N

N

Asynchrony and the Pi-calculus
Gérard Boudol

» To cite this version:

Gérard Boudol. Asynchrony and the Pi-calculus. [Research Report] RR-1702, INRIA. 1992, pp.15.
inria-00076939

HAL Id: inria-00076939
https://inria.hal.science/inria-00076939
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00076939
https://hal.archives-ouvertes.fr

N

UNITE DE RECHERCHE
INRIA-SOPHIA ANTIPOLIS

Institut National
de Recherche
en Informatique
- eten Automatique

=~ Domaine de Voluceau
Rocquencourt
-BP105
78163 Le Chesnay Cedex
France

- T8:(1)39635511

Rapports de Recherche

1992

S niversaire

N° 1702

Programme 2
Calcul Symbolique, Programmation
et Génie logiciel

ASYNCHRONY AND THE
n-CALCULUS
(Note)

Gérard BOUDOL

Mai 1992







Asynchrony and the 7-calculus

(Note)

Un m-calcul asynchrone

(Note)

Gérard Boudol
INRIA Sophia-Antipolis
06560-VALBONNE FRANCE

Abstract.

We introduce an asynchronous version of Milner’s r-calculus, based on the idea that the messages
are elementary processes that can be sent without any sequencing constraint. We show that this
simple message passing discipline, together with the restriction construct making a name private for
an agent, is enough to encode the synchronous communication of the r-calculus. As a consequence,
our asynchronous r-calculus also contains in some sense the A-calculus.

Résumé.

Cette note propose une version asynchrone du 7-calcul de Milner, fondée sur I'idée que les messages
sont des processus élémentaires qui sont émis sans contrainte de séquencement, Nous montrons que
cette transmission de message trés simple, alliée 3 la construction qui rend un nom privé pour un
agent, est suffisante pour dériver la communication synchrone du n-calcul originel. Ainsi notre
calcul contient-il aussi d’une certaine maniére le A-calcul.



Asynchrony and the r-calculus

(Note)

Gérard Boudol
INRIA Sophia-Antipolis
06560-VALBONNE FRANCE

Abstract.

We introduce an asynchronous version of Milner’s 7-calculus, based on the idea that the messages
are elementary processes that can be sent without any sequencing constraint. We show that this
simple message passing discipline, together with the restriction construct making a name private
for an agent, is enough to encode the synchronous communication of the w-calculus.

1. Introduction.

The purpose of this note is to introduce an asynchronous variant of the 7-calculus of Milner, Parrow
and Walker [8]. The n-calculus is an extension of CCS, based on previous work by Engberg
and Nielsen (5], that deals with name passing: in this calculus, agents pass channel names to
other agents through named channels. The expressiveness of this link passing discipline has been
demonstrated in [8] by a series of examples. Later on, Milner showed in [9] that even a restricted
fragment of the original 7-calculus is enough to encode the A-calculus. More precisely, he showed
that one can mimic in a “mini” 7-calculus two reduction strategies for A-terms, namely the lazy
evaluation of Abramsky [1] and a weak version of the call-by-value evaluation of Plotkin {11].
This establishes that with the link passing discipline one has, to some extent, the power of passing
agents as values.

It will be shown here that the “mini” w-calculus can be further reduced without affecting its
expressive power. To introduce our version, let us recall some of the basic features of the original
m-calculus, using the notations of [9] and [10]. To build 7-agents, one presupposes an infinite set
N of names, ranged over by z,y, z, ... The most elementary agents are the guarded processes g.P,
where the guard g may be of one of two kinds:

(i) aninput guard z(y), in which case the guarded agent z(y).P waits for a name to be transmitted
along the link named z. In this construct the name y is bound, and the agent z(y).P can receive
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any name z, to be substituted for y in P, yielding P[z/y].

(i) an output guard Zz, in which case the agent T2.P sends the name z along the link z, and then

triggers P.

A communication may occur between two concurrent processes when one sends a name on a partic-
ular link and the other is waiting for a name along the same link. Denoting by (P | Q) the parallel
composition of two agents, a communication is the interaction between a sender Z2.5 and a receiver
z(y).R, represented by the transition:

(z2.5 | z)-R) — (S| R[2/y))

This is typical of a synchronous message passing discipline, where the send operation is blocking:
an output guard cannot be passed without the simultaneous occurrence of an input action.

