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Abstract

The design of an exception handling mechanism for communicating sequential
processes 1s presented. It is primarily concerned with correctness of parallel pro-
grams using the mechanism. The proposed mechanism relies on only two basic
additions to the notions alrcady nceded to cope with scquential program excep-
tions. To demonstrate that the exception handling mechanism serves the design
of correct robust parallel programs, a sound and rclatively complete prool system
is introduced for the enriched host programming language. [Furthermore, the ad-
cquacy of the exception handling mechanism with the underlying programming
model is shown. The programming language integrating the mechanism may be
rewritten in terms of commands of the embedding language. Finally, comparison

with related work is described.
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Traitement des Exceptions
et
Processus Séquentiels Communicants

Conception, Vérification ct Mise cn uvre

Résumé

Dans cct a.rticjc, nous proposons un mécanisme de traitement d’exceptions pour
processus séquentiels communicants, dont la conception est essentiellement guidée
par la volonté de simplifier I'écriture de programmes paralleles robustes corrects.
Le mcécanisme présenté repose uniquement sur la définition de deux nouvelles
notions hormis celles déja nécessaires dans le cadre du traitemeunt des exceptions
s¢quentiel. Afin de montrer que le mécanisme que nous proposons facilite la con-
ception de programmes paralleles robustes corrects, nous introduisons un systcine
de preuve, prouve correct et relativement complet, pour le langage hote enrichi de
la. [acilité de traitement d’exceptions. Par ailleurs, nous montrons que le mécan-
isme de traitement d’exceptions est compatible avee le modcele de programmation
considéré. Le langage de programnmation intégrant le mécanisme peut étre ré-
crit en terme de commandes du langage de base. Iinfin, nous comparons notre

proposition avee des travaux apparentés.

Mots clés: CSP, trailement des exceptions, constructions linguistiques, séman-

tique axiomatique, transformation de programmes.
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1 Introduction

An important issue in programming language design is to simplify the develop-
ment. of correct. programs. Program correctness is defined according to standard
input and output assertions: when the program is executed in an initial state
satislying the standard input assertion, it returns a result satisfying the stan-
dard output assertion. Prograins should be designed to bchave correctly cven
in the presence of exceptional circumstances that are not considered in their
standard input assertions. Such programs are termed robust, reliable, or faull
tolerant. To help the design of robust programs, dedicated mechanisms, such as
cxception handling mechanisms, have been integrated within prograrmmming lan-
guages. Main features of exception handling mechanisms designed for sequential
languages are now well understood. On the other hand, exception handling for
parallel programs is still an evolving subject with no clear consensus. This paper
addresses exception handling within parallel programs and notably focuses on the

correctness issue of resulting programs.

1.1 Exception Handling Terminology

We present some common terminology to describe exception handling. An op-
eration (e.g.. a procedure) that is invoked in an initial state belonging to the
operation’s standard doman, a subset of the operation’s domain, returns a result
satisfying the operation’s standard output assertion. On the other hand, if an
operation is invoked in an initial state outside the operation’s standard domain,
this state belongs to the operation’s ezceptional domain. The actual detection
of the exception during operation execution leads to exception raising which is
followed by the execution of a specific computation, called exception handling. If
the exception cannot be handled within the operation where it was raised, the ex-
ception is signalled to the embedding environment and the operation is referred
to as the ceceplion signaller. A model of exception handling then defines the
interaction between a signaller and its handler. Finally, an ezception handling
mechanism defines a set of appropriate language constructs that are integrated

within a programining language to express a given model of exception handling.

1.2 Sequential Exception Handling Models

There exist two major sequential exception handling models [Knudsend7]: the

continuafion model and the {ermimation model In the continuation model. the



signaller suspends its execution, invokes the handler and resumes its activity.
In the termination model, signalling an exception causes the termination of the
operation raising the exception and the subsequent execution of the handler.

The main advantage of the termination model stands in its simplicity. It in-
troduces very few primitives in the host language, that is, a command for explicit
signals and a command to define exception handling scope rules. Examples of
languages using the termination model are CLU [Liskov et al.79], ADA [Ada83],
MODULA2 + [Rovner et al.85] and EIFFEL [Meyer88].

On the other hand, the continuation model is intrinsically complex. In the
pioneering proposal of {Goodenough75], three cases dependent upon the excep-
tion signaller are considered: the signaller has to be resumed, the signaller
must not be resumed, and resumption is optional. The more recent proposal
of [Yemini et al.85] alleviated this complexity. Even though this proposal intro-
duces a model of exception handling (called the replacement model) as powerful
as the continuation model, it requires few primitives to be added in the host pro-
gramming language. However, this model still remains more complex than the

termnination one.

1.3 Parallel Exception Handling

l.:l.\'ccbtion handling has been addressed for various parallel programming mod-
els including imperative programming languages with explicit parallelism. We
may classify existing proposals according to three categories. Proposals for ADA
[Ada83], ARGUS [Liskov et al87], NIL [Strom et al.83], ABCL-1 [Ichisugi et al.90],
and SR [Huang et al.90] mainly cope with exception handling in the pres-
ence of synchronous or asynchronous remote operation call. The work of
(Campbell et al.86, Taylor86] and [Jalote et al.86] addresses exception handling
when parallel operations can be nested. Finally, propagation of exceptions to
remote processes has been dealt with in [Szalas et al.85] and [Levin77]. These
proposals were not directly concerned with correctness of robust parallel pro-
grams. Even though a proof system has been defined for a subset of ADA with
exception handling [Lodaya et al.90], this work was done a posteriori and did not
influence design choices.

In this paper, we propose a model of exception handling for parallel programs.
However, parallel programming being a wide area [Bal et al.89], we restrict our
discussion to exception handling within Systems of Communicating Processes

(relerred 1o as sep in the remainder of this paper). Our main design goal is to
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provide a model of exception handling for the design of correct and robust parallel
programs. As a first claim, we believe that a model of exception handling for
parallel programs should introduce as few control structures as possible; it should
not add complexity to existing parallel control structures. We therefore choose to
extend the termination model. This extension is primary concerned with deadlock
avoidance. Let us consider exception occurrence within a process component of a
scp. Ifthe process can locally handle the exception, sequential exception handling
may be used. On the other hand, if the process cannot hide the exception, and
assuming that the signalling process was about to communicate synchronously
with a process P, exception occurrence prior to this communication leads to P’s
blocking. Tt follows that specific control structures are required to avoid deadlock.

T'he remainder of this paper is organized as follows. Section 2 hriefly describes
the language CSP [Hoare78] used as a support for our discussion. Section 3 defines
our model of exception handling together with its integration within CSP. The
resulting programming language is called Ecsp. Section 4 deals with the issue
of the verifiability of our model. A sound and relatively complete proof system
is presented for proving partial correctness of Ecsp programs. Section 5 shows
that every Ecsp program may be rewritten into a CSP program. Conclusions

and assessmient of our proposal are offered in Section 6.

2 The Embedding Language

Our exception handling model is intended for communicating sequential pro-
cesses, and as a reference language we have chosen CSP [Hoare78]. In the fol-
lowing definitions, source and destination represent process labels, 2 a variable.

and n a number.

