décomposition d’une fonction en une partie lisse et une partic non-lisse.

Dans un second article, nous traiterons les contraintes a I’aide d’une méthode de pénalité,
nous discuterons du cas dégénéré, de I'implémentation de I’algorithme et des résultats
numériques seront présentés.
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Figure 1: Example of a piecewise linear function f
T2
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Figure 2: Level curves of f

function f is a function whose derivative is defined everywhere except over a subset of a finite
number of hyperplanes and which is linear on the complement of the finite set of hyperplanes.
A ridge is a specified hyperplane

{reR*:a"z=0},a€e R", be R,

containing points where the derivative of f is not defined. We are concerned with finding a
local infimum of the above optimization problem.

A simple example of such a piecewise linear function is given by the function f : IR2 - R
defined as follows:

-2y —22 fzy 20and z, >0,

zy—1r; ifzy <O0andz; >0, (2)
—zry 41 ifzy >0and z, <0,

T+, otherwise.

f(ml’ 1132) =

The graph of f is a square base pyramid as shown on figure 1 while figure 2 shows level
curves of f. We can consider the two lines z; = 0 and z2 = 0 as being the set of ridges of f.

In [39], Zowe notes that, since they are not descent methods, subgradient methods (de-
veloped before the mid 70’s) yield very poor convergence rates. He then motivates the bundle
concept (see [29]) as an alternative direct approach to nondifferentiable optimization, over-
coming some of the drawbacks of the subgradient methods. Bundle methods however involve
a more complicated structure which demands a more sophisticated implementation. Other
methods, such as [3, 12, 23, 24, 32, 33, 37|, deal with specially structured nonsmooth func-
tions, for example the minimax problem, the /; problem and elementary compositions of such
problems. They are able to exploit the structure explicitly and consequently these methods
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are significantly more efficient than bundle methods (having 2-step superlinear rates of con-
vergence [6, 12], for instance). Nevertheless, even for these problems, if they are extremely
large, bundle methods, which can handle very general problems, may he more appropriate.

The idea of decomposition introduced in this paper will permit a broader generalization
of Conn’s approach.

Fourer [19, 20, 21] derived an extension of the simplex method for linear programming
to (continuous) monotropic (i.e. convex, separable and linearly constrained) piecewise lin-
ear programming. His computationally practical algorithm is more efficient than indirect
approaches that rely on transformation of piecewise linear programs to equivalent lincar
programs. See also [15, 16] which describe an extension to permit convex separable terms in
the constraints.

Considering the optimization of functions which are nonsmooth and even discontinuous is
motivated by applications in VLSI and floorplanning problems (4, 36], plant layout [31], batch
production [26], switching regression [35], discharge allocation for hydro-electric generating
stations [27], fixed-charge problems [17, 25, 34], for example.

Leaving aside the heuristic methods on which many people facing practical discontinuous
optimization problems rely, previous work on discontinuous optimization includes smoothing
algorithms. The smoothing algorithms express discontinuities by means of a step function,
and then they approximate the step function by a function which is not only continuous
but moreover smooth so that the resulting problem can be solved by a gradient technique.
Both Imo & Leech [26] and Zang [38] developed methods in which the objective function
is replaced only in the neighbourhood of the discontinuities. A drawback of these methods,
not to mention the potential numerical instability when we want this neighbourhood to be
small, is the cost of evaluating the smoothed functions.

One of the most important applications of nonsmooth optimization is in nonlinear pro-
gramming. It arises when solving a smooth constrained optimization problem via minimizing
an exact penalty function. We present an algorithm for discontinuous optimization based
on idecas used in algorithms solving this very particular instance of (continuous) nonsmooth
optimization problems. More specifically, the theory developed in this thesis is inspired by
Conn’s approach [8] to this problem. The discontinuous piecewise linear algorithm to be
introduced here is thus a generalization of his algorithm.

In this paper we develop a theory to tackle the discontinuous piecewise linear optimiza-
tion problem (1). We start from the idea used by Conn [8] that was applied to the nonsmooth
problem resulting from the reduction of a constrained optimization problem to an uncon-
strained one via an {; exact penalty function. In the second part of this paper [13], we shall
also use this same penalty approach in order to solve problem (1), that is we consider the
unconstrained function

f2(z) = vf(x) + - |f(z)] = - mino, fi())] (3)
i€E i€l
for a succession of decreasing positive values of the penalty parameter 4. The function f, is
clearly a piecewise linear function, whenever the functions f and f’s are themselves piece-
wise linear. This penalty approach allows us to concentrate on the unconstrained nonsmooth
optimization problem: inf, f(z), where f is a (possibly discontinuous) piecewise linear func-
tion.



The next section sets the terminology required for the reading of the paper and presents
the concepts of activities and restricted gradient, which are fundamental to the theory to be
presented.

We introduce in section 3 the definition of decomposition of a continuous piecewise linear
function into a smooth function and a sum of single-ridged functions, the theorem stating
that such a decomposition can always be found at a non-degenerate point, the optimality
conditions and the algorithm.

The following section extends the theory to the discontinuous piecewise linear situation
by generalizing the definition of decomposition, then the decomposition theorem and hence
the optimality conditions and the algorithm.

The penultimate section explains how our work can be straightforwardly extended to
yield a first-order algorithm for the nonlinear case—the general (possibly discontinuous)
piecewise differentiable situation.

Section 6 concludes this first part of our paper.

Details of implementation, the constrained case, degeneracy, a discussion on how to deal
with singular points called contact points, and numerical results are deferred to the second
part [13] of this paper.

2 Terminology
We define the function sign as follows:

1 ifz>0,
sign(z) =4 -1 ifz<0,
0 otherwise.

If V is a subspace in IR", then
Vi={ze R":vTz =0, for allv € V}

is termed the orthogonal complement of V. The range space of an m x n matrix A is the
set of vectors that can be written as a linear combination of the columns of M. The null
space of M, denoted by M (M), is defined by

N(M)={ze R*: Mz =0}

(it is the orthogonal complement of the range space of M7).
Let f map IR" to IR. The usual (one-sided) directional derivative or the first order change
of f at z € IR™ in the direction v € IR" is

f(z + tv) — f(z)
t

1y, — I3
fl(ziv) = lim

when this limit exists.
An n x n matrix P is called an orthogonal projector if P is symmetric (i.e. PT = P)

and idempotent (P - P = P). For P to be an orthogonal projector onto a subspace V C IR"
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means that P projects a vector v € V onto itself (v € V implies Pv = v) and P projects a
vector of the orthogonal complement of V onto 0 (v € V* implies Pv = 0). If Aisann xm
matrix with linearly independent columns, one can show that the orthogonal projector onto
N(AT) is given by

P=1-AATA) AT,

where I is the n X n identity matrix.

If{z € R" : a"z —b =0}, a € R*, b € IRis a ridge of f, then, by abuse of
language, we shall call a7z — b a ridge of f. We identify two ridges alz — b, and alz — b,
if {r e R*: a2 — by =0} = {z € R": alz — b, = 0}. Let {aTz — b;}ier be the ridges of
f, where R is a finite index set. We say that a ridge a’z — b is active at # if «T2 — b = 0.
Let A(Z) C R be the (finite) index set of the ridges that are active at the current point Z,
and A(Z) be the matrix having as columns the gradients of the ridges which are active at Z.
Hence, {a;}ica(z) denotes the column vectors of the matriz of activities A(L). We shall use
A and A rather than A(Z) and A(Z), when it is clear from the context which is the current
point. Also, when there is no confusion possible, we shall often talk about activity & or ridge
k, meaning the ridge indexed by k € R.

A direction d € N (AT(2)) is said to preserve each activity 1 € A(#), since for each
i € A(2) we have, al (2 +ad) ~b; = aT& —b; = 0. If A(Z) # 0, then V f(Z) is not necessarily
defined. The problem comes from the fact that we cannot talk about the gradient of the
function at Z since there is no vector ¢ € IR" such that g7d is the first order change of f in
direction d, for any d € IR". Thus, we cannot use, as in the smooth situation, the negative
gradient direction as a descent direction. We shall first consider directions d € A(AT) such
that d 1s a descent direction. We term any n x 1 vector g; such that

f'(2;d) = gTd, for all d € N(AT)

a restricted gradient of f at I, because it is the gradient of the restriction of f to the space
N(AT(2)).

To illustrate these concepts, consider the following simple example:

min  — f(z),
z€

subject to z, + x, 2> 0,

where f(z) is defined by (2). It yields the unconstrained optimization problem: minzemz £ (),
where

f3(z) = —7f(z) — min(0, 2, + z2) (1)

and v > 0. The derivative of the penalty function f., is not defined only over the three ridges

1]

aTz — b, i€ R ={1,2,3},

where
o = (I’O)T’ a; = (0’ I)Ta az = (1a I)T, (5)



and b; = 0, ¢ € R. At the point T = (0,0), the three ridges are active, i.e. A(#) = {1,2,3}
and hence the matrix of activities is

A(F) = (

At 3T = (0,1), we have A(%) = {1} and

A(@):(é).