One may argue that synchronous message passing is not very realistic as a primitive. Indeed,
it is quite well-known that synchronous communication can be “implemented” in the more basic
asynchronous message passing discipline, by means of a “mutual inclusion” protocol where the
sender waits for an acknowledgement. Moreover, synchronous communication has still the flavour
of passing an agent in a communication: the sender Zz.§ not only transmits the name z, but
also gives an implicit continuation to the subprocess 5. Using asynchronous communication, this
continuation should be passed explicitly. This is exactly what we shall do here.

To explain the modification we shall propose on the w-calculus, let us return to the three
characteristic features of synchronous message passing. The first one is that the input prefix is a
(blocking) guard. This is a sensible assumption (typical of a weak, or lazy strategy of evaluation),
since the future behaviour of the agent R in z(y).R may depend on the actual value received for
y. For instance if R is §v.R’ or y(u).R' then, depending on the link name received for y, this
process will be able to communicate with different other agents. The second feature of synchronous
communication is that a communication is an instantaneous interaction, that is a rendez-vous
between several partners. Again this is a reasonable assumption, even in an asynchronous setting:
for instance reading the value of a shared variable or getting the first available item from a buffer
involves the participation of a receiving process and of a communication medium. The last feature
of synchronous communication is that the sending operation is also a blocking guard. This means
that the sending process is not allowed to continue before its message has been received, by a
possibly distant agent. We shall not stay with this assumption here: output guards will be derived
from lower-level constructs. This is the only modification we shall make on the 7-calculus.

Usually, in asynchronous parallel programming languages, the messages are handled by means
of communication structures, like buffers or mailboxes, in which they are stored. In the asyn-
chronous w-calculus we propose, the communication media are just the (channel) names. However,
we shall not give any particular status to these communication media. Instead, we shall regard the
messages themselves as elementary agents, freely available for other processes waiting for them.
This fits in very well with the idea of a chemical abstract machine of [2] for describing the evalu-
ation process in the w-calculus. In this model, the state of a system of concurrent agents is viewed
as a “chemical solution” (formally: a multiset of agents) in which floating “molecules” can interact
with each other according to “reaction rules”. In this setting, a message, that is a name z sent
along a link z, will be just a particular molecule Zz floating in the solution. This message can
be received, or more precisely consumed by any agent z(y).R floating in the same solution. The
result of this interaction is a solution containing R[2/y] in place of the message Zz and the receiver
z(y).R.



Formally, all this amounts to restrict the formation of a term Z2.P in the w-calculus to the
case where P is the “nil” process. But in fact we no longer need the “nil” agent, nor the guard
notation g.P, since we shall not use any notion of “action”. The syntax of our (mini) asynchronous
w-calculus is thus:

P = Zz | z(pp)P | (P|P) | 'P | (wn)P

where z,y, z stand for names of A, ! P is the replication construct of [9] and (vz)P is the notation
of [10] for the restriction (or scoping) construct, denoted (z)P in [8,9]. In the next section of
this note we shall develop the “chemical” semantics of this calculus. Then we will show how to
encode Milner’s (mini) m-calculus in our asynchronous calculus, using a simple protocol to achieve
synchronous communication.

Related Work.

In the paper [7] Honda and Tokoro present a calculus which is nearly the same as the one intro-
duced here. They also indicate how to encode synchronous communication in the asynchronous
m-calculus, in a more complicated way than I will propose here, however. Moreover, the semantical
perspective adopted here is different from the one of [7]: instead of bisimulations, we shall use
Morris’ extensional operational preorder. This involves defining a notion of observability of closed
terms of the calculus, which is a direct adaptation of the observability of A-terms. We shall prove
here that the translation we propose from the synchronous w-calculus to the asynchronous one is
adequate with respect to this semantics.

2. The asynchronous r-calculus.

In this section we introduce, using a chemical abstract machine, a notion of reduction of processes
of our calculus. To this end, we first have to say a few words about substitution. As we said, the
input prefix z(y) acts as a binder for the name y. Similarly, the name z is bound in the term (vz)P.
Then, as usual, substituting a name y for a name z in a term P, yielding P[y/z], may require to
rename some bound names to avoid binding y. We shall use fn(P) to denote the set of free names
of the term P; we do not give the formal definition, which is obvious.