SCoon= skip|x = EJSIR sunple commands
S 1= destination'E send command
R 1i= source”x recerve command

= nl|x|(E)|E+E|E-E|EXE | E divE ezpression

The two last commands enable a synchronous communication according to the
rendezvous principle. A communication occurs between two processes whenever
(1) a receive command in one process specifies as its source the process name
of the other process: (11) a send command in the other process specifies as its
destination the process name of the first process; and (ii¢) the variable of the

receive command type-matches the value denoted by the expression of the send



connmand. On these conditions, the send and receive commands are said to be
malching. Matching commands are executed simultancously and their combined
elfect is to assign the value of the expression of the send command to the variable
ol the receive command.

We now present the composite commands. Brackets “< > are introduced
into BNF to denote zero or scveral repetitions of the enclosed material. B denotes
the syntactic domain of boolean expressions, and D, the domain of declarations.

For the sake of simplicity, we consider only integer variables.

P = [PROCESS < || PROCESS > ] parallel command
PROCESS :i= processlabel :: CL process declaration
(GIP = DG C> command list

1) =  wvar x <; D> declarations

C = SC|RC|AC commands

RC = G —-C<O0G—C>]) repetilive command
AC = [G—-C<OG—C>] alternative command
G = B<S|R >0/1 guard

B EoE|not B|Bor B|Band B boolean ezpressions
o = =< | >

The parallcl command expresses concurrent execution of sequential commands.
lhach constituent of the parallel command is called a process. Due to commu-
nication commands, processes must be named (processlabel). Alternative and
repetitive commands are based on guarded commands [Dijkstra75]. A guarded
command is executed only if and when the execution of its guard does not fail.
A guard fails if its boolean expression denotes false. If the boolean expression
denotes true, it has no effect and the communication command' at the end of the
guard - if any - is executed only if and when i1ts matching command is executed.
If several guards may be selected when executing an alternative command, only
one is chosen arbitrarily and the others have no effect. On the other hand, if
none of the guards can be selected, the alternative command fails and the en-
closing process terminates. When all guards of a repetitive command fail, the
repetitive command terminates. Otherwise, its body (i.e., the alternative com-
mand) is executed once and the whole repetitive command is taken again. A
repetitive command may have communication commands within guards. If all
processes named in the guards have terminated, then the repetitive command

also terminates.

"W constder an extended CSP: peceive commands may appear in guards.
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In order to describe several processes built according to the same model, the
abbreviation P(i:1..N) = CL represents [Py 2 CLy || ... || Pr it CLy). Wealso use

the abbreviation *[0x=y , Gp — Ci] for x[G; = C; O .. D Gy — €.

3 Exception Handling

In this section, we define the exception handling mechanism that extends CSP.

An overview of the base exception handling model is first presented.

3.1 Model of Exception Handling: Informal Presenta-
tion

"T'he occurrence of an exception within a process may interfere with other processes
of the scP. As an example, let us consider two processes P, and P, belonging to

the same scp:

Py ot L X = winteger expression; Py 1 x; ...

The computation of the integer expression within Py may result in signalling an
exception (e.g., overflow). It follows that P, may become blocked, waiting for a
communication with P,. Such a deadlock is unacceptable and the termination
model has to be extended. An exception whose occurrence prevents achievemnent
of an expected rendezvous leads to the exceptional termination of its signaller.
Such an exceptional termination is expressed by signalling a global exzception,
which indicates that the signaller failed to ensure an expected cooperation with
at least one other process.

[ he exceputional termination of a process affects the behavior of processes ex-
pecting a communication with it. In the previous example, assuming that ex-
ception occurrence within Py results in signalling a global exception ¢, process
P, becomes blocked. Therefore, the global exception e has to be caught and
processed by P,. More generally, a process catches a global exception only if
and when it communicates synchronously with the exception signaller. When a
process catches a global exception, the handler of the exception is sought within
the process as in the sequential case (i1.e., the exception is defined locally to the

catching process).



[t is hmportant to notice that, unlike processes signalling global exceptions,
a process catching a global cxception is not compelled to terminate. Actually,
woe investigated such a possibility, which led us to integrate the resumption fa-
cility within the exception handling model [Issarny90]. A major disadvantage of
this approach was that correctness proofs of parallel programs using exception
handling turned out to be too complex. On the other hand, termination of a
process issuing a global exception is required even though this may seem too
restrictive. Let us examine the alternative solution that relies on the decompo-
sition of a process into a sequence of possibly nested actions. We now consider
that a global exception signal leads to the termination of the enclosing action
imstead of the whole process. A process then catches a global exception only if
and when it executes a communication command that semantically matches a
communication command belonging to the process action where the exception is
signalled. This solution requires the definition of additional programming con-
structs to clearly identify processes actions that contain semantically matching
pairs of communication commands when the SCP executes. Integrating this fa-
cility within a parallel programming language 1s equivalent to providing a means

&

to declare “recoverable actions” within a SCP, that is, parallel operations that
can be nested. We believe that such a construct which may be useful, has not
to be defined as a part ol an exception handling mechanism. Instead, it has to
be introduced independently and the exception handling mechanism should be
extended to cope with this new language feature. As a first result, the program-
ming construct integrated to define nested parallel operations is not only devoted
to exception handling and may serve other purposes. For example, the SCRIPT
abstraction mechanism enables the low level details that implement patterns of
communication to be hidden [Francez et al.86], while the notion of multiprocedurc
enables recursive parallel operations [Banatre et al.86].

A~ a conclusion, let us emphasize that the main function of our exception han-
dling model amounts to properly cope with exceptional termination of a process
when the process is no longer able to cooperate normally with other processes of
the scp. The remainder of this paper highlights the benefits of such a feature.

The model requires addition of very few commands to the host language.

3.2 Syntax

We present changes to CSP syntactic domains for expressing the above model of

exception handling. The introduction of global exceptions places requirements
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on process declaration: a process should declare the global exceptions it signals.
The svutactic domain PROCESS defining a process is thus modified so that sig-

nalled global exceptions may be stated in the process header?. Domain PROCESS

bhecomes:
PROCESS  ::= processlabel signals EL :: CL. process declaration
kL U= oo < e > exception list

where EL is the list of global exceptions signalled by the process. T'he commands
of the exception handling mechanism, added to the syntactic domain C, are ex-
actly those needed to express exception handling within sequential programs. We
identily the signal command (81G) that explicitly signals an exception, and the
caecepltion handling command (EHC) that permits attachment of a list of handler

declarations to a block:

SIG n= signal e signal
BHC = try C except HL end ezception handling
HL = EL:C< EL:C> handler list

An exception handling command defines an exception handling scope. Its seman-
ties s il an exception ¢ is signalled within C then C terminates and ¢’s handler
is sought within the handler list HL. However, if a handler is not declared for
the signalled exception, the exception is propagated to the enclosing exception
handling scope, that is, the propagation of exceptions is tmplicit. This informal
semantics of exception handling defines the termination model. Nonetheless, let
us recall that the exceptional terminational of a process P, due to the signal of
a global exception leads to propagating the exception to processes attempting
to communicate with P,. In other words, global exception handling introduces
horizontal propagation of exceptions in addition to the hierarchical propagation
of exceptions usually encountered within sequential programs. FException han-
dling modifies the semantics of communication commands as defined in CSP:
exception catching may replace normal communication. Hence, the action which
is performed when executing a communication command can be one of the two

following:

(7) normal execution of the corresponding CSP command; or

1t should be noticed here that static creation of processes would enable compile time in-
ference of global exceptions signalled by a process. However, the explicit setting of global

exceptions within process header improves program readability and enforces static checking.