It will be useful for what follows to introduce the functions {0;};cr defined by:

o -

oi(z) =sign(alz - b;) ,i € R.

We denote o(z) the |R| x 1 vector whose ith component is o;(z), and 3I®! is the set of all
possible such vectors. Given a (possibly discontinuous) piecewise linear function f defined
over IR™ and the set {alz — b;};er of its ridges, a cell of f is a non-empty set C C JR™ such
that for all x,y € C we have o;(z) = 0,(y) # 0, for all i € R. Thus, f is differentiable over
a cell.

For example, the interior of the four orthants constitute a set of cells of function f given
by (2).

Let o € 3%l i € R and o; be the ith component of vector o. A set

{z:0{z) =0and gj(z) = 0;, j € R\ {i}}

is called a segment of ridge 1.

The half-line {x € IR? : z; = 0 and z; > 0} is a segment of the ridge z, = 0 (for the
function f given by (2)).

Figure 3 shows the values of the gradient of the penalty function, f,, given by (4) when
restricted to each cell. One can easily verify that a restricted gradient of f, at 7 is g; =
(7,7). Indeed, along any direction d € IR? preserving activity 1 (i.e. such that aTd = 0) we
have f'(%;d) = g1d.

Given a point £ € IR" and aline L = {z € R" : ¢ = T + ad,a € IR}, we say that x5 is a
breakpoint of f along d when at least one ridge i of f is active at xo with a7d # 0 (i.e. 7 is
not active at &). In our example, starting from 7 = (0,1), 23 = (—=1,1) is a breakpoint of
f, along direction d = (—1,0)7, as we “hit” ridge 3 at z, (see figure 3).

3 Continuous Piecewise Linear Optimization

We will assume that a continuous piecewise linear function, f, is given under the following
form: The ridges, {afz — b;};er, where R is a finite index set, of f are given, i.e. we are
given: a; € IR" and b; € IR, for each : € R. At any point £ € IR", the set of ridges which
are active at Z, A(%), is given. Finally, consider the set

CcP={ze B(2):afz > b;,i € Pand a7z < b;,i € A(%)\ P},

6
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Figure 3: Values of the gradient of f., over the six cells

where B(%) is a neighbourhood of # and P C A(Z%). If B(%) is small enough, f is linear over

Cl ie f(z) = f(&)+2Tck, z € CF, for some vector cf € IR*. We shall consider that at
any point & € IR" and for any P C A(%) such that Cf # 0, we can obtain the vector ¢f.
(Hence, we are assuming that more information on the structure of the objective function
is available than, for example, in a bundle method, which assumes that only one element of
the subdifferential is known at any point.)

3.1 Decomposition

Definition 1 Let f : IR* — IR be a continuous piecewise linear function with ridges {al z —
b;}ier, where R is a finite index set. Let & € IR, g; € IR" and ¥; be a functzon defined on
IR" such that we have:

§(#) = 1) + gL (5 - 2) + a(a),

for all z in some neighbourhood, B(2), of &, where

Yi(z) = Z vi min(O,a,T(a: — 1))

i€A(T)

for some scalars {v}}icacs)-
We say that gs, {vi}ica(s) is a decomposition of f (into a smooth function and a sum of
continuous functions having a single ridge) at Z.

To illustrate, one way of decomposmg function f, given by (4) (see figure 3) at & = (0,0)7
could be the following:

fy(e) = gle+ ¥ vimin(0,a7a) 5)
i€A(Z)



for all z € IR?, where A(%) = {1,2,3}; a;, i = 1,2,3 are defined by (5); and

I = (v
v = =2
v; = =2
vi = —L

We leave out the subscript “y’ in g; and v% for notational simplicity.

We shall shortly give a practical way to find a decomposition at a given point £. In the
above example, we can easily provide “simultaneously” a decomposition for each Z in the
domain of f,, that is, a decomposition such that v} = v} at any points z,%, i € R. We
shall later deal with instances, in degenerate situations, where the scalars {vL};er do depend
upon &. In fact, even in these instances, they depend only on o(Z). Indeed, we shall see
that we can define a decomposition with common {v.}ier for all Z which are on the same
segment of a ridge.

When there exists a decomposition of a function f at a point & € IR", we say that f is
decomposable at &. Suppose that f is decomposable at a point Z, and let gz, {v}}ica(s) be
the decomposition. Choosing a direction that would not change the value of the nonsmooth
part of f, ¢, (for example, a direction preserving the current activities) and reduce that of
the smooth part, f(%) + g7 (z — z), (whenever possible) would be enough to obtain descent
in f. We have, for a > 0 small enough:

f@+ad) = f(3)+agld+a Y vidld

i€A(£):aTd<0
Thus, restricting d to be in N(AT(%)) we obtain
f(& + ad) = f(&) + agid.

Clearly, g; is a restricted gradient of f at &. Given a decomposition, gs, {vi}ica@), of f at
Z, we shall call g;, by convention, the restricted gradient of f at &. The next theorem will
state that, given the set of ridges {afz — b;};er of f at &, the decomposition of f at & and,
hence, the restricted gradient of f at Z, are unique provided that the gradients of the ridges
which are active at Z are linearly independent.

Unless it is essential to specify the subscript ‘2" in gz, {v}}ica(z), we shall sometimes omit
it by abuse of notation and talk only about a decomposition g, {v*};es of f at .

Let A_, be the matrix having as columns the gradients of the ridges which are active
except for activity k € A. We call a direction d € N(AT,), k € A, such that afd # 0,
a single-dropping direction or a direction dropping only activity k, since it preserves all
activities but activity k (if A = {k}, then N(A_;) is simply IR*). We say that activity k is
dropped positively if moreover ajd > 0, and that activity k is dropped negatively when d is
such that afd < 0. With a decomposition g, {v*};c4 of f at %, we know that there is a vector
v € IR" such that if d is a single-dropping direction, then the change in the nonsmooth part
is vTd, where v is a multiple of the gradient of the ridge being dropped. This observation will
permit derivation of optimality conditions similar to Lagrange multiplier rules: a multiplier
rule will be associated with each activity.
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The minimization ol some special cases of continuous piecewise linear functions have heen
studied before, for example, in I, data fitting or when using the I/, exact penalty function
to solve a linear programming problem 1, 8]. In the latter problem, we want to minimize a
particular piccewise linear penalty function f,. The function f, is as given in (3), where f
and f;, 1 € F U I, are linear. Thus, the penalty function to minimize has the form

fo(z) = ~veTz + Z laTz — b;| — Z min(0, e’z — b;), (7)

i€l 1€l

for some c € IR"; a; € IR", b; € IR, i € EU I. In order to solve this problem, Conn defined
the restricted gradient of f, at = to be

g(z) =~vc+ Z a;sign(alz — b;) — S ais(alz — b;),
i€EE i€l

where the function s(z) is defined to take the value 1 if z is negative and 0 otherwise. This
way, he could express f,, in a neighbourhood of a point %, as the sum of a differentiable
part, f (%) + g(2)T (2 — £), and a nondifferentiable part,

S laTz—b - 3 min(0,afx - b;).

i€ENA(Z) ieInA(%)

Clearly the change of the nondifferentiable part of f, in a single-dropping direction d can
easily be written as the inner product of d with a multiple of the gradient of the activity to
be dropped. For example, if at the current point Z, af x — by is active and d drops negatively
this activity, then

£(&,d) = (9(2) + (—1)ax)7d.
If d drops k positively, then

yon ) (9(8)+1ax)Td if k€ E,
£(&,d) = { (9(2) +0a:)Td if kel

Given an arbitrary continuous piecewise linear function f, two questions remain: IHow to
find a decomposition of f into a smooth function and a sum of continuous functions having
a single ridge and, above all, does such a decomposition always exist? At first sight, the
answer to the latter question seems unlikely to be yes. Indeed, if m ridges of f are active
at &, it means that there are 2™ cells in any small neighbourhood of #, assuming {«;}:ca()
linearly independent. One can then wonder how could the vector g; and the m scalars
{vi}ieas), together with the gradients of the activities, {a;}ica(z), completely characterize
the behaviour of f over the 2™ cells in the neighbourhood of . The next theorem gives a
sufficient condition for a continuous piecewise linear function to be decomposable at a given
point while the proposition following it gives a practical way to construct the decomposition.

Theorem 1 (Decomposition) Let f : IR® — IR be a continuous piecewise linear function
with ridges {alz — b;}ier, where R is a finite index set, and let £ € IR*. If {a;}icacs)
the gradients of the ridges of f which are active at &, are linearly independent, then f is
decomposable at  and the decomposition is unique.