Let us now recall briefly the basic concepts of the chemical abstract machine (or CHAM); for
more details, the reader is referred to [2]. The state S of a chemical machine is a “solution”, that
is a finite multiset of molecules. We shall use m, m’. .. to range over molecules, and we denote by
{mi, ..., mk|} finite multisets of molecules. The union of two multisets is denoted S & S’. In any
CHAM, a solution, encapsulated within a “membrane”, can itself be considered as a single molecule.
However, we shall not use any specific symbol to denote the membrane: in fact it will be simply
represented by the brackets {| and [} enclosing a multiset of molecules. In the CHAM that we are
defining for our asynchronous w-calculus, the molecules are given by:

(i) any term P of the calculus is a molecule;
(ii) any solution & = {{my,...,mk[} is 2 molecule;
(iii) if m is a molecule and = a name then (vz)m is a molecule.

For instance if P and @ are terms of the calculus, (vzyvy){| P, Q |} is a molecule. We shall use a
context notation m[S] to denote a molecule containing a sub-molecule S which is a solution.

The behaviour of a CHAM consists in state changes, described as transitions § = S’. These
transitions are given by means of axioms and rules. The axioms are specific to each CHAM describing
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the operational semantics of a particular language. They are of the form:

{lmla"'amnl}:} {Imlham;gl}

Such an axiom means that if the molecules m,,...,m, are floating in a solution § then a transfor-
mation of this solution may occur, resulting in a new solution &’ where these molecules have been
replaced by mj,...,m}. This is formalized by stating that for any CHAM the following inference
rule, called the chemical law, holds:

S=> S

(chemical law)
SyS"=>8'ys"

There is another general law, called the membrane law, which asserts that transformations of
solutions may occur within molecules:

S= S
{Im[S]l} = {m[S]}

(membrane law)

These are the only two inference rules we shall use here. Regarding the axioms for transforming
solutions, we distinguish three different kinds. The first kind of axioms is that of heating transfor-
mations. They usually take the form {{m|[} = {{m{,...,m} [}, and break a complex molecule into
simpler ones. For these transformations we use the symbol — instead of =. Conversely, simple
molecules can cool down to complex ones. These cooling transformations usually take the form
{my,...,mnp[} = {m'[}, and we shall use the symbol — for them. Most often, these transforma-
tions are reversible, and in this case we will denote by

{{mi,...,m. [} = {my,...,m; [}

a pair of inverse heating and cooling transformations (where, in general, n = 1). Finally the
third kind of specific transformations is the one of reactions. Usually these transformations are
irreversible; we shall use the symbol — for them. By abuse of notation, we shall also use the
symbols —, — and — for state changes, so that => is the union of these three relations. As usual
= denotes the reflexive and transitive closure of =. From now on, we shall systematically forget
about the outermost brackets {| and [} enclosing a solution.

Now we describe the specific transformations of the CHAM for our asynchronous =-calculus.
The presentation that follows is a slight variation of the one given in [2] for the (mini) 7-calculus
of Milner [9]. There is only one reaction rule, formalizing the consumption of an available message
by a receiver:

(P, Tz Plz/y (reaction)

All the other axioms for the #-calculus are reversible heating and cooling transformations, intended
to prepare communications, or conversely to restore an agent. The first transformation consists in
breaking a compound agent into parts, which are then allowed to freely “move” in the solution:

(P|Q)=P,Q (parallel)

Similarly, a replicated agent ! P releases copies of P in the solution:
\P=P, P (replication)
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For instance, if we consider a “sender”, that is a process of the form (Zz | S), we can see that
by heating a solution containing it, we make the message Zz available for other molecules in the
solution:
ey (T2 8)y.. = T2, 5,

The remaining rules deal with the scoping construct (vz)P. Intuitively, the binder (vx) restricts
the scope of the name z, by making it private to the agent P. In particular, the process (vz)P is
only allowed to communicate with its environment on channels different from z. However, internal
communications may occur within the restricted agent. This is achieved in the CHAM by opening
a new sub-solution for the restricted agent:

wa)P = wxz){ P} (scoping membrane)
For instance, applying the previous transformation rules we have the following transitions:
wo) (2R | 22) = wo{ (s R | 22) |}
= wz) |z R, T2}
= wa){| R[z/y) |}
= wz)R[2/y)

To allow a restricted process (vz)P to communicate externally on channels other than z, there is a
transformation called scope migration (cf. [8]):

(w2)P| Q) = wz)(P|Q) (z not free in Q) (scope migration)

A typical use of this transformation is to prepare the sending of a private name, for instance by an
agent like S = (v2)(Zz| S’), to another process which then falls in the scope of this name. Not only
the receiving process acquires the name, but it also acquires the exclusive right of communicating
on this channel with the sender. For instance, we have:

(Plaw)R)|S) = P, (zw)R|S)
= P, wa(zyR|(z2|S") (2 ¢ fn(R))
= P, wo{zwR, £z, §'|}
— P, wa{ R[z/y], S|}
= (P|wa)(R[z/y]| $")

In general, in order to apply the previous transformation, one needs to make the private name
different from any other name occurring in the environment. Then our last tranformation rule is:

(vz)P = (wy)Ply/z] (y not free in P) (name conversion)

Summarizing, the specific transformation rules of the CHAM for the asynchronous 7-calculus are
displayed in the following table:

yP,Tz — P2y (reaction)
(P1Q) = P,Q (parallel)

'P = P,!P (replication)

wz)P = wa){| P} (scoping membrane)
(v )P |Q) = wx)(P|Q) (z not free in Q) (scope migration)
wz)P = (wy) Ply/z] (y not free in P) (name conversion)




To execute a process P, we start from the solution Sy = {| P [}, and perform transitions. It is easy
to see that for any solution S there exists a term @ such that S = {1 @ |}, therefore we shall also
use the symbols —, — and — to denote transitions between terms. More precisely, we shall say
that:

(i) Q and R are structurally equivalent whenever ¢ = R;

Ed

(ii) the term @ reduces to R, in notation Q > R, whenever @ == R.

Our structural equivalence is slightly less generous than the one used by Milner in [9]. To recover
this equivalence we should at least add the following two axioms:

wz)yP = P (z not free in P) (scope extinction)

wvayvy)P = wyywx)P (scoping exchange)

We denote by = the resulting extended heating and cooling equivalence, although this equivalence
still does not coincide with the one of [9], because it is not a congruence (in general, we do not
have P=Q = z(pP=zwy)Qor P=Q = !P =!Q for instance).

3. Encoding the synchronous r-calculus.

In this section we show how to encode the synchronous (mini) 7-calculus of [9] in our calculus.
The syntax of the synchronous calculus is given by the grammar:

P uz O | %zP | zw).P | (P|P) | P | wo)P

where z,y, z stand for names of A, and O denotes the “nil” process. In this section we call respec-
tively m,-calculus and m,-calculus the asynchronous and synchronous versions of the w-calculus.
The CHAM for the m,-calculus is almost the same as the one of the m,-calculus. Apart from the
fact that the terms involved in the molecules are 7,-terms instead of m,-terms, the only change
concerns the reaction rule. This rule for the 7,-calculus is, as indicated in the introduction:

zy).P,%2.Q — P[z/y],Q (ws-reaction)

One can immediately note that, since the “nil” process O is “inert” (there is no rule for it), one
ma& regard the m,-calculus as a sub-calculus of the m,-calculus, where Zz is an abbreviation for
F2.0, and 2(y)P stands for z(y).P. Alternatively, we could have used the same syntax for both the
7, and 7w,-calculi, defining the asynchronous operational semantics by adding the rule:

Fz.85=3%z,5

However, we wanted to emphasize the fact that the restricted m,-calculus is enough to encode
synchronous communication.

The translation we shall give from the 7, to the 7,-calculus will be shown to be adequate. To
explain what this means, let us first give some general definitions. Any given language L induces a
notion of context: an L-context is a term C written using the constructs of the language L, to which
is added a special constant [}, the “hole”. Putting a term P of L into the holes in a context C gives
a term denoted C[P]. Note that in languages involving binders, like the A-calculus or the 7-calculi,
some free names of P may be bound by the context. We shall say that the context C closes the
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term P if C[P] is closed. Unlike in the A-calculus, where contexts of the form Az;---z,.[J may
be used to close terms whose free variables belong to {zi1,...,z,}, there seems to be no obvious
canonical way of closing 7-terms. Using contexts of the form (vzy) - -- (v2n)[] would be absurd, since
this would in general build deadlocked terms, like (vz)z(y)P or (vx)Z2.