() catching of the global exception signalled by the process named in the com-

munication and execution of the appropriate handler.

Finally. in the rest of the paper, it is assummed that the evaluation of an integer
expression Lomay result in the signal of the predefined exception unrep. This
exception indicates that the value to be computed is not machine representable.
Furthermore, the evaluation of a boolean expression is supposed to never lead to
an exception occurrence.

For the sake of illustration, we rewrite the example of subsection 3.1 with
exception handling. Moreover, we introduce two other processes, Py and P,

synchronizing with Pj.

Py signals o 0 Py g try x ;= (zp except unrep : signal ¢ end; P» ! x; Py ly;
L. Do try Pyt L except er W end; C

P3 o try Py 7 u; . except e: h” end; C”

1)4 o P1 7 Vo

Let us assume an execution of the above SCP such that the value of the integer

expression exp 1s not machine representable. Process P, thus signals the global
exception e. Exception ¢ is propagated to P, and P since Pp is expected to

communicate with them after it computes the integer expression. P, catches «

when it communicates with 2, which leads to the execution of the handler &’ of

v. Once h terminates, the standard execution of P, resumes after the exception
handling command, that is, C’is executed. In the same way, P; catches ¢ when
It attempts to communicate with P, executes the handler 2”7, and resumes its
standard execution at the beginning of C”. On the other hand, assuming there
is only one communication between P, and Py, P; does not catch e since the

rendezvous occurs prior to Py signalling e.

3.3 Example: Cooperating Data Servers

We conclude our informal presentation of the exception handling mechanism by
an example investigating security and reliability of data management using en-
cryption and fragmentation. Data (e.g., a file or a record) is split up into »
fragments, which are distributed over n processes fp(i). A n+1* process, key.
holds a key deduced from the data. A fragment d;, 1<i<n, of data d can be
computed from a key and the n-1 fragments d;, j € [1,n]-{i}, located on other
processes [p(f). This is achieved by means of a function, called F, taking as ar-

enments the n-/ fragments and a key. Finally, when a process P wants to access

10
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fp(i:1..n) signals unavailable ::
var
data: storage; frgt: fragment; ad: address;
try
*[ianager ? read(ad) —

try read.d(data, ad; {rgt); manager ! frgt (1)
except orr_d: signals unavailable; (2)
end
O Other operations — ...
J
except
error: (3)

- Global exception error, signalled by manager, is caught,
some clean-up actions may then be specified prior to process termanation.

end

Figure 1: Processes fp(z)

a data, it sends its request to the process manager that collects data fragments
from processes fp(z).

As an example of fragmentation, we may set a fragment as being a data byte
and n = 3. Data bytes are successively distributed on each process fp(z). The
key value is equal to an crclusive or performed on three bytes. The F function
is an ceclusive or too. If d = 0111 1000 1101 then d; = 0111, d, = 1000, and
dy = 1101. Applying ezclusive or on the d;’s, we obtain key(d) = 0010. If lost.
every byte d; can be restored by computing F(n — 1 fragments, key(d)); for
instance, dy = dy @ d3 B key(d).

Processes fp(i), 1 <t < n, are given in figure 1. Only issues relevant to excep-
tion handling are detailed, others are written as comments in italics. Furthermore,
only the read operation is examined. Operation read_d (line (1)) accesses a frag-
ment located at the address ad within the whole data, deta, maintained by the
calling process. This operation returns the requested data fragment if available; it
signals err_d otherwise. Assuming requested data fragment unavailability, fp(z)
signals the global exception unavailable (line (2)) since the process fails to coop-
erate with manager. Finally, fp(i) may catch exception error (line (3)) which

is signalled by manager; this exception will be further discussed later when pro-

11



manager signals error ::
data: storage; terminated: array [1..n+1] of boolean initialized to false
datum: array {1..n] of fragment; read_f: array [1..n] of boolean;
ad: address; exc: boolean,; site: integer; k: fragment;
try
*[P ? read(ad) —
exc := false; Initialization of read_fli], 1 < i < n, to false;
*[O;=1 . not terminated(j] and not read_f{j}; fp(j) ! read(ad) —
try read.{fj] := true; fp(j) ? datum|j]
except
unavailable: (N
terminated(j] := true ; A
[exe — signal unrestorable 0 not exc — exc := true; site ;= i] (2)
end
0,=1.n terminated[j] and not read ffj] —
try read_f{j] := true; read.d(data, translate(ad, j); datwimn[j]);
except
err.d: [exc — signal unrestorable O not exc — exc := true; site := j] (2)
end
):
[ not exc — skip
O exc — (3)
[not terminated[n+1] —
key ! get_key(ad);
try key ? k; except unavailable: signal unrestorable end (2)
O terminated{n+1] —
try read_d(data, translate(ad, n+1); k);
except err_d: signal unrestorable; (2)
end
li
datum(site] := F(datum(l], ..., datum(site-1}, datum{site+1], ..., datum(n], k):
E
1> datunn:
O Other operations — ...
]
except
unrestorable: Clean-up actions; signal error (1)

end

Figure 2: Process manager

12
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cess manager s introduced. Process key holds data keys which are requested by
process manager, its implementation, not provided here, is similar to processes
fp(2)’s implementation.

When a process fp(z)® terminates exceptionally, its data are maintained by the
process manager (see fig. 2), the data of manager being assumed to be stored in
a more reliable way than those accessed by processes fp(z). Assuming that fp(z)
is terminated, the address ad of a data previously located on fp(z) is now given
by the operation translate which takes ad and @ as input parameters. Further-
more. exceptional termination of processes fp(z) is memorized within the array
terminalion whose 7t element is set to true when fp(j) is known to be termi-
nated. Data management could be implemented in an even more reliable way;
for instance, additional processes could be declared so as to replace unavailable
processes. However, for the sake of conciseness, this additional feature is not
considered here. Finally, data located on an exceptionally terminated process
are rccovered in manager’s data by means of a dedicated process, which is not
presented here.

Process manager collects data fragments from processes fp(z). Unavailability
of a data fragment is detected through the catching of the exception unavailable
(line (1)). 1f more than one fragment is unavailable then process manager signals
the exception unrestorable (line (2)) whose handling leads to signalling the global
exception error (line (4)). If only one fragment is unavailable, the whole data
may be restored by means of function F assuming data key is still available. T'his
restoration is achieved once manager has collected all available data fragments

(tine (3)).

4 Axiomatic Semantics

In this section, we propose a formal definition of our exception handling mech-
anism. We define proof rules for proving partial correctness assertions about
Ecsp programs. Verification systems based on Hoare’s logic [Hoare69] have becn
proposed for a wide variety of programming constructs including exception han-
dling mechanisims. For instance. mechanisms expressing the continuation model
have been formalized in [LevinT7. Cocco et al.82, Yemini et al.87, Cocco et al.82)

and [Szczepanska9l], while mechanisms expressing the termination model have

3The same method is applied for process key which is considered as process fp(n + 1) by

process manager.
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been in [Luckham et al.80, Cristian84] and {Lodaya et al.90]. However, in most
of the above references, the class of programs for which the presented verifica-
tion system is complete is not determined. To our knowledge, only the work
of [Cristian84, Lodaya et al.90] and [Szczepanska9l] clearly addresses this issue.
Furthermore, exception handling in the presence of parallelism is only grasped
in [Lodava et al.90] where a verification system for a subset of Apa [Ada83] is
detined. Finally, although exception handling mechanisms proposed in [Levin77]
and [Luckham et al.80] cope with parallel issues, the given axiomatic definitions

are limited to the sequential case.