To give an intuitive idea as to why the result is true, one should note that in constructing
an arbitrary piecewise linear function having m linearly independent ridges active at Z, the
requirement of the continuity of f reduces greatly the number of degrees of freedom. One
cannot just assign arbitrary linear functions to each of the 2™ cells in the neighbourhood of
. Consider for example the partition of IR? into four cells by the ridges z; = 0 and z, = 0.
Defining a function over the second and fourth orthants determines completely a continuous
piecewise linear function over the whole domain. In fact, assigning m linear functions to m
different cells will be enough to determine the value of f on the 2™ — m remaining cells, if
we require f to be continuous.

Proof: Let us suppose without loss of generality that f((f) =0,and # = 0 (thus, b = 0
for all « € A(%)), and A(Z) = {1,2,...,m}. In a neighbourhood, B(%), of Z, function f has
the form

f(z) =27

whenever
alz > 0, ieJ
and afz < 0, ie{1,2,...,m}\J,
for some vectors ¢/ € IR" given for each J C {1,2,...,m}. We can define an invertible linear
transformation,
y = Lz,
such that

y,-Ea,T:l:, 1<21<m
(and in the case where m < n,

T

yi=a;z, m<i<mn,

where the @; € IR" are such that {a;, 1 £ ¢ < m}U{a;, m <1 < n} are linearly independent).
Thus, we can write f, in a neighbourhood, B(%), of Z, using the form

flz) = (L'y)"e’
whenever

Yi Z 0’ ZEJ
and y; < 0, 1€{1,2,...,m}\J,

where the ¢/ € IR" are given for each J C {1,2,...,m}.
Let
d =17

for each J C {1,2,...,m}. Then, in a neighbourhood of &, f(z) = h(Lz), where

h(y) = yTd’

10
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whenever

yi 2 0, 1€J
and y; < 0, i€ {1,2,...,m}\J

Since the function f is continuous, h is continuous. The continuity of h yiclds, for
I,JC{1,2,...,m}:
dl = d] wheneverie InJorie {1,2,...,m}\(JUJ)orm <1i<n. (8)

t

Clearly, (8) is true if and only if for I C {1,2,...,m} and 1 <z < n:

,_{ dE-m e T,
N 4 otherwise.
Hence, .

h(y) = Z;diy,',
where i

d. _ (l'{],?,...,m} if y‘ Z 0’
' d? ify; < 0.

That is to say,
h(y) — de{1,2 ..... m} + Z(d? _ d§1.2 ..... m})min(o,y")’

=1

d{1,2...

since for m <1 < n, d? = wm, Hence, in a neighbourhood of , .

m
f(;l,‘) = xTc{l.Z,...,M} + Zl/i min(o’a;f'x)’where I/i = d? _ d§1'2 ..... m},
i=1

which is a decomposition of f at Z.

In order to prove the uniqueness of the decomposition, let g, {v*}iea and ¢/, {+"}ica be
two decompositions of f at . By definition of the decomposition, we have for all = in some
neighbourhood, B(%), of Z:

flz) = ng + Z v min(O,a?:c) = g'Tx + Z ot min((),a;r.r). (9)
i€EA 1€EA

Using (9) with z € B(%) such that a7z > 0 for all 7 € A yields
g7z =¢"z
or (g —g¢)Tz=0. (10)
Equation (10) is true for any z € B(Z) in the set

S={ze R :aTz >0, for all i € A}.

11



In the case where |A| = n, we show that ¢ — g’ = 0 by considering each of the (linearly
independent) directions

d* = P_k(ak), ke A,
where P_; is the orthogonal projector onto N(A_x(%)). If | A] = m < n, then consider each
of the directions

dkzﬁ_k(ak), ke A and
dkEp—k(ak)s kE{l,Q,,Tl}\A,

where P_; is the orthogonal projector onto N'(A_x(#)), A_x(%) has as its columns the vectors
Qy1y...yQmy0my, ..., 0, and the @’s extend the a;’s to form a basis of the entire space.
We show that v* = v" for any 7 € A(Z) by using (9) with z = —P_;(a;). O

Proposition 1 Let f : IR® — IR be a continuous piecewise linear function with ridges
{aTz — b;}icr, where R is a finite index set, and let £ € IR*. Assume that {a;}ica(z), the
gradients of the ridges of f which are active at Z, are linearly independent and that, without
loss of generality, f has the following form in a neighbourhood of & :

f(z) = (&) + (= — &)7¢ (11)
whenever

al(z—2%) > 0, i€J
) < 0, 1€ A(2)\ J,

and al(z - %

for some ¢’ € IR given for each J C A(%).
Then, A3, {A\}iea(s) is the decomposition of f at &, where each of the scalars {\'}icaz)
is such that

Nag =" = ¢,

for any given J; C A(%) such that i € J;.

Proof: Let {J;}ica(z) be such that ¢ € J; C A(z), for each i € A(Z). Note first that
since f is decomposable at Z, then there exists some decomposition g, {v*}ica(z) of f at #,
and hence, for any J C A(Z) we have, by (11):

¢ = g+ Z Vkak.
ke A(2)\J

Thus, for any J C A(%) such that : € J we have

- =g+ Y Sa-(g+ Y )
k€ A(2)\(J-1) ke A(2)\J

= v'a;.

This is true in particular for J = J;; that is to say

Ji—1

x__CJ.'

c = v'q;,

12
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which implies that A'a; = v'a;, and hence,

= ¢ = Mg, : (12)

for any J C A(Z) such that : € J.
Now let & be an arbitrary point of a small neighbourhood of Z. In order to show that
A® A }iea) is @ decomposition of f at &, we would like to show that

f(@) = @)+ (E-)TAD + Y Amin(0,a] (& - £)).
iCA()

Let
K ={i€ A%):d] (3 - %) > 0}

and

Suppose without loss of generality that
Ke={1,2,...,1},

and let
K, =Ku{12,...,i}, 1€ K, and K¢ = K.
We have

f(@) +@E-)TAB 4+ 5 A min(0,q] (2 - 2))
I€A(F)

l
)+ (2= 2)TAD + 5 Mal (2 - 2)

=1

!
= (&) +E-2)TAD 3 (M - KT (3 - £), using (12) with J = K,
=1

&

= A

)
= f(&)+ (@ - 2)TA® 3 (K - HF)T(z - 1)

i=1

= @)+ (5 - BT AR 1 (o — FNT(G - )
= f(&)+ (& —2)TK, since K; = A(%) and Ko = K,

by (11) and the definition of K. O

Thus, intuitively, we have for a continuous piecewise linear function f that, in the neigh-
bourhood of a point & such that {«;};c(z) are linearly independent, the difference between
the gradient of f when f is restricted to a cell Cy, and the gradient of f when f is restricted
to an “adjacent” cell C,, i.e. C; and C, are “separated” only by one ridge, afz — b, is
always a multiple of a;, the gradient of the ridge. The factor involved is just the scalar »i

needed to obtain the decomposition of f. The decomposition theorem says that, in order to
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build a decomposition of a given continuous piecewise linear function f at a point at which
the gradients of the activities are linearly independent, it suffices to know, for example, the
following | A(2)| + 1 gradients (of restrictions of f): cA(® and A®)- i e A(%). We do not
need to use the 2M4E) gradients corresponding to restrictions of f to each cell.

To illustrate, here is an automatic way to obtain the decomposition of function f given
by (2) at the point & = (0,0). Let {aTz — b;}ier, R = {1,2}, be the ridges of f, where

ay = (laO)T$ a = (01 I)T

and b; = 0,7 =1,2. We have A(&) = {1,2}. Take g; as the gradient of f when restricted to
the cell

{reR*:alz-b;>0, i€ A(2),}
that is to say, set g = (—1,—1)7. For each i = 1,2, in order to obtain the scalar vi, one
only needs to pick up two cells “separated” only by ridge 2z, and to compute the difference

between the gradients of f restricted to each of these cells. The result is then equal to via,,
by the decomposition theorem. For example, in order to determine v}, we can use the cells

{re R?:aTz — b, <0 and afz — b, > 0)

and
{te R*:aTz — b, >0 and afz — b, > 0},

which yields
ler;al = (la_l)T - (_1’_1)T = (2’0)T

Since a; = (1,0)7, we obtain v} = 2. We remark that using rather the cells
{reR*: a7z —b, <0 and alz —b, <0}

and
{reR*:aTx —b, >0 and alz — b, <0},

we would obtain the same multiple of a,.
In a similar manner, we obtain »2 = 2 and hence,

f(x)y=giz+ > vimin(0,a]7),
i€ A(%)

where g; = (—1,-1)7 and v} = V2 = 2.

Note that it does not appear to be necessary to automate the construction of decompo-
sitions in applications. According to our experience, decompositions (when they exist) are
easily constructed in practical problems (cf. [13]).

