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VARIANTES A HAUTE RESOLUTION DE QUELQUES
SCHEMAS AUX ELEMENTS FINIS
LAGRANGE-GALERKIN

Résumé :

Nous étudions comment des schémas monodimensionnel en volumes finis
a haute résolution (des discontinuités) comme FCT ou MUSCL peuvent étre
introduits dans un contexte multidimensionnel d’éléments finis Lagrange—

Galerkin.

ON HIGH RESOLUTION VARIANTS OF
LAGRANGE-GALERKIN FINITE-ELEMENT SCHEMES

Abstract :

It is shown how two typical 1D finite-volume high resolution schemes,
like FCT or MUSCL can be introduced in the multidimensional background

of a class of Lagrange—Galerkin finite—element methods.



This short note is devoted to a set of ideas starting from the fact that
(??) high resolution finite volume methods are more or less the best methods
for some class of 1D problems while (??) Lagrange-Galerkin finite element
methods are thought to be among the best ones for taking into account non
structured meshes.

Our point of view is that many qualities of both approaches can be ra-
tionally combined, providing a numerical method that can be enriched in a
compatible manner by both finite volume or finite element discretized extra
terms such as diffusion terms. This should give a better understanding of
the derivation of several existing schemes for which numerical experiments
are available (see [2], [3-8, 21], [10], [11]) for upwind schemes and [14, 22] for
FCT schemes and in the other references given in the text.

1 Mathematical models

We shall consider 2D situations for the sake of simplicity but most of the
ideas presented in this note can be extended to 3D.

We are interested by schemes that apply to a class of Partial Differential
Equations involving, as in compressible CFD for instance, hyperbolic terms
and parabolic (diffusion) terms. We shall in fact restrict ourselves to the
following models :

Advection model : u,+ V . gr_&d u=0, ue R, d=1 (1)
Conservation law : u; + div (Vu) =0, ue R*, d=1 (2)
Hyperbolic system : w; + div f(w) =0, ue R*, d>1 (3)

in which u is a scalar unknown, w a vector, Va given vector field assumed
to be divergence free (so that (??) is a particular case of (??)), and F a hy-
perbolic flux vector with a Jacobian A = % diagonalizable in any direction.
Parabolic variants of (??) and (??) are written

Uy + V. gr_&d u—Au=0 (4)

up + div (‘_/)u) —Au=0 (5)

Boundary conditions - a wide and interesting question - will not be discussed
in this note.



2 Lagrange-Galerkin formulation

Let 7 be a triangulation of IR? in finite elements. Let V;? be a set of functions
from IR? with values in JR? that are continuous , and equal on each element
to a polynomial with degree < k. Further, the basis of V}, is a set at functions
¢; satisfying the following Lagrange interpolation conditions :

* There exists a set of nodes &; for j=1, ---, N
* To each node Z; there corresponds exactly one basis function ¢;
* ¢, = ;1 on xp (Kronecker)

We shall consider the following abstract family of schemes :
/Wt¢> dv +/ ¢ div F(W) dv + ed/V¢>VW dv =0 (6)

(eq = 0 for d > 1) in which F(w) is considered as an element of V¢ ; the
spatial scheme is described ; for the temporal derivative one possibility is
to apply a linearized version of the Runge-Kutta scheme introduced by A.

Jameson [15] :
w® = w", for [ =0, k— 1, for any ¢ € V}?, find WU+ in V¢ such that :

w1 — (0
/ Y TY bdo+ / ¢ div FO 4+ ¢, / Vv = 0 (7)
OékAt (w
For k = 1 this schemes reduces to the Euler forward but it is not explicit
due to the fact that Lagrange-Galerkin mass matrix is not diagonal. However,
a mass—lumped variant can prove to be interesting : it is written

W»(k_H)

d;
OékAt

_ I/Vi(O) + /gb2 div .7'—((3) + ed/V@Vg) =0 (8)

For stability a CFL condition can generally be found by Fourier Analysis for
structured meshes.

Schemes (??) and (??) have been tried by many authors for P, or ()4
elements ; a very short P, experiment is also presented in [12].



3 First order Godunov variant

The robustness of an approximation of (??)-(??) can be measured at two
level :

level 1 : The maximum principle is satisfied for (??), and positiveness
preservation for (?7?).

level 2 : No oscillation, or only a few oscillations, can occur.