4.1 Background

Prior to the introduction of a Hoare-like verification system for Eq5p programs.
we recall some basic grounds.

Axiomatic definition of the CSP programming language gave rise to many pro-
posals [Apt et al.91]. Here, we counsider the verification system 7, introduced in
[Apt83]. The choice of T is primarily due to the fact that it has been proven
sound and relatively complete. Actually, the system 7 directly follows from the
proposal of [Apt et al.80] except that it copes with a smaller subset of CSP de-
scribed hereafter. The system 7 enables proving partial correctness of CSP pro-
grams. Therefore, any command of the form [Oj=1. m b;; a; — C;}is semantically
equivalent to [0J;-, . b; — «;; C;] where a; denotes a communication command.
Furthermore. the disteibuted termination convention of the CSP repetitive com-
mand is not handled in [Apt et al.80]. It follows that any command of the form
*[0j=1.m b;; a; — C,] is semantically equivalent to *[0;=; ., b; — a;; C;]. A
consequence of these equivalences is that the proof rules dealing with the 1/0
guarded commands can be derived from the proof rules dealing with the equiv-
alent constructs. In the system 7, a proof of pre- and post-assertion about a

parallel program is done in two stages:

(1) separate proofs are constructed in isolation for each program component,

assiinplions are made locally on the properties of values exchanged;

(2) properties of complete program are deduced by composing the proofs of the
component processes, previous assumptions are confirmed or denied at this

stage by means of cooperation rules.

Due to the above principle, axioms and rules should be provided for every com-

mand that can be used within a process. In particular, the axiom associated with

14
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a receive conumand is defined as {ollows:
. .
p{P:?x}gq

This axiom enables deduction of any post-assertion ¢. However, any chosen post-
assertion will be checked for correctness according to the value sent by the match-
ing scnd command.

In order to cope with exception handling within 7, we retain the notation
introduced in [Cristian84]. It relies on the fact that integrating an exception
handling mechanism within a programming language makes most commands one-
entry/multiple-exit. Compared with other existing proposals, the advantage of
the undertaken approach is a clear separation between the validation of program
properties in the presence and in the absence of exceptions. The proposed proof
svstem cnables proving total correctness of sequential programs. A correctness
(formula of the system is of the form p { C } ¢ @ ¢ whose interpretation is if € s
invoked in a state satisfying p then C terminates at the exit point a in o stole
satisfying ¢; an exit point can be either end or an exception label. When « is
equal to ¢nd, the abbreviation p { C } g is meant for p { C } end: ¢. A program
P with k exit points is termed robust if it terminates at a declared exit point for
any possible input state. The notion of correctness for a one-entry /multiple-exit
program is a straightforward extension of that for one-entry/one-exit programs.
To specily the expected behavior of a program P which signals & exceptions,
(A + 1) pairs (r,.»,). 0 £ ¢ < k which give pre- and post-assertions are nceded
(Cristian82]. The pair (rq, so) denotes the expected standard behavior of P while
pairs (r;,8;), 1 <7 < k specify its expected exceptional behavior. A program F
is partially correct if the statement r; { P} z;:s; is verified for all pairs.

The above system takes into account exceptions signalled within a sequen-
tial process. We have moreover to deal with global exception catching. This is

addressed in the axioms and rules for communication commands.

4.2 Proof Rules

We now introduce the proof system 7¢ which enables proving partial correctness
of £¢sp programs. This presentation uses the following notations. Let L denote
a first-order language with equality. Its formulas are called assertions and are
denoted by the letters p, ¢, » and s. The simple variables are denoted by the
letters u. v, x, y, z; the expressions by the letter ¢; the boolean expressions by

the letter b and the exit points by the letters a and e. Finally, p[t/2] stands for
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the result of substituting ¢ for the free occurrences of a2 in p. The programs that
are considered are written in a subset of Ecsp whose expressions are built from
non logical symbols of L. Processes and commands are denoted by the letter ¢
Finally, the set of the global exceptions signalled by process I is denoted by G;.

e reasoning about &:-gp programs is achieved in two stages: processes are
proven partially correct it isolation and then properties of the Ecgp program are

deduced. A correctness formula of the system 7T¢ is of the form:
p{Cl}a:gq

wheu (7 is a sequential Ecsp command. The informal meaning of of p { C } a: ¢
Is:
o poos drae before C's ceccution and if C termmates then, after (Cs

creculion, the e poil s a and g s true.

By convention, we omit stating the exit point when it is equal to end. When a
correctness formula states the property of an Ecsp parallel program, it is of the

form:
p{C}(a,-yan) ¢

where nois the number of (s processes, and a;’s are exit points. The informal

meaning of this last formula 1s:

if p is true before C's execution and if C terminates, then, after C’s
execution, the exit point of the i** (1 < 1 < n) process is a, and q is

truc.

By convention. the list of exit points is omitted when all the exit points are equal

1o« nd.

4.2.1 Proving properties of a process P;

In this paragraph, commands are assumed to belong to a process P,. Hence, by
definition, these commands are sequential. The proof rule for the skip command

is defined as usual:

As 1 ‘ p {skip } p

16



Let us now give proof rules for an assignment command. T'he ¢valuation of an
expression may result in the signal of the exception unrep, which indicates that
the resulting integer is not machine representable. As in [Cristian84], we define
this exception condition through boolean functions that take an expression as
argament.. 'The function ouf returns true if the evaluation of its argument leads to
overflow, function udf being applied to determine underflow occurrence. Finally,
the function reprreturns true if the value of its argument is machine representable.
These functions, not detailed here, are all three defined by induction on the
structure of expressions. ‘I'wo proof rules define an assignment depending upon
whether its right-hand side is machine representable or not. In the first case, the

command terminates normally while, in the second case, the exit point becomes

e /):
R, 1 p = representable(t)
plt/z] { x:=t }p
R | 2= lourto V)
p{x:=t}unrep:p

The semantics of Ecsp communication commands differs from that of correspond-
ing CSP commands; a global exception may be caught. Furthermore, the evalua-
tion of the expression specified in a send command may lead to the signal of the

exceplion unrep.

p = representable(t)
p (P t)a:g

The above rule implies that any post-assertion ¢ as well as any exit point a can be

Rs 3

deduced after a send command. Note, however, that ¢ and ¢ cannot be arbitrary
since they must pass the cooperation test at the second stage of the proof.

p = {orf{1)V udf(t))

p{P, U} unrep i p

R:' 4

Finally, the receive command is defined by an axiom:
A 2 ‘ p{P;j?7x}a:q

Axioms and rules defining commands of the exception handling mechanism are
similar to those given in [Cristian84] for corresponding commands. When a com-
mand signal is encountered, the specified exception, global or not, becomes the

exit point of the enclosing exception handling command:
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As 3 ‘ p{signalc}c:p
When the exit point, «, of a command enclosed in an exception handling com-
mand does not belong to the list of handled exceptions, the exit point of the
exception handling command is «. Let us consider the following exception han-
dling command: try C except ¢;: Cy; ...;e,,: C,, end and « be different of ¢,
for any 7 of [1,m], we get:
p{Cla:q
p{try Cexcepte, : C;;..;e,:Crend }a:q