The decomposition, cA(), {X}ica(s), constructed in the proof of the decomposition the-
orem, is valid for any other point & such that o(%) = o(Z). Indeed, if Z is such that
o(z) = o(Z), then any neighbourhoods of # and %, small enough, intersect exactly the same
cells. For example, if the continuous piecewise linear function f is nondifferentiable at a
point &, and we have a decomposition g,v* of f at &, then g,v* is a decomposition of f at
any other point on the same segment.

14
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In addition, when every point, z, of the domain of f is such that {a;};e4(z) are linearly
independent, using an inductive argument, we can show that the »%’s involved in the decom-
position of f at a point & are independent of £ . Note that from this we can prove that,
assuming that the activities are linearly independent at every point & € IR", a continuous
piecewise linear function f with ridges {alz — b;}.er has the form:

fl2)=b+cTz+ > v min(0,a’z — b;), for all z € IR,

1ER

for some vector ¢ € IR" and scalars b and {v'}ier.

The decomposition theorem provides a sufficient condition (the linear independence of
the activities) for a continuous piecewise linear function to be decomposable at a point z. It
would be interesting to have a condition characterizing “decomposability”.

Define, for any J C A(Z), the set

S'={ze R :al(z-%)>0,i€Jandal (2 —2) <0, i€ A(3)\ J}.

Each such non-empty set corresponds to one of the cells of f intersecting any neighhourhood
of &. In the case where {;};c4(z) are linearly dependent, we do not necessarily have S7 3 0
for each J C A(&). Assume that f has the form (11) in a neighbourhood of &, for some ¢/ €
IR" given for each J C A(%) such that S’ # 9. Then, we can show that f is decomposable
at % if and only if there exist scalars v*, i € A(%), such that

via; = = ¢, forallieJC A(z) (13)

such that SY # 0 and S7=* # 0.

This necessary and sufficient condition for f to be decomposable at a point & is however
not very practical, as it involves the verification of equation (13) for every possible subset
J of A(%) (such that SY and S/~ are non-empty) containing 7, and this for every 7 € A(%).
We shall omit the proof.

Note however that condition (13) is satisfied at any point & € IR" for the decomposable
function given by (4) (see figure 3). Also, it is clear from the form of function f, given
by (7) that it is decomposable at any point, even when the gradient of the activities are
linearly dependent. Condition (13) is straightforwardly verified at any & € IR™ in this latter
example. A decomposition gz, {v' }ic(z) of this function at any point & € IR" can be obtaine
automatically in a manner similar to the linearly independent case. If we set

ge=vc+ Y. a+ 2 asignalz~b)— > as(elz-b), (11)
i€A(Z)NE i€E\A(%) i€ \A(%)

and, for each ¢ € A(%), let J be any subset of A(%) such that : € J, S # 0 and S/~ #£ 0.
Set, for each i € A(%), v* to be such that

l/'a,' — CJ—i _ CJ
We thus obtain
< -1 if:el
t ] r
”‘{-2ﬁie5 (15)
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Hence, for all 2 € IR", we have:

fy(@) = f(#) +gi(z = &)+ 3 v min(0,a] (z - 3)),
t€A(Z)

for all z in some neighbourhood of & small enough, where g; is defined by (14) and the scalars
{vi}icas) are given by (15). Note that this is an example of a function with a decomposition
9z, {V'}ica(s) such that the scalars v'’s are independent of #. (We can show that this is a
consequence of the fact that this function is decomposable at each point, as we show that
the v'’s are not dependent upon # in the case where {a;};c(z) are linearly independent at
each point of the domain of a function.)

3.2 Optimality Conditions

Let £ € IR", g; be any restricted gradient of f at Z, and Z be an n x (n — |A(%)|) matrix
whose column vectors form a basis of A'(A7(2)). In analogy with active set methods, where
the dimension of a subproblem is reduced by considering only the space where the current
activities are preserved, we call Z¥g; a reduced restricted gradient of f at Z. When [ is
decomposable at I, it is a reduced gradient of the smooth part of f. Note that Z is not
unique and the reduced restricted gradient is not uniquely defined.

Let P be the orthogonal projector onto the space N'(AT(%)). Remark that

fl,d)y=0VdeN(AT) & ¢]d=0VdeNAT) & ZTg;=0

(thus the fact that ZTg; = 0 is independent of which particular restricted gradient, ¢z, of f

we consider) and
ZT¢: =0 & g; € R(A(%)) © P(g:) =0.

We consider two cases:

Case 1: The reduced restricted gradient is non-null.

Consider the direction p = — P(g;). We can easily show that along p, f decreases. Indeed,
for a > 0 small enough we have

f(@+ap) = f(&)+apTg:, since pe N(AT),
f(&) = a||P(g2)II? (16)
< f(z).

We can show that p is moreover the steepest descent direction among all directions in A”(A7T).

Case 2: The reduced restricted gradient is null.

In this case, we say that I is a dead point. It is not possible to obtain any non-null
change in the objective function f while keeping the same set of activities, as follows from
equation (16), which is valid for any direction p € A/(AT). Hence, we have to drop some
activities if we want to obtain a descent direction. We henceforward assume that the columns
of A(Z) are linearly independent. We return to the case of degeneracy (i.e. the situation where
the gradients of the activities are linearly dependent) in [13]. Hence, from the decomposition
theorem (theorem 1), f is decomposable at &. Let gz, {vi}icaz) be a decomposition of f at
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#. The point % is a stationary point of the smooth part of f, and we shall either establish
the optimality of f or derive a descent direction.

Consider moving from the current dead point & to a displaced point & + ad. We have,
for a > 0 small enough:

flE+ad) = f(B) +adlgz+ 3 vial).

i€A(£):aTd<o

But the fact that # is a dead point implies that there exist scalars {u;}iec4(s) such that

gz = Z Uuiay

tEA(T)
and hence, ,
f@+ad) = f(3)+ o 3 wald+ 3 Xi'd]d], (17)
1€EA(L) 1I€EA(Z)

where

. TS Y §
’\;d={gi ifajd <0, (18)

otherwise.

We can show that a direction d** (d*7) € N(AT,) dropping positively (cf. page 8 above)
(negatively) activity k € A(Z) exists.
Hence, using the fact that aTd** = 0 for all i € A(2)\ {k}, equation (17) becomes (with
d = d¥*):
. Kt . kdk T kE ‘
f(@+ad™) = f(2) L alue+ A" lapd™ |, (19)

where ‘%’ is a ‘+’ when k is dropped positively and a ‘~’ if it is dropped negatively. Thus,
at a dead point, a direction dropping only activity k¥ € A(Z) does not yield descent if and
only if

0<up < —vk

The next theorem will state that in fact, it is sufficient to verify whether single-dropping
directions yield descent, in order to determine if the current point is optimal.

In the same way, the optimality conditions for many nondifferentiable problems can be
determined. When minimizing f., given by (7), one can show using (15) (and by proving the
fact that one needs to consider only single-dropping directions as possible descent directions,
as we shall do in the proof of theorem 2) that a feasible dead point, z*, is optimal for the
original problem if and only if 0 < uf < 2for all: € A(z*) N E and 0 < u} < 1 for all
i € A(z*)NI, where the scalars {u]};c4(s+) are the coefficients in the linear combination of the
restricted gradient (given by (14)) of f at z* in terms of the columns of A(x*) (note that the
multiplier rule corresponding to an active equality constraint has the form 0 < u} < 2 rather
than the more standard —1 < u} < 1, due to the canonical form, 3=,c 4 vi min(0,al (- %)),
with which we fixed the definition of the nonsmooth part of f). The projection method for the
uncapacitated facility location problem of Conn and Cornuéjols [11] determines optimality
conditions and descent directions in a similar fashion, that is to say, from the observation of
the behaviour of the function in each single-dropping direction.
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Theorem 2 (Optimality Conditions) Let z* € IR" and f : IR" — IR be a continuous
piecewise linear function with ridges {alz — b;}icr, where R is a finite index set. Assume
linear independence of {a;}ica(z+), and let goo, {Vi. Yicasy e the decomposition of f at x*.
The point z* is a local minimum of f if and only if there exist scalars v}, 1 € A(2*) such
that

1. goo = Ticaz+) Ui (or, equivalently, the reduced restricted gradient of f at z* is null,
i.e. z* ts a dead point) and

2. 0<u < —vi., foralie A(z*).

A simple interpretation of the condition 0 < u! < —vi. when 2* is a dead point, is that
the directional derivative of f in the single-dropping directions di* (dropping 7 € A(z*)) is
non-negative.

Proof: The necessity of the optimality conditions follows from the earlier discussion.
Note that if z* is a dead point, then the coefficients {u]}ica(z+) exist and are uniquely
defined, by the assumption of the linear independence of {a;}ica(z+)- If we have u; < 0
(up > vk.) for some k € A(z*), then a direction dropping activity k positively (negatively)
1s a descent direction.