We are interested in this section to level 1, which is necessary for a safe
simulation of complex flows in which, for example, species concentrations
must be kept between 0 and 1.

Clearly (except under some condition between the mesh size and the
Peclet number) the Lagrange-Galerkin methods are not of level 1 or 2. We
now try now to add to them the right amount of upwinding (robustness of
parabolic terms is not addressed).

We remark first that Lagrange—Galerkin methods are finite—volume schemes
in some extended sense ; indeed the divergence operator can be written :

Z/ms dwqﬁjdv_ZAA”.F (9)

with qgj =" (¢, ¢;). Since M is antisymmetric, we have

M; =0V,
and constant vectors belong to its kernel so that
Z ./Mij =0V,
J
So that P
S M Fi=Y"2 M. % (10)
J J#L

The right-hand side is a finite-volume flux integration between node ¢ and
node j with the following mean normal vector (elementory flux) :

v _ 99,
Ni; = 2/¢’ dv (11)
= 2/¢_Jd




Further we recognize a central-differenced integration since a pure arith-
metic mean is taken between F; and F; ; let us write in the above scheme

MF = E(I)central(m7wjjnij) (12)
J#i
In the particular case of a P, method, it has been observed [6, 7, 8] that
n;; s the integration of the normal vector between neighbour cells if these
cells are delimited by element-medians (Figure 1).

7= 7d :2// Vo d 1:
Tij /Mmcjn o $:;V¢; dv (13)

Figure 1 : Elementary fluxes in P1 case.
(cell boundaries are medians!)

Instead of applying a central differenced integration, we can consider the
evolution of a Riemann problem with W; and W; as left and right states and
7;; for defining the interface (normal to 7;;).
Then a Godunov extension of the Lagrange—Galerkin scheme can be defined
from :

MGodunov(F) — Z (I)Riema'rm(VI/Z_7 W], 7]2]) (14)

J#i

in which the flux ®f*m™ i5 derived from the solution W(%) of the Riemann

problem, for example by taking its value at £ =0 :
QI (W, Wiy mig) = F(W(0)) . i (15)
Another possibility is to apply an Approximate Riemann Solver like Roe’s
Solver :
F(Wi) + F(W;)
2

. . 1
R (W, W, i) = i+ §|A7]ij|(W]‘ - W) (16)



(See [16] for details).
In the case of (??) or (??), A reduces to V. 7;; and we obtain an
extension of the donor cell scheme
Vi
2
Lemma 1 : In the case of model 2, the whole family of upwind Lagrange—
Galerkin schemes satisfies the posivity preservation when advanced with the

mass—lumped RK1 scheme, under the following CFL condition (case ¢, = 0,
l no parabolic terms) :

onor — 1
LT (Wi, Wi, 755) = i (i wi) + SV Vi) il (ug — )

di — At Vi .77 >0 (17)
J

Remark 1 : The maximum principle can also be obtained for passive species
by combining with the formulation presented in [9].

Remark 2 : The ()1 case : (); Lagrange approximations are richer in
interpolation and can degenerate easily from 3D to 2D and from 2D to 1D
(solutions are identical). For this case we note that n;; does not rely any
more on a tessellation. In particular, beside edges, diagonal of quadrilateral
also support flux integration

Figure 2 : flux integration around a node : for a quadrilateral mesh.

4 FCT variant

One way to construct a high (discontinuity) resolution scheme is to apply Za-
lesak’s FCT construction [13] for coupling the first-order accurate Godunov
scheme of Section 3 with the higher—order central-differenced scheme of Sec-
tion 4. This is rather easy since both schemes are finally assembled by a flux
accumulation of the following form.