In fact, we shall use a notion of closedness w-term which is different from “containing no free
names”. Instead, we shall say that a m-term P is closed whenever it does not contain free messages.
This means that if P contains a subterm Zz (in the m,-calculus) or Z2.5 (in the ms-calculus), then
both the channel name z and the object name z must be under the scope of some binder. In other
words, only the channel names z of the input guards z(y) may occur free in a closed term. For
instance (v2){2(y)y=2) is closed, and a canonical way of closing a term whose free names belong to
{y1,-.-,Yn} Is to put it in a context z,(y;) -+ Tn(yn) [}

Now contexts may be used for testing operationally the terms of the language. We shall say
that a term P passes a test C successfully whenever the program C[P] converges, in notation C[PJ{.
In the A-calculus, this simply means that C[P] has a normal form, with respect to some reduction
strategy (see for instance [1] and [4]). However we do not regard this as a convenient notion
of convergence for the w-calculi: here, as in [4], our criterion for convergence, or observability
(see [10]), is the ability of being ready for a communication, possibly after some reduction. Then
for instance “deadlocked” terms, or more accurately inaccessible agents like (vz)z(y)P or (vz)Zz
though irreducible, will not be regarded as convergent ('). Moreover, some terms which do not
possess any normal form will be considered as observable. Indeed, we shall regard a closed term
(P | Q) as convergent if P is convergent. We shall define this notion only for closed terms, so that
convergence is the ability of accepting some input, exactly like in the lazy A-calculus of Abramsky
[1] or in the calculi for parallel functions of [4]. We first define the immediate convergence of
closed terms on a particular channel name z, in notation P | z, to be the least predicate satisfying:

(i) z(pP |z

(P]Q)lz and
(i) Plz = S (Q|P)|l2 and
P lz

(iii)y Plz &z £y = wyP|z.
This definition holds for m,-terms as well as for ms-terms (introducing a dot in the input guard).
One should remark that immediate convergence cannot be destroyed by reduction: if P is a closed
term such that P | z then P - wazy) - wea)(z@R | Q) with = € {z;,...,2,} and, since P is

closed, there is no free message Zz in @, therefore if P> P’ we have P’ = wzy) - wz)(zyR|Q)
with Qo*Q’. Then a closed term that is immediately observable is a kind of “partial normal form”,
as in [4]. Now the convergence of closed terms is defined by:

Pl ©qer BQB.’L‘EN Po*Q & Qlz

We shall use indexed symbols |, and |}, for convergence in the 7, and m,-calculi. It is easily
checked that convergence is preserved by structural equivalence, that is

P=Q&Ql > Py

(*) one should note that our notion of convergence will therefore be different from the one used
by Milner in [9].



One should also note that

P=Q&Qy = Py

The semantics we shall use here for any language L is the extensional operational preorder of Morris
(see [1,4]), also called testing preorder (%), defined by:

PCLQ ©4er VC closing P and Q. C[P]} = C[QM

For the 7, and m,-calculi we shall use respectively the symbols C, and C,, and we denote by ~,
and ~, the associated equivalences, which are obviously congruences. Finally we shali say that an
interpretation [.] of the terms of L into some domain, pre-ordered by <, is adequate if and only if
any operational discrimination that can be made is reflected in the interpretation, that is:

[PI<[Q] = PCL@Q

Our aim now is to show that there is an adequate interpretation of the synchronous 7-calculus into
the asynchronous 7-calculus, equipped with the testing preorder.

To this end, we have to simulate synchronous communication in the m,-calculus. Let us consider
an example: suppose that we wish to build a system behaving like the 7 -agent (Zz.5 | z(y).R).
In the asynchronous calculus the sending agent would be written (2| S), but we have to prevent
the subprocess S from being active until the message Tz has been actually received. Then an idea
is to guard the agent S by the reception of an acknowledgement, that is an explicit continuation,
writing the sender as:

S' = (Zz | wwS)

assuming that v is not free in 5. Symmetrically, the receiver would send the acknowledgement just
after having received z along z, that is:

R' = z(y)(av| R)

(provided that u is not free in R). Unfortunately, we cannot apply this simple transformation
independently from the context, since in this synchronization protocol there is no particular relation
linking the communication channel z with the synchronization channel u. This last name should
be known only by the sender and the receiver, while here it can be used also by the environment to
interrupt the communication between S’ and R’. For instance S’ may accept a message on u from
the environment.

To achieve a non-interruptible synchronization, we shall use a more elaborate protocol, in
which the sending and receiving agents first exchange private links before performing the actual
communication. The key observation is that, due to the restriction, in a sender like

wu)(Zu | wv)S)

the subprocess u(v)S cannot proceed unless the message Zu has been received by some other agent.
Moreover, the channel name u will serve as a link only between u(v)S and the receiver of Zu. Using

(?) this should not be confused with the testing preorders of Hennessy [6] and Boreale & De Nicola
(31, which are far more discriminating.
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this remark, we may now define our translation from the =,-calculus into the m,-calculus:

[O] = wa) w23z
[zz.P] = wuw)(Zu | uw)(vz | [P])) (u, v not free in P)
[zy). P] = z(uywv)(Tv | vy [P]) (u, v not free in P)
[P1Q1= (P11 1QD
[P =1[P]
[wa)P] = wa)[ P]

Some comments are in order. Note that in the coding of the guarded terms Zz.P and z(y).P the
channel z is first used to exchange a private name u, the meaning of which is that the receiver will be
engaged in a rendez-vous with the sender. Then the receiver sends back a private acknowledgement
v on u, confirming the rendez-vous. Only after these “formalities” the actual transmission of z may
occur, on the name v which is only known by the sender and the receiver. One should also note
that the translation respects the free names, that is fn([P]) = fn(P), and that [P] is closed if and
only if P is closed. It should be clear that the following holds:

P=Q = [P]=]@Q]
We are now ready to establish the announced result:

THEOREM. The translation [.} from the r,-calculus to the m,-calculus is adequate, that is, for
any ws-terms P and Q:

[Plc.[@) = PC.Q

PROOF SKETCH. We first show the computational adequacy of the interpretation, that is:
VP closed P, & [P}, (1)

Suppose that [P]},, that is there exist w € A and @ such that Q | w and [P]>* Q. We proceed
by induction on the length of this reduction, showing that there exists Q' such that P " Q' and

Q' | w. If this length is 0, that is [P] = Q, then we have [P] | w, and it is easy to see that this
is equivalent to P | w. Otherwise, since there is a reaction occurring in [P], one may check that
there exist £, S and T such that

[P]= wen - wzn)((lz-RY| 25D | T])
and the first reaction occurring in the reduction [P]o* Q is an interaction between [z(y).R] and

[22.5]. Then if we let R’ = (vv)(Tv|v(y[R]) and S’ = u(v)(9z|[S]), that is [z(y).R] = z(v)R' and
[22.5] = ww)(ZFu | S'), the first interaction between [z(y).R] and [Z2.5] is:

(lew).R] | [22.5]) = ww(zwR' | (Fu| 5) (u not free in R)
> wuw)(R'|S"
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with
wa1) - wz)(ww(R' | ') | [T]) »* Q

If this reduction sequence consists in reactions occurring only within [T] then

*

Q = way)---wz)(ww(R'|S) | T')

with [T]o* T" and T' | w with w # z; for any 4, therefore by induction hypothesis there exists 7"
such that T'o* T" and T" | w, and we have

P = wzy)- --(z/:z:,,)((a:(y).R | 2.5) | T)
p" ey - wza) ((R[2/y) | )1 T")

Otherwise we have:

wu)(R'| S') = wwwv)((Zv | vyR]) | ww)®z|{S])) (v not free in §)
> wuwwv)(vR] | (92][S]))

with
wa) - waw) (wuwo (owE] | (321 [SD) 1 17]) »* @

If this reduction sequence consists in reactions occurring within ({S] | [T]) then we conclude as in
the previous case. Otherwise we have:

v

wuwywu) (vpiR] | (8z2][S])) wwyw)([RY[2/y] | [S])

(IR)[=/y} 1 ISD) (u, v not free in R, §)

with
wan - waw (wueoRIE/ 15D | 121) o @

Here again this implies that P converges on w.
The converse implication, that is P}, = [P]y, is shown in an entirely similar manner. This

direction of the computational adequacy property is in fact easier to prove.

A second step in the proof of the theorem consists in showing that the translation is compatible
with the constructs of the m,-calculus, that is:

[P] G, [Q] = VYC m,-context [C[P]] C. [C[Q]] (2)

To prove this point, we first remark that, since the translation [.] is defined in a compositional
way, there exits a m,-context C' such that [C[R]] = C'[[R]] for any R. Now assume that for some
ma-context C" we have C"[[C[P]}] = C"[C'[[P]]]}4. Then C"[[C[Q]]}] = C"[C'[[Q]] ]} follows
from the hypothesis [P] C, [Q].

Clearly, combining the points (1) and (2) above, we have shown the adequacy of the translation
of the m,-calculus into the 7,-calculus @
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4. Conclusion

To conclude this note, let us briefly discuss the calculus we introduced and its semantics. It has
been very often argued that the kind of testing semantics we use here is too weak for dealing with
non-deterministic computing systems. Indeed, it is good to have an intensional semantics — like the
one provided by bisimulation equivalences ~ for debugging purposes for instance: when a program
does not behave as one thinks it should, one needs some means to analyze its behaviour. However,
it is striking that for sequential systems, and in particular for the A-calculus, a semantic theory
based on a weak notion of observation has been very successfully developed. The main point here
is that divergence is not observable. For distributed systems this assumption also makes sense: one
may think that there is no reason for assuming that a user can observe the failure or divergence of
a component, if he is not compelled to communicate with it. Then the following could be a sensible
semantic equation:

(PI)="P
where  is a closed, non-convergent process. Note that if we define an internal non-deterministic
choice (P & @) by:
(P& Q) =der wu)((vv)iv | wz)P | uy)Q)
where u, z and y do not occur in P and @, then we also have (P @ Q) = P.