In order to prove the sufficiency of the optimality conditions, suppose that the two
conditions hold. Consider d € IR", an arbitrary direction. Recall from equation (17), which
was valid for an arbitrary d at a dead point, that

f@ +ad) = fz)+a 3 (v +Asd)ald, (20)
{€EA(z*)

where A"Y is defined by (18). Hence,
f(z" + ad) > f(z7),

by hypothesis, and thus d is not a descent direction. OJ

3.3 Algorithm

We now present an algorithm for minimizing a continuous piecewise linear function, f : IR" —
IR. We assume that f is decomposable at each iterate and at each breakpoint encountered
in the line search. Moreover, we assume that at every iterate which is a dead point, the
gradients of the activities are linearly independent.

Let {alz — b;};er be the ridges of f, where R is a finite index set, and g,«, {vis Viea(k)
be the decomposition of f at z*.

Continuous Piecewise Linear Minimization Algorithm

Step 1: Choose any z! € IR" and set k « 1.

Step 2: Identify the activities, .A(z*), and compute d¥ = —P(g,+), the projection of the
restricted gradient onto the space orthogonal to the gradients of the activities. If d¥ # 0
then go to step 6.
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(Now z* is a dead point. Compute a single-dropping descent direction or establish opti-

mality.)

Step 3: Compute {u;};ca@zr), the coeflicients of {a;};ca(+) in the lincar combination of
g+ in terms of the columns of A(z*).

Step 4: If v; < 0 or u; > —v',, for some ¢ € A(z*) (violated optimality condition), then
go to step 6.

Otherwise, stop: z* is a local minimum of f.

Step 5: (Drop activity i)

Redefine d* = P_;(a;), if the violated inequality found corresponds to u; > 0, other-
wise d* = —P_;(a;) and u; < —vii, where P_; is the orthogonal projector onto the space
orthogonal to the gradients of all the activities but activity .

Step 6: (Line search)

Determine the step size a* by solving min,so f(z* + ad*).

This line search can be done from z*, moving from one breakpoint of f to the next, in
the direction d*, until either we establish unboundedness of the objective function or the
value of f starts increasing.

Step 7: Update 2**! = z* + ofd*, k — k + 1 and go to step 2.

Remarks:

e In practice, the orthogonal projectors P and P_; are computed with a suitable factor-
ization and/or update of the matrix of activities, A(z*).

¢ In order to compute the coefficients {u;};c4(;*) in step 3, one needs to solve a lincar
system which is possibly overdetermined but always feasible, since ¢,x € R(A(z*)) at a dead
point z*. This can easily be done by solving the least squares problem:

min [lg.r — Ala*)u

(where the vector u is indexed by A(z*)), since we already have a factorization of the matrix
of activities.

e In step 5, when u; < 0 or u; > —1/;,‘, we can show that df = £ P_;(a;) is the steepest
descent direction in the space N'(AT)).

e In step 6, we update the directional derivative of the objective function in the direction
d* from one breakpoint to the other. For example, if d* was obtained from step 2, then the

directional derivative of f.« at z* in the direction d* is

flu(zbd) = ghdd = —gLiP(g.e)
= —ghPTP(g) = —|d*||%. (21)

In the case where the descent direction is obtained from step 5, dropping activity ¢, we have
Fre(@®; dF) = (wi + Ao )aT d*

(where /\;’fk is defined by (18)). If we then encounter a breakpoint Z at which fix is decom-
posable, with decomposition gz, {¥;}ie(z), in the line search when “crossing” exactly one
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ridge j € A(z) (i.e A(T)\ A(z*) = {j}), then the directional derivative hecomes
f‘/Y"(i.;dk) = (9-+ )\JJ.;_"[kaj)T(lk
A R TR
C (gt M M T
= =92+ N ¥ a,)T(=d") + M afd* - A el

= —fl(z—d) + A aTdF — AT

= fl(zb;d) + NP aldt - Ml d (22)
= f,'yk(xk;(lk) — I/;Ia}‘dkL

Equality (22) follows immediately since f« is piecewise linear. If at the first breakpoint, i,
we cross a set J of many ridges (i.e A(Z)\ A(z*) = J), then the update is done similarly:

For(Z;d%) = fu(2¥;d%) = 3 vila]db). (23)
€T

In order to know whether the value of f « starts increasing beyond breakpoint z, we
check the sign of f!.(z;d"), the directional derivative at Z in the direction d*.

Note that a full ordering of the step sizes corresponding to each hreakpoint along the line
search is not necessary. We need to have access to these step sizes one at a time, in order of
increasing size, only until the value of f « starts increasing. We use the “smallest-in/first-
out” mechanism of a heap (e.g. see [28]).

When studying the uncapacitated facility location problem, Conn and Cornuéjols {11]
had to minimize the continuous piecewise linear convex objective function

fle) ==+ 31D (aj — =)t = fi]*,

i€l 1€J 1€l

where a* = max(0,a) and c¢;; and f; are constants. We are here in the presence of “nested
ridges” (the derivative of f is not defined over {z : r(z) = X;c/(cij — x:))t — f; = 0}, where
the function r has ridges, namely: c¢;; — z;, ¢ € I). They derived optimality conditions
which are specific to this problem in order to construct an algorithm. To illustrate how
this problem fits our general framework, consider the following simple instance: f(z,y) =
[(—z)*+(—y)* —1]*. Figure 4 shows the values f takes over the different cclls. Figure 5 gives
the decomposition, gz, {vL}icas), of f at every point where the function is decomposable (i.e.
every point of IR?\ {(0,—1)T,(—1,0)T}). The circles in figure 5 contain the different values
the restricted gradient, gf, takes over the different subdomains where f is decomposable.
In a region over which f is differentiable, g; is just the gradient of the restriction of f to
that region. The squares contain the v* values for each segment of ridge + (with »* = 0 for
the dashed line part of the ridge). Thus, apart from the two points (0,—1)7 and (—1,0)7
(at which the gradients of the activities are linearly dependent), we have a decomposition
of f at any point of the plane. At the two degenerate points (0,—1)T and (—1,0)7, one can
easily show (we shall prove the “non-decomposability” of a function in [13]) that f is not
decomposable (this can be seen also using the characterization of decomposable functions
given by (13)). Thus, special attention will have to be paid at such singular points.

20



Figure 4: Simple instance of objective function for the uncapacitated facility location problem

as = (I,O)T

[1 :
Ol
a = (1,1)7 :

tr(10)
az = (0,1)T- LU )

a3 = (lvO)T

Figure 5: Example of a decomposition
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3.4 Finite Step Convergence

Theorem 3 (Convergence) et f : IR™ — IR be a continuous piecrwise linear funclion
with ridges {alx — b;};er, where R is a finite index set. Assume that

1. {a:}icary are linearly independent at each iterate, z*, encountered in the course of
the algorithm, and

2. f is decomposable at each breakpoint encountered along the line searches.

Then the continuous piecewise linear minimization algorithm converges globally (i.e. from
any starting point) in a finite number of iterations.

Proof: Starting at any point, the algorithm generates a sequence of points, each of which
is obtained from its predecessor using step 7. The step size of in step 6 is chosen so that a
ridge that was not active at z* k1 If iterate z¥ is not a dead point, then
the direction vector d* for generating z
This will guarantee that all ridges which are active at z* will be active at 2**!. Tlence, in
this case

is now active at «

k+1  the succeeding point, will be chosen at step 2.

A(zk) C A(z*).

Thus, under the assumption of the linear independence of the gradients of the activities,
the sequence step 2-step 8-step 10 cannot be executed consecutively more than n times.

Again by the linear independence hypothesis, when z* is a dead point, the descent direc-
tion will drop only one activity and hence

|A(z")] < JAE")

(at z**1 there is exactly one activity fewer than at z*, but at least one new activity was hit).
By definition of a dead point, we have, for a small enough:

F(a* + ap) = f(&¥), for all p € N(A(sH)T)
and hence, f(z) is constant throughout

{z:0(x) = o(z")}.

The sequence of points generated by the algorithm determine a monotonic decreasing sc-
quence of values of f. This means that one cannot return to a point z such that o(z) = o(2*).
Since there is only a finite number of different vectors o € 3%l we may conclude that only
a finite number of dead points can be generated. On the other hand, if the original problem
is not unbounded, then by the optimality conditions theorem (theorem 2) some dead point
is optimal. The algorithm will not terminate until an optimal dead point has been found or
a conclusion of unboundedness is reached. O
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4 Discontinuous Piecewise Linear Optimization

We now consider the case where, again, f is piccewise linear (with ridges {a] —b;}ier, where
R is a finite index set) but with possibly discontinuities across some ridges. We shall term
such ridges: faults and F(Z) will denote the faults which are active at 2.

A (local) minimum does not always exist in the discontinuous case. Consider for example
the following univariate function, having z = 0 as a fault:

r+1 ifz 20
—z otherwise.

f(x) ={ (24)

Hence, we shall rather look for a local infimum. In order to find such a local infimum of a
function f having some faults, we shall simply generalize the algorithm for the continuous
problem by implicitly considering any discontinuity or jump across a fault ¢ in f as the
limiting case of a continuous situation.