W = W+ 0 (18)
i#i



With for the low—order scheme
O = ®F (Wi, Wi, i) (19)

and for the high—order scheme :

_ F1) k1)
T cenira k— k— — [ — ¢
(I)Z-gh — poent I(VVZ-( 1)7 W]‘( 1)77]2_],) _ 5 J T (20)
In the advection case the resulting FCT scheme writes :
Ol = o 4 1;; (@ — i) (21)

where the [;; are defined following [13, 14, 21]. By the following algorithm :
Put

M/Z_min — min (I/I/Zn, I/I/in—l—l’low)
j=i
and j neighbor of 1
I/Vimaz — ll’IlaX. (VVZn, VVZ_n-I-Llow)
j=i

and j netghbor of 1
where W7, W% results from (??)-(??) and then :

pr=- ¥ min(0, @12 — ®}19")

7
7 netghbor of 1

Pr=+ X max(0, 17 — @")

7
7 meighbor of 1

;I— — dimmaz o Z (I)low

tj

J#
Qr = X0l — dwr
J#
st PT=0
: OF > pt + 5
Rf = Q1+ st QF > P et PT#0 (22)




0 st P~ =0

k3

R; = Ql_ st Qi = P et PT#0 (23)

and finally
lij = mm(R;",RZ_,Rj,RJ_) )
by construction we have the

Lemma : If the first order scheme satisfies the Mazimum Principle (resp.
positiveness), then so does the FCT scheme.

Remark 3 : Note that scheme (??) should be used with a stability CFL
condition that is the most pessimistic of the conditions corresponding to
(??) and (??). In general, an accurate enough multi-step procedure is more
stable than the Godunov one step. Further, Runge-Kutta schemes stay very
accurate for time steps several times smaller than the maximum admissible.

Remark 4 : It is also possible for CPU cost reduction to use the Godunov
step as the first step of the multi—step high order scheme.

Remark 5 : Another option is to use as high order scheme an upwind one
as constructed in the sequel.

Remark 6 : For an extension to general hyperbolic systems, see for ex-
ample [21].

5 MUSCL Variants

The above Godunov scheme (Section 3) is a first-order accurate scheme ob-
tained by adding to the high— order (at least second—order) finite element
scheme an internal viscosity in terms of second order derivatives. We describe
now a second—order Godunov scheme which is a perturbation of the Finite
Element scheme by (essentially) a numerical viscosity in terms of fourth order
derivatives, similarly to second order accurate upwind schemes.

Indeed, following van Leer, we can replace in the Approximate Riemann
Solver the nodal values W; and W, by “better” interpolations :

" T = OROE (Wi, Wi, )

with .

Wis = Wi + (VW) . %



where (V_"W)” is an approximation of VW near node i. Several choices
are possible (see for the P1 case [Aachen]) ; in order to possibly obtain a
fully upwind scheme, we suggest the “upwind element construction” [Atlanta,
Reno], in which the gradient (6W)” is computed from node values taken in
the first element accross which vector ﬁ is pointing as sketched in Figure 3.

Figure 3 : upwind element for segment i

At last it is possible to introduce some anti-oscillatory limiter ; we have been
employing for a long time the van Albada limiter [VL].

VVZIJ”“ =W, + ave (a,b)
a :61%]' %
b =Wy - Wi
ave (a,b) zﬁi—:g%ﬁ—w#ab>0

= 0 otherwise

where ¢ is a small positive number.

However this construction is yet rather heuristic in this 2D context ;
rigorously non-oscillating schemes are hardly derived ; we refer to [18] for an
attempt starting for a multi—-dimensional extension of Harten’s incremental
condition.

Remark 7 : The first-order variant can be used for first-order linear
preconditioning [19] or defect correction [20] since it enjoys matrix properties
favourable to relaxation.

Remark 8 : The MUSCL formulation can also be applied to combine the
first order Godunov scheme to the central-differenced finite—element scheme
as sketched (in P1 case) in [7]. In this particular case, we can imagine to
keep the consistant mass matrix (with a loss of robustness).

Remark 9 : The above spatial scheme can also be advanced in time by a
multi—step Runge-Kutta Scheme.
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6 CONCLUDING REMARKS

The presented schemes enjoy many of the interesting properties of their in-
gredients :

— easy and rational derivation of first and second derivatives, on possibly
heterogeneous meshes (triangles combined with quadrilaterals), relax-
ing the constraint of node by node consistency through a variational
point of view.

— positiveness preservation (at least for first-order Godunov and scalar FCT)
and, more generally, stabilization terms allowing discontinuity cap-
turing (high Mach), and collocated meshes without spurious pressure
nodes.

For the MUSCL construction, or more generally for a TVD construction,
a rigorous theory for 2D / 3D monotonicity preservation is really missing.
This could also allow progress in the capture of 2D shocks, since they can be
potentially thinly captured by a central differencing combined to an adhoc

numerical viscosity.
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