Res 5

On the other hand, when the exit point of C belongs to the list of handled
exceptions, the enclosing exception handling command inherits the exit point ol
the exception handler:

p{Cle:qq{Ci}la:r
p{try Cexcepte : Cy;...;¢p :Cypend }a:r

Rs 6

[f the exit point, e, of a sequentially composed command is exceptional, the
following commands are not, executed and the exit point of the whole sequential

composition is e:

R, 7 et ___‘_____i_____,
pLC i Co )iy

When the exit point of the first component of a sequential composition command

is end, the whole command inherits the exit point of its second component:

P{Ci}qq{C}a:r
p{C;Crla:r

Let us recall that our concern is to prove partial correctness ol programs. There-

R: 8

fore. as in [Apt83], communication commands within guards are discarded. An
alternative command inherits the exit points of all of its constituent guarded
commands that may be selected. Let ¢, be the set of indices such that 7 € ¢, if
and only if p = b;, we define:

(PAb; {Cs}as e
P{[Qim1mb; = Clla:g

T'wo rules define the repetitive command: one is related to standard termination

R¢ 9

and the other to exceptional termination. These rules use an invariant p, a variant
integer expression. {7, setting the number of iterations to be performed, and an

illl(';;('l‘ I

10ne may have noticed that, due to the rules Rg 10 and Re 11, 7¢ actually enables proving

weak total correctness of Ecsp programs.
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(pAb; A (U <0) = (AL b))j=1, 0 ms
R 10} (pAbA(USO){C }pAU<t))iz1,.m
P {*[O=1m by = 1} PANL b

(pAb; AU <0){C; Y et q)=t,m
Re 11| (pAGAQO<UYAWUSH){C; Y pA(U<t))jmt,im
7) { *[Dj=1 ‘‘‘‘‘ m ')‘

4

Sl Yeiq

The following well known rules Rg 12 of consequence, Rg 13 of conjunction, and

R 14 of disjunction are also used.

R, 12 p=>q¢q{Cla:r,r=s
p{Cla:s

R, 13 p{Cla:¢p{Cla:r
p{Cla:qnAr

R, 14 p{C}a: r,.q{('-}a:‘r
pVg{Cla:r

Using the axioms and rules introduced so far, separate proofs for each process
can be established. This is presented, as in [Owicki et al.76], by a proof outline in
which each sub-statement of a process 1s preceded and followed by a corresponding
assertion. In this proof outline, a process guesses the global exception it may
catch after a communication command and the value it may receive. When the
prools are combined, those assumptions have to be checked for cousistency using

a cooperation test. This issue is addressed in the following paragraph.

4.2.2 Proving properties of parallel programs

A global invariant I is associated with every Ecsp program. A global invariant
| expresses global information about its program. In particular, it helps to de-
termine communication commands that semantically match within the program,
that is. pairs of communication commands that actually result in communications
when the program exceuates. Furthermore, program sections € within which /
needs not hold are bracketed as (C). The notion of bracketing for an & sp process

P: is defined as follows:

Definition 1 (Bracketing) A process P; is bracketed if the brackets “(" and

N7 are interspersed in its text so that:
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(i) for cocry program scetion (C), called bracketed scction, €' is of the form
(' a; Cy where o s a communication command, and C'| and C, do nol
) ] 1 2

conlain any communicalion command;

(e0) when the corvectness formula associated to a bracketed section C is of the

formp { C} e: q with ¢ # end, then C is a communication command;

(ti1) all the communication commands that are executed, (i.e., whose excculion
is not preceded by an unhandled exception signal) and whose cxecution docs

not lead to the signal of the exception unrep, are bracketed.

The requirement for cooperation of separate proofs is stated in the proof rle for

parallel commands:

Proofs of p; { C; } a;: ¢i, ¢t = 1,...,n cooperate
/\? A ! { C, H H C,. } (al,...,an) : /\Zl___1 q;: N /

R: 15

provided no free variable in [ is subject to change outside a hracketed section.

3 ? » [49 ' »

Let “$” stand for either or and say that two bracketed sections match if

they contain matching communication commands, we define:

Definition 2 (Cooperation) The proofs of the p; {Ci} ai: i, ¢ = 1,...,m coop-

crate ff:

(1) the assertions used in the proof of p; {Gi} ai: ¢; have no free variable subject

to change in C, (1 # j);

(ii) pre(Cr)Apre(Co) A1 {C1]|Ca} post(Cr) Apost(Cy) A1 holds for all matching
pairs of bracketed sections (Cy) and (Cy) whose enclosing correctness formula
are respectively of the form pre(Cy) {C1} post(Cy) and pre(Cy) {Ch} post(Ca):

(111) for every correctness formula of the form p {P, $ t} e: q associated to «a
hrackoted section (P$1). within a proof outline of a process P, we have:

p=qand ¢, = ¢ with ¢ € G;.

Points () and (2¢) directly follow from the corresponding definition of cooperation
given in [Apt83]. Point (:z) copes with actual communications between processes.
Point (2:7) deals with communications that involve a process having signalled a
global exception. The following axioms and proof rules are needed to establish
cooperation: the communication axiom Ag 4, the formation rule Rg 16, the
preservation axiom Ag 5 the substitution rule Ry 17, and the rule Ry 18 for

aunthary variables.



Acd | true { P, Ix [P, tL}a=1
provided F; 7 z and P; ! t arc taken from P; and P;, respectively.

P{C];Ca}(],q{a”&}T,T{CQ;C,;}S

Re‘ 16 ~ -
P { (Cr; @ Ca) || (Cs5 &; Ca) ) s

provided « and & match, 'y, (3, Cy and Cy do not contain any communication
commands. and no variable in Cy; 5 is subject to change in C3; C4 and wice

[T

Aes | p{C}p

provided no free variable of p is subject to change in C and the excecution of ¢

in a state satisfying p does not lead to an exception signal.

p{Cla:yg
plt/z] { C Ya:g

provided 2 does not appear free in € and ¢. Let AV be a set of variables such that

R, 17

¢ € AV implies that z appears in C’ only in assignments y := ¢, where y € AV.
Then, if ¢ does not contain free any variables from AV and C is obtained from

C' by deleting all assignments to variables in AV,

p{Cla:yg

Rs 18
p{Cla:yq

This concludes the presentation of the system 7¢ whose proofs of soundness and

relative completeness may be found in [Issarny91b].

4.3 Example: Computing Factorial

In order to illustrate the use of 7¢, we develop a simple proof. This contrived
example (i.e., computation of n factorial) enables to detail proof of cooperation
in the presence of exceptional termination of processes. The proposed implemen-
tation follows from [Banatre90]. Multiplication being associative, the system of
communicating processes may be organized as a balanced binary tree. A process
15 associated to each node and computes the product of an integer sequence sent
by its ancestor. Each process is assigned a number according to the convention
used for binary trees: root has number 1 and for every node z, left child has

number 2: and right child, number 2z + 1.
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N(1.2 k) =

var ny;; var M;; var x;; var y;; var z;;

[N(i div 2) 71n; — (1)
N(i div 2) ? M;; (2)
[wv; # M; —

xi = (M; - m; + 1) div 2,
N(2 x 1) Vg N(2 x 1) ' {(my + x; - 1); (3)
N2 xi4+ 1) (m; +xi); N2 x i+ 1) "My, (1)
N(2 xi)?y;; N(2x i+ 1)7z2;
NG die 2) ' (y, x #;) (5)
O, = My — Nt den 2) ! nyg (6)
!
J

FFigure 3: Processes N(i)

Let us first examine cach process N(z : 1..k) in the absence of exceptions (sce
lig. 3). kach process, say V;, receives the lower bound m; (line (1)) and the upper
bound M; (line (2)) of an ordered sequence from its ancestor, the root receiving
this sequence from a user process. NN; then computes the product of sequence
elements. If the sequence cardinality is 1, N; returns the sequence element to
its ancestor (line (6)). On the other hand, if the sequence has nore than one
element, /V; sends the first half of the sequence to its left child (line (3)) and the
second half to its right child (line (4)). After having received products y; and

cfrom s deft and rvight child respectively, N; sends the product 3, x =z, to its
ancestor (hine (95)).

