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Abstract: A new parametrization is proposed for suboptimal H, controllers of order no larger
than the plant order. Here such controllers are generated from pairs of symmetric matrices (X,Y’)
constrained by two Riccati matrix inequalities and some positivity requirements. Interestingly, the
Riccati expressions and the positivity conditions are exactly those arising in the usual state-space
solution of suboptimal H., problems.

When working with the inverses R and S of X and Y, respectively, the constraints can be
rewritten as linear matrix inequalities which define a convex parameter set. This sets up a conve-
nient framework to handle design objectives which can be reflected in terms of (R, S). Examples
of such objectives include reduced-order H,, design and the avoidance of pole/zero cancellation
between the plant and the controller.

Une Paramétrisation Convexe des Controleurs
H,, Sous-Optimaux

Résumé: Cet article introduit une nouvelle paramétrisation des contréleurs H, sous-optimaux
d’ordre au plus égal a celui du systéme a commander. Ici les parameétres sont des pairs de matrices
(X,Y) contraintes par des inégalités de Riccati et des contraintes de positivité. Il y a une analogie
totale entre cette charactérisation et celle des performances H, atteignables [3].

En travaillant avec les inverses Ret S de X et Y, les contraintes deviennent convexes. Cette pro-
priété est favorable a l’application d’algorithmes d’optimisation convexe avec convergence garantie.
Deux applications sont abordées: la synthese de controleurs H,, d’ordre réduit et I’élimination des
simplifications pdle/zéro entre le systéme et le controleur.



1 Introduction

DGKF’s state-space results [3] offer simple and numerically appealing means of designing H,, con-
trollers. Indeed, computations essentially reduce to solving the well-kncwn matrix Riccati equa-
tion. Moreover, explicit state-space formulas are given for some particilar H., controller called
the “central controller.” Finally, all suitable controllers are parametriz:d via a linear fractional
transformation depending on a free dynamical parameter Q(3) [3]. These attractive features all
contribute to the growing popularity of state-space-oriented H,, synthesis.

Yet, the diversity in Hy, controllers is hardly exploited in DGKF’s :tate-space approach. As
a result, applications make exclusive use of the central controller in spite of certain undesirable
properties. For instance, this particular controller tends to cancel steble plant poles [10]. In
mixed-sensitivity problems with flexible modes, this often results in unacceptable designs from an
engineering point of view. Also, the order of the central controller matches that of the augmented
plant and may therefore be quite high. Finally, the central controller is the optimal choice with
respect to some entropy criterion [6], but may well prove a bad choice with respect to more desirable
design objectives. Such objectives include the H, norm of certain transfer functions and the time-
domain behavior (overshoot, rise- and settling time).

The Q-parametrization of all suboptimal H, controllers could help sclect controllers which are
better-suited to the overall design requirements. Unfortunately, the linear-fractional nature of this
parametrization does not blend nicely with the state-space formulation. As a result, there is no
obvious way of choosing the free parameter Q(s) in order to, e.g., redu:e the controller order or
prevent plant/controller cancellations.

This paper introduces a state-space counterpart of the -parametri:ation which is appealing
both on computational and analytical grounds. Here the parameter set consists of pairs of sym-
metric matrices constrained by Riccati inequalities and positivity requirerients. Interestingly, these
constraints completely parallel DGKF’s characterization of feasible 4’s, 2xcept that Riccati equa-
tions are replaced by Riccati inequalities. To be specific, recall that tle “standard” suboptimal
H,, problem of parameter v considered in [3] is solvable if and only if the two Riccati equations

AY + YAT +Y(v°%CTC, - CTC)Y + B,BT = 0 (1.2)
have stabilizing solutions X, and Y., which further satisfy:
Xoo >0 Y, > 0; : (XYoo ) < 72 (1.3)

In comparison, this paper shows that v-suboptimal controllers of order no larger than the plant
order can be “parametrized” by the set of pairs (X,Y) of symmetric matrices constrained by:

ATX + XA+ X(77?B,BT - B,BT)X + CTC,
AY +YAT + Y(‘)’"ZC{Cl - 0;1‘02))/ + BxB’lr
X>0, Y>0, p(XY)<~?