Since we are looking for a local infimum of a given function f, it is equivalent to work
rather with the function f defined by

flz) = lirgLi;)ff(:'v).

Thus we need only to look for a local minimum of f. This convention will simplify the
exposition. Without loss of generality, we shall henceforward only consider functions f such
that f(z) = f(z) (in other words, we consider the lower semicontinuous envelope of f).

4.1 Soaring Directions and Faults

The algorithm will be essentially the same as in the continuous case except that we consider
dropping an active fault from a dead point, z, only if we do so along a direction d such that

Jim f(z + 6d) = f(2)

(i.e. as § > 0 is small, the value of f does not jump up from z to = + éd). Thus, virtually
only step 4 must be adapted from the continuous problem algorithm in order to solve the
discontinuous case. Note that in step 4, there is no single-dropping direction that corresponds
to “jumping down” since by our convention (f = f) we have

f(z") = liminf f(z).

r—x

To make more rigorous the intuitive concept of directions jumping up or down, we define
the set of soaring directions from a point Z to be:

S(Z)={d€R":3¢>0,6 >0such that VO < § <&, f(Z+8d)— f(2)> ¢}.
If we define, for a non-degenerate point %,
S*(z)={i € Az): ifd" € N(AT)) and a¥d"* > 0 then d'* € S(2)}
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and

S (8)={i € A(#): ifd" € N(AT,) and aTd"™ < 0then d'” € S(2)},

then the set of soaring single-dropping directions from & are simply the directions dropping
an activity i € S*(Z) positively and the directions dropping an z € S (i) negatively.

A fault can now be defined more rigorously: a positive (negative) fault of f at a point &
is a ridge ¢ € R such that for any neighbourhood, B(%), of Z, there exists a nondegenerate
point =’ € B(&) with i € S*(z) (with : € S7(z’)). The set of all positive (negative) faults
at & is denoted by F*(&) (F~(&)). The set of faults of f at a point & is denoted by

F(#) = FHE)UF-(2).

[Note that the definition of a fault 1 € F(&) is described via single-dropping directions,
dropping activity 7, in order to ensure that the jump is indeed “caused” by activity i (and is
not due to some other fault which would also be active at ). Also, F* and F~ are defined
in terms of soaring directions in a neighbourhood of z. and not at z. alone. Morcover, we
need to refer to some point £’ in a neighbourhood of Z, so that the definition makes sense at
a degenerate point #—recall that a single-dropping direction does not necessarily exist from
a degenerate point].

We would like to modify the continuous problem algorithm in such a way that, at a non-
degenerate dead point, =¥, we do not need to verify the optimality conditions corresponding
to soaring single-dropping directions (u; > 0, ¢ € S*(z*) and w; < —v%, i € S~ (z*)), so that
we would never consider such single-dropping directions in order to establish whether z* is
optimal. This is reasonable since we are looking for a local minimum. The line search step
(step 6) will be modified similarly: when we encounter a breakpoint  on a fault along a
direction d € S(z) (jump up), we stop and if d is such that —d € S(z), (jump down), we
carry on to the next breakpoint, and update properly the directional derivative along d. \We
first need to define a decomposition of a discontinuous function at a point on a fault.

4.2 Decomposition

In the non-degenerate case, we can always find a decomposition of a continuous piecewise
linear function f such that the change of the nonsmooth part of f in a single-dropping
direction, d, can be written as the dot product of d with a multiple of the gradient of the
activity to be dropped. The proof of this fact was based on the continuity of f, as we saw
in the proof of the decomposition theorem (theorem 1). This is what enabled us to isolate
the effect of each activity, yielding an optimality condition corresponding to each of the
possible single-dropping directions. Apart from the fact that it relies on the scalars {u,}i¢a,
each of these conditions was independent of the activities other than the one being dropped.
Nevertheless, in the discontinuous case, when al z — b; is a fault at a non-degenerate point,
%, there is in general also a way to define a decomposition, g, {v'}:iea, of f at & so that when
we drop @ € S*(&) positively or i € S~(&) negatively (i.e. in a non-soaring single-dropping
direction), the change of the nonsmooth part of f can be expressed as the dot product of
the single-dropping direction with a multiple of a;.

Note that if 7 € R is a positive fault at some point Z, and a negative fault at some other
point # on the same segment (i.e. o(Z) = ¢(&)), R, then, in practice, we shall consider R
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Figure 6: Graph of a function having a contact point z.

as divided further into two segments. To do so, we can introduce another (artificial) ridge,
al'z — by, the sign of whose residuals will be used in order to know to which segment belongs
an iterate ¥ € R. Note that one has to be careful at a “contact” point z. € IR (defined
below) such that alz — by = 0. At z, contrary to at some other points of R, we can drop
activity ¢ both positively and negatively.

The function f: IR? — IR, given by

—z, otherwise, (25)

f(.r)-_-{ 2z, ifxz;>0o0r (z; =0 and z; <0),

illustrates well the situation. Figure 6 shows the graph of f in a neighbourhood of z. =
(0,0)7. We introduce the artificial ridge

agm—boza;g:O,
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so that the fault x; = 0 is partitioned into three segments according to whether oz — b, is
positive, negative or zero. The point . is a contact point with respect to the fanlt z; = 0.

(The choice of a particular vector ag for an artificial ridge is rather arbitrary but necessary.
Note however that for the contact points present in the applications of [13], we do not need
to introduce such arbitrary ridges, as we can use existing ridges of the objective function to
characterize the points of a fault from which the fault could be dropped hoth positively and
negatively.)

Formally, we define ., € IR" to be a contact point of f with respect to 1 € A(x.), when
i € F(z.) such that either

1. i € F*(z,) N F~(x.), or

2. there exist o*,0~ € 3Rl such that o =1, 67 = —1 and
li T) = lim
xﬂzc.;f{}c)=o+ f(T) r—rc,0i(z)=0" f((lf)

(continuity when crossing ridge i, which is a fault, at z.).

We term & € IR" a non-contact point of f when % is not a contact point of f with respect
to any ¢ € A(z.).

Note that the fault z; = 0 and the point z. = (0,0)7 satisfy both conditions 1 and 2
in the above definition of a contact point for the function f defined by (25). They however
satisfy only condition 1 for the function f : IR? — IR, defined by

ifry > 0and z, > 0,

if z; <0 and z, <0 and z # (0,0)7,
if £y > 0 and z; < 0,

otherwise.

f(z) =

WD =

For the function f : IR*> — IR given by

ifzy >0 and z, <0,
otherwise,

@ ={ 57

they satisfy only condition 2 (F~(z.) is empty).

For the function f defined by (25), we have the following trivial “decomposition” (we
shall define it shortly for the discontinuous case) at the point § on the fault z; = 0 (see
figure 6) such that al'§ — by is negative:

f(z) = f(§) + g5 (z — §) + v; min(0,a] (z — §)), (26)
for all z & S(3) + g, where
a =(1,0), g; = (0,2)7 and u; =0.

Since {z € IR* : z & S(J)+9} is simply the set of points z satisfying: a] z —b, > 0, the scalar
v} is clearly meaningless and superfluous (since in (26), min(0, al(z — §)) is always zero for
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such points). This “decomposition” simply gives the bchaviour of f (equation (26)) for every
point z in the neighbourhood of § such that £ — § is not a soaring direction from 7. An
algorithm similar to the one introduced in the continuous case, but which does not consider
soaring single-dropping directions, will encounter no difficulty with the discontinuity in f
at any non-contact point (i.e. for (25) at any point other than z.). We shall see that the
fact that the decomposition is undefined for the z’s such that z — Z is a soaring direction
from a point &, will not affect our method (we never consider the soaring single-dropping
directions). The ridge z; = 0 is a negative fault of f (figure 6) at the point §. It can only
possibly be dropped positively (negatively we would “jump up” the fanlt). Thus, if § were
a dead point, we would only verify whether the optimality condition #; > 0 is satisfied in
order to see if dropping the fault x;y = 0 yields descent. Note that at the contact point,
z. = (0,0), the fault could be dropped either positively or negatively as none of the two
single-dropping directions, (1,0)7 and (—1,0)7, from z. are a soaring direction. At a point
% on the fault such that al 2 — by is positive, we can also “decompose” f exactly as in (26),
with, this time, g; = (0, —1)T, if we defined ridge 1 to be such that a7 = (-1, 0).

We assume that a (possibly) discontinuous piecewise linear function, f, is given under
the same form as in the continuous case, except that here, we assume moreover that at any
point & € IR", we can obtain F*(%) and F~ (), the set of the positive faults and the set of
the negative faults of f at .

Without loss of generality, we shall henceforward assume that at a given non-contact
point &, all the faults of f at & are negative faults at & (otherwise we could replace a; by
—a; and b; by —b;), that is to say F(%) = F~ ().