At least one exception may occur when process N(z), 1 < ¢ < £k, executes.
Product evaluation may lead to the occurrence of the predefined exception unrep.
This exception occurrence within N(z) results in signalling the global exception
ov;. Exception ov; is caught by the signaller ancestor N(: div 2) which then
signals the global exception ov; 4i, ;. This exception is further propagated to the
process ancestor which catches and propagates the exception in turn®. Exception

propagation stops once the user process is reached. The resulting text of processes

“Let us remark that if the signalling process N (1) is a left child, its ancestor propagates the
exception to the right child N(i x 2 + 1). Nonetheless, this last process will not catch the excep-

el < H;’=j+k iwhere bk = (n —j + 1) div: 2).

tion since it also signals a global exception (Hle
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N(i:2..k) signals ov; ::
var m;; var M;; var x;; var y;; var z;;
try
[N(i div 2) ? m; —
N(i div 2) 7 M;;
[mi # M; —
Xi = (M; -y + 1) div 2;
N(2 x 1) 'my; N(2 x i) ' {(m; + x; - 1);
N2 x o+ 1)+ x:); N2 xi14+ 1) M;;
N(2 x1)?7yi; N(2x141) 72z,
NG div 2) ! (yi x 2;) (1)
Om; = M; — N(i div2) ! m;]]
cxeept
unrep, OVax;, OVuxisl: signals ov;

end

Figure 4: Processes N(1) with exceptions

N(z) when ¢ > 2 is given in figure 4. The text of N(1) can easily be deduced from
this presentation. Each process N(z) handles global exceptions that are signalled
by its children. A process also handles the exception unrep which results from
overflow during product computation (line (1)). All the exceptions are handled
in the same way: the global exception ov; is signalled in order to propagate the
non computation of factorial to user.

We now consider the correctness proof of the above program fragment.
We rewrnite processes NV(e), 1| < ¢ < k according to the equivalence of
[O;=1.m bj; a; — C;] with [0, ., b, = «;; C;] where «; is a communication
command. Furthermore, the auxiliary variable [; is introduced to express seman-
tic matching of communication commands. Proof outlines of bracketed processes
N(z), 2 <12 < k are given hereafter. In these proof outlines, the following nota-

tions are used:

- pre- and post-assertions are written within braces;

- My denotes the set of imachine representable integers;
- /3 denotes the integer expression (m; + M; + 1) div 2,
- prod(a, b) denotes the integer expression H?zaj.

- C denotes the following process fragment:
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Xic=(my o+ My k) din 2

(NEZx i)y ) (N2 x i) (mg + x5 -1) )
(N@EZ x4+ D+ x) 5 (N2 x4+ 1) PM; )
(NEZx) 7y li=h+ 1)

The proof outline, 12y, in the standard case is:

{ L =0} (NGdiv2)?ng )y, (NG diw2)? My =1+ );
(L= VA (g = My Vg # M) A prod(mg, M) € My, |}
VLo LA, # M, A prod(m; . M) € My )
¢
{L=2Am # M, A prodiing, M) € Mp; }
(N2 xi+ )7z L =L+ 1)
{ L=3Am &£ M; Aprod(m;, M;) € My, |}
(NG div2) y; x 2 ),
{ 2 = My A prod(an,, M) € My, |
N(i dew 2) iy
{2 LA (= M;Vang # M) A prod(mg, M;) € My |}

We et
Pvy=Li=1 Ny #£ M, Aprodimg,m; + 3 —1) € My,
the proofl outhne, Ry, when the left child signals a global exception is:

{L=0} (N@Gidiw2)?m); (N(idw2)?M;; ;=1L +1);
{ Pigi) }
X, o= (g + M, + 1) div 2
(N2 x1)!m;); (N2 x i)' {m; +x;-1));
(N2 xi+1)(m+x) 0 (N2xi+1)!'M,; ),
(N(2x1)7y, )
{oemi Pui) |
N(2 x 0+ 1) 7?7 ¢; NO div2) ! y; x 2
{ vosx:: Pi(7) ) signals ov,
{ ov,: Pi(1) }

We set.:
Pafi) = m; # M, A prod(m;,m; + B —1) € Mgy A prod(m; + 3, M;) & Myy:
the proof outline, R3z. when the right child signals a global exception is:

LU NG A2y T ) (NG dee )P M = L+ 1) L= AP
¢

(=2 APai) )
(N(2xi+1)72);
{ ovaxipr: li = 2 A Po(d) } N(i div2)ty; x 2

{ ovaxis1: I = 2 A P2(d) } signals ov;

{ ovi: l; =2 A Pa(i) }



We set:
Pa(z) = m; # M; A
prod(m;,m; + f—1) € My A
prod(m; + B, M;) € Mp; A
prod(m,, M;) € Mnpr,
the proof outline, R4, when the two children send back their result but the re-

sulting product is not machine representable is:

{LH=0}(NGldiv2)7m; ); (Nidiw2)? Mg L= L+ 1) { i =1APa(i)}

C
{L=2AP3(i)) } (N2 xi+1)?z;; i =L +1);
{1, =3 APa(i) } NG div2) Vys x 2;

{ unrep: l; = 3 A Py(i) } signals ov;

on 4= 3 A Pytiy
Now. we examine cooperation of proofs when:

- the product computed by the process N(p) is not machine representable:

- the product computed by any process which is at the same depth as N(p)
and at the right of N(p) in the process tree, 1s not machine representable;

- the product computed by any process which is neither at the same depth as

N(p) nor N(p)’s ancestor, is machine representable.
We use the lollowing notations:

- the predicate dr(p, j) denotes true if N(7) is at the same depth as N(p) and
at the right of N(p) in the process tree;

- the predicate anc(p, j) denotes true if N(7) is an ancestor of N(p);

- the predicate even(i) (vesp. odd(z)) denotes true if 7 is an even (resp. odd)

nummber.

Let & he the nmber of processes required to compute n!, the global invariant [

can be written as:



my=1AM=mn

prod(m,, M,) & My,

Vj:2<j <k, (j#pA —anc(p,j) A ~dr(p,j)) = prod(m;, M;) € Mp,
Vil <y <k, ane(p,)) = prod(m;, M;) ¢ Mri

2< g < kodr(p.j) = prod(m;, M;) € Mp;

W, >t A coen(y)) = (i, = mGgive AN My =m0 402+ €5 dive — 1))
((L; 21 Aodd(y)) = (m; = M divet Tjaine AN M; =M, 4, 2))
[
(

)

2
) > 2 = y; = prod(mjxa, Mjx2))

> > > > > > > >
<

2 >3 = z; = prod(mjxas1, Mix2+41))

We detail proof of cooperation for processes whose number is p div 2, p, p x 2
and p x 2+ | where p is an even number. Cooperation of assertions for all other

processes is not shown here. The following proof outlines are used:

- R, for N(p div 2)
- Ry for N(p)
- Ry for N(p x 2) and N(p x 2 + 1) where N(p x 2) and N(p x 2+ 1) arc

assumed not to be leaves.