0
0 (1.4)

TANAY

There is an obvious analogy between the two results. In fact, DGFK’s solvability conditions are
easily deduced from our parametrization (see Subsection 4.3 below). Mote that the requirement
p(XY) < 72 is relaxed to p(XY) < ¥?, equality corresponding to reduced-order H, controllers.
The paper is organized as follows. The next section gives a precise st stement of the suboptimal
H_, problem and recalls the instrumental Bounded Real Lemma. Section 3 is an intermediate step



-)

toward the advertised parametrization. There, insight is gained into the connection between subop-
timal H., controllers and pairs (X, Y) satisfying (1.4). This will prove useful for the reconstruction
of H,, controllers from such (X,Y)’s. Section 4 presents the main result which is a parametrization
of suboptimal H,, controllers by the set of pairs (X,Y) satisfying (1.4). The constraints (1.4) are
shown to define a convex set when reformulated in terms of R := X~! and § := Y~!. Since con-
vexity is highly desirable in optimization problems, all theorems are stated in terms of R, S instead
of X,Y. A simple algorithm is also proposed for the construction of suboptimal controllers from
admissible pairs (R, S). Only elementary matrix computations are involved in this construction.
In Section 5 finally, two applications illustrate the potential of this parametrization as a design
tool. Firstly, the problem of preventing plant/controller cancellations in H,, design is turned into
a convex optimization problem in the (R, S)-space. Secondly, applications to reduced-order H,
design are discussed.

2 The Suboptimal H, Control Problem

As usual in H,, control problems, consider a proper plant G(s) which maps exogenous inputs w and
control inputs u to controlled outputs 2z and measured outputs y. That s,

(;):G(s)( ': )where

_{ Gu(s) Gu(s) \ _ [ Du D C, — AV-!
Gls) = ( Ga(s) Gals) ) B ( D3 Da ) * ( C, )(SI A7 (Br, Ba). (21)

This realization is taken minimal and n denotes its order (A4 € R™**"). The vectors z, y, w, and u
are of size py, pa, M, and m,, respectively, with the assumption that m; > p, and p, > m,.

The suboptimal H,, control problem of parameter v consists of finding a dynamic real-rational
output feedback law u = K(s)y such that:

¢ the closed-loop system is internally stable,
e the H,, norm of the closed-loop transfer function from w to z is strictly less than 4.

Controllers solving this problem (if any) will be called y-suboptimal. Observing that the closed-
loop transfer function from w to z is given by the linear fractional transformation (LFT):

F(G,K)= Gy, + Gy K(I = Gpa K )™ Gy, (2.2)

K is y-suboptimal if and only if the closed-loop system is internally stable and ||F(G, K)||e < 7.
The optimal H,, attenuation 7, is defined as the smallest (asymptotically) achievable v, that is,
the infimum of all ¥ > 0 for which there exist 4-suboptimal controllers.

The following assumptions on the state-space realization (2.1) of the plant G are made through-
out the paper: ‘

(A1) (A, B,,(C,) is stabilizable and detectable.
(A2) DT,(D,;,C)) = (1,0) and D, (DT, ,BT) = (1,0).
(A3) D22 = 0 and Du =90.



Along with (A1), full column rank for D; and full row rank for D;, are the only hard requirements
for the validity of our results. With these assumptions standing, (A2)-(A3) are only introduced
for the resulting notational simplification. Note that the customary requirement that G,, and G,
have no jw-axis transmission zero is not needed in our approach.

The parametrization introduced in this paper is state-space oriented and specialized to con-
trollers whose order is no larger than the plant order. Given the state-space realization

K(8) = Dk + Cx(sl — Ag)™'Bg; Ag € R¥¥E k<n (2.3)

of some controller K', a (non necessarily minimal) realization of the closed-loop transfer function
from w to z is:

F(G,K)(8)= Do+ Cu(sI — Au)~' By (2.4)
where
A, = (A + By Dk Cy Bzcx) i B, = <B1 + BzDKDzl) .
. By C, A )’ Bk Do, '
Ca = (Ci+ D12DkC; Dy,Ck); D. = D13Dg Dy;. (2.5)

In terms of these state-space parameters, the controller K is y-suboptimal if and only if
A is stable and ||Dg+ Cu(sI — Au) " 'Balle < 7- (2.6)

Interestingly, these two requirements can be lumped into a single condition involving a Riccati
inequality of order n 4+ k. This instrumental reformulation is known as the Bounded Real Lemma.
When expressed in terms of Riccati inequalities, this lemma does not require minimality of the
realization and takes the fully general form given next.