We now redefine the notion of decomposition at a point Z to take into account the
possibility of having & on a fault.

Definition 2 Let f : IR® — IR be a (possibly discontinuous) piecewise linear function with
ridges {al x — b;}ier, where R is a finite indez set, and let £ € IR™. Let gz € IR™ and vz be
a function defined on IR" such that we have:

f(x) = f(2) + g (z — &) + Ya(a), (27)

for all z € B(%) such that af(z — %) > 0, 1 € F(2&), for some neighbourhood, B(#), of %,
where
@)= Y vimin(0,a7(z - 2)
i€ A(2)\F(2)
for some scalars {V;},‘GA({C)\}'(I‘}).
We say that g:, {vi}ica@)r@) i a decomposition of f (into a smooth function and a
sum of functions having a single ridge) at z.

Based on this definition of decomposition of a discontinuous piecewise linear function f,
we say again that f is decomposable at ¥ when there exists a decomposition of f at &.
To illustrate, consider the discontinuous function f : IR? — IR:

Z ifz; >0,
—29+ 1 otherwise,

f(z) = min(0, 2y — z3) + |zo| + {
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which has the set of ridges {aTx — b;};er, where R = {1, 2,3},
a; = (1,—1)T, s = (0, ])T, az = (I,O)T, bl = b2 = b.’i = 0
Here is a decomposition of this function at = (0,0)T (note that F(&) = F~(&) = {3}):

f(z) = g;fa: + Z v min(O,aiT:r)
i€ A(2)\F(2)

for all z in some small enough neighbourhood of # and such that a7 (z — &) > 0, i € F(&)
(i.e. such that z; > 0), where

g: =(0,2)T »' =1 and »? = -2.

The decomposition theorem (theorem 1) and proposition 1 proved in the continnous case
still hold at non-contact points when referring to definition 2 (the case where Z is a contact,
point is discussed in [13], where all aspects of degeneracy and contact points are considered):

Theorem 4 (Decomposition—Discontinuous Case) Let f : IR" — IR be a (possibly
discontinuous) piecewise linear function with ridges {alz — b;}ier, where R is a finite index
set, and let & € IR" be such that F*(&) N F~(&) = 0. Without loss of generality, assume
that F(2) = F~(z). If {ai}ica(z), the gradients of the ridges of f which are active at &, are
linearly independent, then f is decomposable at T and the decomposition is unique.

Proof: The proof goes exactly as the proof of the continuous case (theorem 1), except
for the fact that we are now decaling with the points z in a neighbourhood of & such that
af(z — %) >0, i € (&), and the ¢/ € IR" are given for each J C A(Z) such that F(&) C J.
We use the continuity of f over

{z € N(&):dT(z - 2)> 0,1 € F(&)}
to obtain: for I,J C {1,2,...,m} such that F(£) CInJ,
d! = d] wheneverie INnJorie {1,2,...,m}\(JUJ)orm < i <n,
which is true if and only if for I C {1,2,...,m} such that F(¢) C I, and 1 <i < n:

dl _ d'{l,2 ..... m} ifZ e I,
N i otherwise.

Hence, for all y € IR™ such that y; > 0, i € F(%), we have
h(y) = Zdiyia
i=1
where
d' B { dl{l,Z ..... m} if y, 2 0’

a7 if y; < 0.
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Thus, as in the proof of theorem 1, we obtain, with
vi=dl® gt e (1,2, ,m) \ F(#)
f(z) = gTclM2eom} 4 > v min(0, a7 z), (28)
i€{1,2,..mN\F(%)
for all z in a neighbourhood of & such that af(z — &) > 0, i € F().

Hence, (28) is a decomposition of f at Z.
The proof of the uniqueness follows exactly as in of theorem 1. 0O

Proposition 2 Let f : IR* — IR be a (possibly discontinuous) piecewise linear function

with ridges {alx — b;}ier, where R is a finite index set, and let £ € IR" be such that
FHE)NF-(&) = 0. Without loss of generality, assume that F(2) = F~(&). Assume that
{ai}tica(z), the gradients of the ridges of f which are active at &, are linearly independent
and that, without loss of generality, f has the following form for all x such that ol (z — &) >
0, ¢t € F(&), in a neighbourhood of &:

fle) = f(@) + (e - &)T¢
whenever
al(z—%) > 0, ieJ
) < 0, 1€ A(2)\J,

for some ¢ € IR given for each J C A(%) such that F(£) C J.
{Ai}Then, CA(i)"{/\t};fA;(lj)\r(i) is the decomposition of f at &, where each of the scalars
i€ A(EN\F(2) 18 such that

and aT(:z: -7

/\za'_ = CJ.'—; _ CJ.',

for any given J; € A(&) such that i € J; and F(&) C J;.

Proof: We adapt straightforwardly the proof of proposition 1. Since f is decomposable
at Z, there exists some decomposition g, {V‘};GA@)\}-(@ of f at . Hence, for any F(i) C
J € A(%) we have
d =g+ Z viay,
kEA(2)\J
since
fle)=f(&)+gi(z—2)+ 3 v 'min(0,¢f (z - 1))
i€A(2)\F()
for all z € B(%) such that a7(z — %) > 0, i € F(&), for some neighbourhood, B(%), of i.
Thus, we can show that this implies ¢/=' — ¢/ = Ma;, for any F(&) € J C A(&) such that
1€ J\ F(%).
We then show that for an arbitrary point, #, of a small neighbourhood of # such that
af (3 — %) > 0,1 € F(z), we have:

f@)=f@)+@E@E-2)7AP+ 3 A'min(0,a] (3 - 2)).
1€ A(2)\F(2)
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Let

K = {i € A(z):al(z — %) > 0}.
Using the fact that F(&) C K, the rest of the proof then follows exactly as in the proof of
proposition 1. [

As in the continuous case, note that the decomposition constructed in the proof is valid
for any other point & such that o(Z) = o(Z), as long as we assume that artificial ridges were
introduced in order to avoid the situation where for a part of a segment we can only possibly
drop negatively, while on another part of the same segment we can only possibly drop it
positively (specifically, we include as many artificial ridges as necessary so that for any given
point & € IR", the vector o(Z) determines F*(&) and F~(%)).

4.3 Algorithm

Theorem 5 (Optimality Conditions—Discontinuous Case) Let f : IR" — IR be a
(possibly discontinuous) piecewise linear function with ridges {aTz — b;}icr, where R is a
finite index set, and let z* € IR" be a non-contact point of f. Assume linear independence
of {ai}icaz+) and, without loss of generality, F(z*) = F~(z*). Let g,-, {viYica \F(ze) be
the decomposition of f at x*. The point x* is a local minimum of f if and only if there exist
scalars u}, 1 € A(z*) such that

1. gz = Tic Ay Ui ai (or, equivalently, the reduced restricted gradient of f at x™ is null,
i.e. * is a dead point) and

2. For each i € A(z*),

(i) uf < —vi., if i g F(2%)
(it) ur > 0.

When z* is a dead point, condition 2 means that the directional derivative of f in each
single-dropping directions which is not a soaring direction, is non-negative.

Proof: The necessity of the first condition holding follows exactly the same argument
as in the continuous version of the optimality condition theorem (theorem 2). In order to
prove the necessity of condition 2 (i), let : € A(z*) \ F(z*). Consider moving from a dead
point z* to a displaced point z* + ad, where d satisfies ald > 0, k € F(x*). We have, for
a > 0 small enough:

f(z* + ad) = f(z*) + adT[g.- + > vE. ay).

k€A(z* \F(x*):af d<0

Using the fact that z* is a dead point and using d = d=, where d~ drops negatively activity
i (we indeed have ald~ > 0, for all k € F(z*), as ¢« € F(z*)), we obtain

f(a* +ad™) = f(z") — aluf +vio)lald"].

If we do not have u} < —vi., then z* is not a local minimum of f. We prove the necessity
of condition 2 (ii), by using rather a direction, d*, dropping positively activity z.
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Suppose now that both conditions 1 and 2 hold. Consider d € IR", an arbitrary direction.
We want to show that d is not a descent direction. This is clear if d € S(z*), thus we can
assume that d ¢ S(z*). But this implies «7d > 0, for all i € F(z*): for suppose that there
existed a fault ¢ € F(2*) such that a7d < 0. Then, by our convention on the definition of
the ridges (F(z*) = F~(2*)) and the fact that d & S(z*), it means that z* is a contact point
with respect to ridge ¢ (take in the definition (part 2) of a contact point, 0~ = o(2* + éd)
and o+ = o(a" + 6d), for § > 0 small enough, and d such that ald > 0,k € F(z*) and
a,.ch > 0). This contradicts the hypothesis that z* is not a contact point. Hence, using the
decomposition of f at z*, we have, for @ > 0 small enough:

flz*+ad) = f(z*)+ ad g, + Y viiag]
i€A(z*)\F (=*):aTd<0
= f(@)+a X (@ + 34,
4i€A(r‘)
since ¢* is a dead point, where

\ird { u;. if aiT(l <0 and: ¢ F(z*),

=1 0 otherwise.
Thus, by hypothesis and using the fact that a7d > 0 for all : € F(z*), we have
f(2™ + ad) 2 f(z7).
)

From these optimality conditions, we derive an algorithm for minimizing a (possibly
discontinuous) piecewise linear function, f : IR® — IR which is very similar to that for the
continuous case. Let {alz — b;};er be the ridges of f, where R is a finite index set. We
assume again that f is decomposable at each iterate and at each breakpoint encountered
in the line search. Moreover, we assume that at every iterate which is a dead point, the
gradients of the activities are linearly independent and that all points encountered in the
algorithm are non-contact points. In [13], we discuss the degenerate situation and how the
algorithm could be modified to take into account contact points.