Let us remark that points (¢) and (1) of definition 2 are satisfied. Considering
point (#7), let us first examine pairs of semantically matching communication
coimmands between NV(p) and N(p div 2). According to the communication

axiom Ay 4. we have:

Pipdiv2) Al,=0A1
{ N(p) ! mpain2 || N(p div 2) 7 m,, }
Pilpdiv2) Al,=0An1T

Using the communication axiom Ag 4, the assignment rule Rg 1 and the forma-

tion rule Rg 16, we get:

Pipdiv2) Al,=0A1
{ N(p) ! mpaiv2 || N(p div 2) 7 my; 1, : =1, + 1}
Pipdiv2) Al =1N1

Let us now examine pairs of semantically matching communication commands
within N(p) and N(p x 2). Let us consider the emission to N(p), other assertions
are verified as previously. Using the communication axiom Ag 4, the assignment

rule Rg 1 and the formation rule Rg 16, we get:
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Iy =1 ANPs(p) Alyxe =3 AN # My A prod(m;, M;) € Mpp A
{ N2 xp)?yplp:=1+ 1| N(p)!ypx2 X zpx2 }
Ly =2 AN Ps(p) Alyxa =3 A myyxs # Mpxa A prod(mpxs, Myxa) € Mpp A

Let us finally consider pairs of semantically matching communication commands
within NV(p) and N(p x 2+ 1). We examine only the emission of ypx24+1 X Zpx241
to N(p), other assertions are checked as previously. Using the communication

axiom Ay 4. the assignment rule Rg 1 and the formation rule Rg 16, we have:

[, =2 AN P3(p) A lyxog1 =3 Amy # M; A prod(m;, M;) € Mg AN 1
{NE@xp+1)?z5 L =1L+ 1| N(P)ypxosr X zpx21 }
Ly =3 A Py(p) A lyxogr = 3 A mpyap #F Myxagr A prod(myxasr, Moyapy) € My AT

which concludes our proof O.

5 Implementation

We show here that every Ecsp program can be rewritten into a CSP program.
We introduce a rewriting function R which 1s defined by induction on Ecsp com-
mands. The proposed implementation is not concerned with efficiency, its pur-
pose 1s mainly to show that our exception handling mechanism can be modelled
through the use of CSP commands. For the sake of conciseness, we introduce
only the rewriting of the most significant commands.

Signalling a global exception requires communications between the signaller
and the processes catching the exception. This action is therefore implemented
by means of send and receive commands interspersed in the text of destination
processes. The places where receive commands should be inserted are exactly the
places where exceptions can be caught. Let us recall that a process F; catches a
global exception signalled by a process P; when P, communicates synchronously
with P,. Furthermore, exception catching has to be considered once a process is
terminated in order to not introduce deadlock. For this purpose, the body C of
any process is rewritten as the sequential composition of R(C) with a command H
dedicated to the catching of global exceptions signalled after C’s execution. These
exceptions are not handled since the catching process is to be terminated. In the
following, R(C) is called process standard part and H is called process exceptional
part. The treatment of process exceptional termination is based on the work

of [Apt et al.84] which shows that the distributed termination convention of the
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CSP repetitive command can be explicitly modelled through the use of CSP
commandls.
We briefly summarize the proposal of [Apt et al.84]. Given a repetitive com-

mand *[0;-, & bj; Pi, $; x; — C;] within a process P, it is rewritten as:

*[0j=1, & bj and continue(i;); Py, 85 x; — C;

(]

j=1, & bj and continue(ij); P; ?;end — continue(ij )= falsc]

wliere continue(i;) is initialized to true at the beginning of P;. Furthermore, the

following program section is inserted at the end of F;:

*(0j.ier, continue()); P;!y end — continue(j) := false

Ojer, continue(j); P;? end — continue(j) := false ]

I', 1s the set of indices of all processes referred to within guards in some loop in
P 1 can be statically determined. Process body termination modelling directly
follows.

The rewriting of an Ecgp process into a CSP process uses sets which can be
statically determined. Given an Ecsp process P;, we define G; to be the set of
global exceptions signalled by P, and P; to be the set of processes with which £
can potentially communicate. The following local declarations are inserted at the

beginning of any rewritten process F;:

type
state = {exec, end, exc};
valr

cont: array [1..n] of state;

exc_p: array [l..n] of string;

where

- the rewritten process is assumed to belong to a system of n processes:
- contly] indicates if P, is terminated or not;

- cac_p|j] denotes the global exception signalled by P; when cont(j] = exc.

Finadlv, all the elements ol cont are initialized to czec at the beginning of P

5.1 Command Rewriting

We examine the rewriting of main £c5p commands. We assume that commands

belong to a process F;. A command of the form C;; C; 1s rewritten as:
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R(Cy);
[ cont[i] = exc — skip O not (cont[i] = exc) — R(Cq) ]
The command try C; except ¢;: hy; ...; et hy, end is rewritten as the se-
quential composition of R(C'}) (1) with an alternative command (2). This last

command is devoted to handling exceptions that may be signalled by C.

(| Ry

) [ Oj=1.m contfi]=exc and exc_p[i] = "¢;” — cont[i] := exec; R(h;);
O not (contfi]=exc) — skip |;

When P, signals an exception e, cont[i] and exc_p[i] have to be updated. The
additional actions to be performed when e is global are carried out in the process
exceptional part. R(signal ¢) thus returns: contfi] := exe; exc_pfi] := "¢”..

The rewriting of “P, § &7 introduces an alternative command. The excceution
of a4 commmnication connmand which names a process P; leads either to the ex-
ccution of the corresponding CSP command (1) or to the catching of a global
exception signalled by P,. In this latter case, the exception may either be caught
at the communication point (2) or may have been caught at an earlier communi-
cation (3).

[
() not (cont[j] = exc); P; § x —
skip
Ov. ¢g, not (contfj] = exc); P 7e —
(2) contj] := exc; exc_pfj] ;== "e";
cont[i] := exc; exc_p[i] := "e”;
Oveeg, contlj] = exc —
(3) contfj] := exc; exc_p[j] := "e”;
contfi] := exc: exc.pi] := "e”;
]

This rewriting is not suflicient when the process sends the value of an expression;
1t should he checked for the possible occurrence of the predefined exception unrep
while evaluating this expression. Due to the definition of R(£;32), a deadlock in
the original program now results in termination of the rewritten process since all
the guards fail. Deadlock could be detected by means of rewriting. It would then
be necessary to add the reception of the message end which is sent by P; and to
replace the boolean expression not (contfj] = exc) within guards (1) and (2) by

the boolean expression contfj] = exec.



We now define R(x[Oyzy, .bi; P, 32, — Ci]) where original guarded com-
mands appear in (1). Furthermore, the termination of process standard part
has to be managed in any repetitive command. Additional guarded commands
are therefore inserted (2). This last set of guarded commands follows the proposal
of [Apt et al.84] about the explicit modelling of distributed termination conven-
tion of the CSP repetitive command. Finally, global exceptions may be caught
when exccuting a repetitive command if communication commands appear within

guards. This is handled by means of additional guarded commands (3).