At least it is worth investigating the testing semantics for calculi of concurrent systems. This
has been done by Abramsky [1], and also in [4], for extensions of the A-calculus to parallel
functions. An especially important question here is whether a given interpretation of a language
into another language or an abstract model is fully abstract, or fully adequate, that is:

[(Pl<@Q] « PCL@Q

As Milner shows in [9], the encoding of the A-calculus into the w-calculus is not fully abstract:
the latter provides more discriminating power. One can interpret this either as a weakness of
the A-calculus, or as an indication that the primitive concepts of the w-calculus are perhaps too
intensional. This question needs further investigation. On the other hand, one could probably prove
that the translation of the synchronous w-calculus into the asynchronous one is fully abstract, that
is:
[PIC.[Q] & PC,Q

However, one should not draw the conclusion that the two languages are essentially the same - the
asynchronous calculus being a little more primitive. As a matter of fact, the synchronous calculus
is still more powerful. To wit, there is no way in the 7,-calculus of testing a difference between
the two terms Zz and (Zz | z(y)§2), while they are easily distinguished as m,-terms, by the test
wz)w2)([ | Zz.w(v).0). As it were, even the synchronous calculus may appear a little too weak as
it is now. In particular, the matching primitive [z = y]P of [8] could be useful for relating the
testing semantics to a trace semantics, where the traces are sequences of “particles” zz (reception
of the name z on the channel z), Zz (emission of 2z on z) and Z(z) (emission of a private name).
Then terms of the form z(y).[y = z]T may be used to detect a difference between Z(z) and Zz - the
latter particle being “better”. We leave all these matters for further investigations.

Acknowledgments. The ideas of this note were worked out during a visit at the School of Math-
ematics, SPIC Science Foundation, Madras. I wish to thank P.S. Thiagarajan for the stimulating
discussions we had, and for his hospitality. I am grateful to D. Sangiorgi for pointing out to me
the paper by Honda and Tokoro.
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Appendix: encoding the lazy A-calculus.

A consequence of our result of Section 3 is that we can translate into the asynchronous w-calculus
the encodings of the A-calculus given by Milner in [9] (3). A minor adaptation of Milner’s proof
shows that these encodings are adequate. In fact we can encode the A-calculus in a slightly more
efficient way than by composing the translations. To see this, in the case of the lazy evaluation
strategy of Abramsky [1], let us recall the translation given by Milner. The syntax of the A-terms

is given by the usual grammar:
Mu=z|dzM| (MM)

As in [9] the set X’ of A-calculus variables is assumed to be a subset of A, such that A'— X', ranged
over by u, v, w..., is infinite. There is a parameter in the 7,-encoding of the A-terms, which is
the name on which the functional agent will have access to its next argument (recall that in the
lazy A-calculus a closed term may be regarded as processing a stream of arguments, see [4] for
instance). Then the translation is a mapping from pairs of A-terms and names to m,-terms, that is:

[1:A—=WN -1,

In fact the best would be to have the name A in A, defining the translation as the mapping above
specialized to this name, i.e. [M}, =4er [M]*A. The encoding given below is a slight variation
on Milner’s one. The first item is the translation of Az M; paraphrasing Milner’s explanation, we
may say that the agent [AzM]°u receives along u the access name of its first argument, which is
substituted for z, and then the access name of the rest of the stream to which M is applied, that
is:

[AzM]°u = u(z).uv).[M]*v

To simulate the B-reduction (AzM)N — M[N /z], the argument has to send to the function, first a
private access to N, which may be called z, and then the name for the next argument of (AzM)N,
which will be used by M[N/z]. However, since it is only an access to N which is transmitted, and
not the term itself, one has to use a special agent representing the resource [N]*w waiting to be
requested on the name z. Since the variable z may have several occurrences in M, this resource
has to be replicated; it is defined as follows:

[z := N]® = lzw).[N}Pw
Then the translation of an application (M N) is:
IMNTu = woy([M]Pv | (vo)(32.5u.0| [z := N}*)) (z not free in N)

Finally one has to define [2]*u. In the context (vz)([] | [z := N]*) this agent should just send a
request to the resource, therefore it is defined by:

[z2]°u = Zu.0
Then it is easy to see for instance that a simple S-reduction step as above is properly simulated:

[(AzM)NPusv® = wz)([M]*u|[z := N]*)

(3) the encoding of the lazy A-calculus has been studied, in a semantical perspective different from
the one adopted here, by Sangiorgi in [12].
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Now the 7,-agents involved in this encoding may be in turn interpreted as w,-agents, following
the translation given above. However one may simplify this “asynchronous” encoding of the lazy
A-calculus as follows — where we define [M N]*w instead of [M N]%u to facilitate understanding of
the simulation of the 3-reduction:

[z]*u = Zu
DM}ty = uwywz)( vz | ww)[M]°w)
[MN]*w = wu([MJPu | push(N)uw)  where
push(N)uw = wv)(Tv | v(2)(aw | [2:= N]*)) (2 not free in N)
[z := MI* = tza)[M]w

Note that unlike in the previous encoding, [AzM]°u sends z to its argument, as a private name
on which it will be requested. Here a functional agent [AzM]%u first receives on u a name for
synchronizing its cooperation with its first argument. We have written this argument as an item
of a stack: in push(N)uw, the name u represents a link with the item just above in the stack, or
the access name of the stack if the argument is at the top. The name w represents a link with the
item below in the stack, or the channel that will be opened for the context (in case of convergence)
if the argument is the last one. Then we have, with some obvious assumptions on the names:

[RN; - NeJfw = (vuy)- - vug) ([R}Pu1 | push(Ny)uju,
| .
| push(Ni_1)uk_1uk
| push(Ng)uew)

When the operator R is a function Az M, a three-step reduction can occur. Let us see this on an
example, showing how a simple B-reduction is simulated. Let § = (v | v(z)(qw| [z := N]*)), that
is push(N)uw = (vv)S, and Q = (oz | ww)[M]*w), that is [AzM]*u = u(v)vz)Q. We have:
[(AzM)NPPw = ww([raM]°u | @v)S)

= wuwwv)([AzM}°u | §) (v not free in M)

= wwwo(wownQ | (@ | wn(aw|[z:= N]*))

> wuwv)(wnQ | v (aw | [z := N]*)) (v not free in M)
In this first reduction step, the operator enters into synchronization with the stack of arguments
(which contains here a single item), using the name of its top to establish a private link with the

first item. Then the operator provides the first item of the stack with the name of the variable on
which N will be used as an “environment entry” [z := N]°:

= wwwnwn(Q[z/z) | v aw|[z:= N]*)) (2 not free in N)
> pwwown(uwMz/z])w | (w][z:= N}*))
- wwevy)(wa)(ww)[M[z/z]}°w | [z := N]*) | Gw)
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Finally the stack signals to the new operator M[N /z] what is the new name of its top - or the
channel to communicate with the context, as in our example where the stack is now empty:

wwwowa) ([M[z/z]]*w | [z := N]?)
w2 ([M(z/z]]*w | [z:= N]%)

v

This last term may be regarded as a closure, representing M[N /z]. Clearly there is no alternative
to this reduction sequence. To conclude this note, let us see two instances of further reductions of
[(AzM)N]%w. If for instance M = z we have:

w2 ([z[2/z]]*w | [2:= N]*) = wa(zw | [2:= N]*)

(uz)(%w | 2en[N]°y | [z := N]]a)

wz)([N]*u | [z:= N]?)

([N]*u | worfz:= N]*) (z not free in N)

1

ui v

Up to some garbage collection, this last term is equivalent to [N]%u, since (vz)!z(y)[N]*y is inac-
cessible. Now assume that in (AzM)N we had M = (zz). Then:

(yz)(ll(xx)[Z/x]]]a’w | [z := N]]“) = (uz)((uu)( 3u | push(z)uw) | [z:= N]°*)
wzywu)(zu | push(z)uw | [z:= NJ°)

T fhe

waww(zu | z[N]%y | push(z)uw | [z := N]*)
wzywu)([N]°u | push(z)uw | [2:= N]*)
wz([Nz]*w | [z := N]*)

]l. v

If N is itself Az(zz), the reduction process will generate a longer and longer chain of “environment
entries” [2;4+1 := 2], where each 2; is a new name.
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