We assume, without loss of generality, that at the kth iterate, z*, F(z*) = F~(a*).

Discontinuous Piecewise Linear Minimization Algorithm

The only step (from the continuous algorithm) which we need to modify is:

Step 4: For each i € A(z*):
Ifu; <0orw > —vi,, i & F(z*) (violated optimality condition), then go to step 6.
Otherwise, stop: z* is a local minimum of f.

The same finite step convergence result is valid, based on theorem 5.
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5 Nonlinear Case

Having given the framework of the decomposition developed in the (discontinnous) piecewise
linear case, one can consider adapting conventional techniques for nonlinear programming
for the general (possibly discontinuous) piecewise differentiable case, as we did above with
the projected gradient method for the (possibly discontinuous) piecewise linear case. Indeed,
the essence of the concepts introduced in sections 3 and 4 does not rest on the linear nature
of the problem.

In this section, we sketch the lines of the extension of our work to the nonlinear case.
We define a (possibly discontinuous) piecewise differentiable function f : IR™ — IR to be a
function whose derivative is defined everywhere except over a subset of a finite number of
sets of the form {z € IR" : r(z) = 0}, where r is a differentiable function. In the nonlinear
situation, we thus extend the concept of ridge to be a specified set {r € IR" : r(z) = 0}
containing points where the derivative of f is not defined, where r is a differentiable function
(we say also that r is a ridge).

We generalize the definition of decomposition at a point & € IR", so that it expresses the
first-order behaviour of a piecewise differentiable function in the neighbourhood of Z:

Definition 3 Let f : IR" — IR be a (possibly discontinuous) piecewise differentiable function
with ridges {r;}ier, where R is a finite indez set, and let & € IR". Let gz € IR" and 1; be «
function defined on IR" such that we have:
For all d € IR" such that Vry(#)Td > 0, i € F(&), there exists § > 0 small enough such
that:
F(& + 8d) = [(2) + 8gFd + 64(d) + O(8?),

where .
Yi(d) = Z v; min(0, Vr;(#)7d)
I€A(Z)\F(2)

for some scalars {v.}icaanr(a)-
We say that gz, {vi}ica@)\#() i a first-order decomposition of f (into a smooth function
and a sum of functions having a single ridge) at 1.

We would like to impose restrictions on a piecewise differentiable function so that the
nonlinearity of its ridges does not prevent the proofs of the decomposition theorem (the-
orem 4) and of the optimality conditions (which become first-order necessary conditions)
to be extended. For instance, in order to be able to adapt standard techniques for nonlin-
ear programming to the piecewise differentiable case, we must restrict our considerations
to functions having only a finite number of pieces (subdomains over which the function is
smooth) in the neighbourhood of a given point (in the piecewise linear case the finiteness of
the number of pieces was implied by the finiteness of the number of ridges). A whole class
of functions for which the nonlinear analogues of theorems 4 and 5 hold should remain. To
give an example, we would expect these results to apply to a function defined over IR? which
is quadratic over each of the subdomains delimited by a circle intersecting an ellipse in the
plane.
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In the remainder of this section, we briefly describe the main issues one should take
into account for the extension of our work to the nonlinear case—the general (possibly
discontinuous) piecewise differentiable sitnation.

In sections 3 and 4, the algorithm used descent directions attempting to decrease the
smooth part of the function while maintaining the value of its nonsmooth part. A first-order
algorithm for the nonlinear case could obtain these two objectives up to first-order changes,
as in the Conn-Pietrzykowski approach to nonlinear optimization, via a penalty function [14].

In the nonlinear case, the matrix of activities, A(&), has as its columns the vectors
{Vri(2)}iea@). A first remark concerns near-activities. In order to avoid zigzagging (see
an illustration of this in [8]) when dealing with nonlinear ridges, it is necessary to consider
projecting onto the tangent hyperplanes, not only when a ridge, r, is active at the current
point, &, but also when ||r(Z)|| is “small”. We consider a ridge, r, e-active at & whenever
[r(2)| < €, where ¢ is some tolerance (which may be reduced as we approach optimality). This
however causes a problem to make active the near-activities as we approach final convergence.
The direction of search is thus made up of two components: the projected gradient direction,
h*, is called the horizontal step in contrast with the vertical step,

vF = —A (M)A ()T A (2F))] 1 0 (2F + oFRF),

which attempts to make active the relevant ridges via a linearization (A.(z¥) has as its
columns the vectors {Vr;(z*)},c 4,(s+), where A.(z*) is the set of the ridges which are near-
active at the current iterate, x*; ® is the vector of (near-)active ridge values; and o* is
the horizontal step size). (In this context of near-activities, we can sce that degeneracy
cannot be disregarded for nonlinear problems. In nonlinear /; data fitting [2], for example,
we may expect many more near-activities than the number of dimensions of the problem if
the fit is good, particularly earlier on in many algorithms when ¢ may bhe relatively large.
Hence, degeneracy is very likely to occur in such a problem.) Moreover, in order to establish
whether an iterate is degenerate, we use a notion of linear e-independence, where € 1s some
small tolerance. For example, we can say that a vector v is linearly e-dependent upon a set
of vectors vy,..., v if ||P(ﬁ)|| < €, where P is the orthogonal projector onto the space
orthogonal to the space spanned by v,,...,v;.

The nonlinear line search algorithm presented in {7] (for the nondifferentiable exact
penalty function corresponding to a nonlinear programming problem) can be used here to
estimate the location of a possible minimum breakpoint along the search direction (in the
nonlinear case, the minimum along a search direction need not be a breakpoint). Moreover,
one would expect an efficient line search to only find points of sufficient decrease rather than
finding the minimum along the line.

The above-mentioned considerations would yield a method converging directly to a local
optimum (global convergence), but possessing (in general) only a linear convergence rate
(see [14]).

In order to develop a second-order algorithm, assuming now that f is (possibly discontin-
uous) piecewise twice-differentiable (i.e. twice differentiable everywhere except over a finite
number of ridges), one must first extend the definition of first-order decomposition to that
of second-order decomposition.

One could then consider extending the strategies used by Coleman and Conn [7] on
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the exact penalty function approach to nonlinear programming (although the exact penalty
function involves only first-order types of nondifferentiabilities—ridges). The main idea is
to attempt to find a direction which minimizes the change in f (up to second-order terms)
subject to preserving the activities (up to second-order terms). Specifically, second-order
conditions must be derived [which are the first-order conditions plus a condition on the “def-
initeness” of the reduced Hessian of the twice-differentiable part of f (in the second-order
decomposition of f)]. An analogue of the Newton step (or of a modification of Newton’s
method, see [22]) using a non-orthogonal projection [9] is then taken (or a single-dropping
direction is used). An algorithm following these lines would be expected to possess global
convergence properties (regardless of starting point) and a fast (2-step superlinear) asymp-
totic convergence rate as in [6].

6 Conclusion

We introduced in this paper the concepts of the decomposition of a function into a smooth
part and a nonsmooth part, and the decomposition theorem, which states that a decomposi-
tion always exists at non-degenerate points and explicitly gives the decomposition. Optimal-
ity conditions and a descent algorithm have then been inferred from the decomposition of
the function. Easy generalization of these ideas to the discontinuous situation then followed
in section 4 by restricting the decomposition of the function to non-soaring directions (at
non-contact points). We have hence set a framework for an algorithm dealing directly with
discontinuities that could be involved in a non-differentiable optimization problem.

Comparison of our work with recent developments in nondifferentiable optimization, for
example Lemaréchal’s bundle methods [29] or composite nonsmooth optimization algorithms
(see [18]), deserves attention in future work. Particularly, it should be interesting to com-
pare Clarke’s more theoretical approach stemming from convex optimization theory and
nonsmooth analysis [5], with that introduced in this paper, which is based on methods more
oriented to numerical implementations and on practical considerations.

In the second part of this work [13], we discuss the implementation of our algorithm.
Namely, we tackle the problem of degeneracy and contact points. We also present encour-
aging numerical results.
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