«
(1) Ok=1, nu; contfi] = exec and by and cont[ix] = exec; Py, % xp —
R(Ck)
(9 Og=1. .» contfi] =exec and by and cont[iz] = exec; P,;, 7 end —
h contjig] = fin
Oi=1, mveeg, cont[ij=exec and by and cont[ix] = exec; P;, 7 e —
cont(ix] := exc; exc-p[ix] := "e”;
(3) contfi] := exc; exc_p{i] := e”;
Ok=1, nveeg, cont[ij=exec and by and cont[iz] = exc —
cont[i] := exc; exc_pli} := exc_p[ir);
IR

Alternative commands are rewritten in the same way. Nonetheless, termination
ol the alternative command has then to be taken into account if none of its guards

was sclected, exception catching being perceived as a selection.

5.2 Process Exceptional Part

The process exceptional part serves two purposes: explicit management of process
termination and (global) exception catching. A process P, does terminate once
all the processes within the set P; terminate. This can be expressed as: V), ) €

P. o conllj] # coec. The exceptional part of P; is therefore written as:

+

0, ,er, not (contij=exc) and cont[j]=exec; P;jlend — cont[j]:=end

O;ep, contljl=exec; Pj7end — cont[j]:=end

0, ¢, contfi]=exc and exc_p{i] € G; and cont[j]=exec; P;lexc_p[i] — cont[j}:=end
0;.i¢p, contfi]=exc and exc_p[i} € G; and cont[j]=exec; P;lend — cont|j]:=end

Oj¢, ceq, contfjj=exec; P;?e — cont[j]:=end
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6 Conclusions

We have proposed a model of exception handling for communicating sequential
processes. Our main design goal was to favor the development of correct and ro-
bust parallel programs. This approach first led to extend the termination model
delined for sequential programs. We then introduced two new notions to cope
with parallelismi: global exceptions and exception catching. These two notions
cnable simple management of the exceptional termination of a process. Notably,
they solve the resulting problem of deadlocks. A global exception is an exception
signalled by a process. Its occurrence indicates that its signalling process has not
been able to ensure at least an expected cooperation with another process. A
global exception is then caught by a process when the process attempts to com-
municate with the signalling process. To our knowledge, this precise definition
of exception catching. essential for correctness proof ol robust parallel programs,
has only been addressed lor parallel languages where processes communicate by
remote operation call. This notion may be found in proposals for languages with
a different communication model (e.g., [Szalas et al.85]) but an exception is then
to be caught in any point of an executing process sub-action. As a result, the
process state in which an exception is caught cannot be precisely defined. To
demonstrate that our model of exception handling serves the design of corvect vo-
bust parallel programs, we have presented a sound and relatively complete proof
svstem {or the CSP language enriched with our model of exception handling.
Lo our knowledge, correctness proof of robust parallel programs has only been
addressed in [Lodaya et al.90], where a proof system for a subset of ADA with
exception handling is proposed. Finally, the adequacy of our model of exception
handling with the underlying programming model has been shown. The program-
ming language integrating the mechanism of exception handling expressing our
model may be rewritten in terms of commands of the embedding language. The
remainder of this section is devoted to a comparison of our proposal with related
work.

Propagation ol exceptions to remote processes has notably been addressed i
[Szalas el al.85]. This investigates the extension of an exception handling mech-
anisim expressing the continuation model. The host programming language offers
dynamic creation of processes. An exception can bhe explicitly propagated {rom
one process to another one through the use of a specific command. Synchro-
nization commands define process fragments within which an exception signalled

by another process may be caught. When an exception is caught, its handler is
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sought. according to the scheme defined in the sequential case. ISxception prop-
agation being explicit. propagation of exceptions for deadlock avoidance has to
Le managed by the programmer. Therefore, should an exception be caught by
tore Lhan one process, it must be explicitly signalled to each ol those processes.
Besides, as we mentioned earlier, exception catching in any point of an executing
process sub-action tends to prevent correctness proof of parallel programs in the
presence of exceptions. The proposal of [Levin77] also introduces the notion of
exception propagation to remote processes. It focuses on systems of processes
communicating via object sharing. When an exception related to a shared object
is signalled, all the modules sharing the object are made aware of the exception.
Within a module, the exception handler is sought along the invocation chain.
Handler activations depend upon the chosen policy among those offercd by the
imechanism. Termination and resumption facilities are offered and appropriate
control structures are available to manage the parallel exccution of handlers.
The resumption facility is actually convenient for certaiu kinds of applications; a
convincing example may be found in {Levin77]. However, in a parallel framework.
this may somewhat be compared to the remote procedure call facility [Nelsong1]
whose integration in a progranuning language is to be preferred.

The Fr-Actions proposal ol [Jalote et al.86] may be related to our work since
s also concerned with the introduction of an exception handling facility within
CSP. An Ft-Action defines a fault tolerant parallel sub-action within a CSP pro-
gram. ['t-actions can be statically nested. As we mentioned earlier, we believe
that the facility of nested parallel operations should be provided independently
of an exception handling mechanism. Furthermore, correctness issues are not ad-
dressed in [Campbell et al.86] even though rewriting of F'7T-Actions in CSP may
be advocated. However, as the rewriting introduces a centralized manager which
relies heavily on the use of communication commands within guards, the prool
svatent ol [Apt33]. proven sound and complete, cannot be used to prove partial
correctness of rewritten programs. Furthermore, an exception may he caught at
any point of execution. Hence, the setting of precise properties about processes in
the presence of exceptions is somewhat prevented. Moreover, a process catching
an exception terminates. 1t follows that the proposed model of exception handling
can hardly be retained in absence of nesting of parallel operation. Finally, let us
indicate that this proposal expresses the model of exception handling imtroduced
in [Campbell et al.86], a model which has also been used in [Taylor86].

Other proposals for imperative programming languages with explicit paral-
lelisin include those of [Ada83, Liskov et al87, Strom et al.83, Ichisugi et al.90]
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and [Huang et al.90]. These contributions are mainly concerned with exception
handling in the presence of synchronous or asynchronous remote operation call.
In the Abpa mechanisim [Ada83], any attempt to communicate with a task which
is terminated, exceptionally or not, leads to signal the predefined exception task-
ing_crror to the requesting task. In our solution, a process which attempts to
communicale with an exceptionally terminated process catches a global excep-
tion instead of a predefined exception. The catching process may then grasp
conditions under which the signaller was terminated. Such information could
actually be exploited in the ADA language. However, this would require to ex-
plicitly program an exception server, which would register termination condition
of all the exceptionally terminated tasks. This server would then be consulted by
tasks handling the exception tasking_error.

The fact that our design choices were guided by correctuess issues enabled us to
define a rigorous and coucise model of exception handling. We have been able to
extend the model in a straightforward way to cope with nesting of parallel blocks
and a communication model akin to the multiway rendezvous. The obtained
model has also been integrated in a programming language for which we provided
a proof system [Issarny9lal. We were then able to extend this model in order to
scta general model of exception handling for systems of comrmunicating processes
[Issarny91b]. This general model has been integrated in a parallel object oriented
language with dynamic creation of processes and asynchronous communication
[Benveniste et al.92].
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