Lemma 2.1 (Bounded Real Lemma) Consider some (non necessarily minimal) realization
T(s) = D+ C(sI — A)"'B of some (non necessarily square) transfer function T(s). Then the
following statements are equivalent:

(i) A is stable and ||D + C(sl — A)™'Bl|s < 7,
(11) Omaz(D) < 7 and there exists a symmetric positive definite solution X to the ARI:
ATX + XA+77CTC+ (v72CT"™D+ XB)I - v°*DTD)'(v2CTD + XB)T < 0. (2.7)

3 Suboptimal Controllers and Riccati Inequalities

In this section, the conditions (2.6) for y-suboptimality are converted into Riccati inequality con-
straints via the Bounded Real Lemma. The Riccati inequalities involve the plant state-space
parameters, but also some of the controller parameters. Hence this reformulation is not readily
useful for controller synthesis. Nonetheless, it constitutes an insightful intermediate step toward
the convex parametrization announced in Section 1. In particular, it brings out the connection
between suboptimal controllers and the constraints (1.4).

The next theorem gives necessary conditions for y-suboptimality in terms of matrix inequalities
involving two matrix parameters R and S. Sufficiency of these conditions is addressed in the sub-
sequent Theorem 3.2. These two results heavily rely on the Bounded Real Lemma and strengthen
Theorem 6.5, p. 222 of [9]. Note that X,Y in (1.4) correspond to R~! and S~!, respectively, for
reasons which will become clear in Section 4.
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Theorem 3.1 (Necessity Part) Assume (A1)-(A3) and suppese the controller K(s) is
~ -suboptimal of order no larger than the plant order (k < n). Let

K(s)= Dk + Cx(sl — Ax)™ ' Bg; Ag € R¥>* (3.1)

denote a minimal realization of K. Then

(C1) 0maz(Dg) <~
and there exist symmetric matrices R, S in R"*" and M, N in R™** such that

(C2) R,S,M, and N satisfy

Ag:= AR+ RAT + RCTC\R+ 77 BBT — By,BY + Mg(I ~ v ?D DR 'ME <0;  (3.2)
Ag:=ATS+ SA+ SBBTS +472CTC, - CIC, + Ns(I-+" DEDg)'NT <0; (3.3)
MNT =~7*I - RS (3.4)

with the shorthands:
Mg := B, + RCTDY + MCE,; Ng:=CT + SB,Dy + N Bg. (3.5)
(C3) R>0, §>0, and Anin(RS) > 772

Proof: See Appendix B.
|
The matrices R, S, M, N are constructed by applying the Bounded Real Lemma to the realiza-
tion (2.4) of the closed-loop system F(G, K'). Specifically, given any solution X, € R(#+*)x(n+k) of
the Riccati inequality (2.7) written for (A., Bei, Ce, Do), suitable R, S, M, N are readily obtained
by partitioning:

—_ S N . -2yv-1__. R M . nxn T nxk
Xc,_.(NT *), X “(MT *), R,S € R™" M,N € R***.  (3.6)

Hence (C2) expresses the fact that ||F(G, K)|le < 7 since it has to do with existence of some real
symmetric solution X, to (2.7). Meanwhile, (C3) expresses internal stability of the closed-loop
system since it is equivalent to X, > 0. Note that the correspondence A(s) — (R,S) is not
univocal; because of the inequalities, to each suboptimal K'(s) corresponds a family of pairs (R, S)
(see Subsection 4.2 for detail).

Concerning the controller order k, note that if ¥ < n then Ay;,(RS) = v~? or more precisely,
rank(y~2I ~ RS) = k (recall that M, N € R"*¥). Equivalently in terms of (X,Y):= (R, §7!),
we have p(XY) = 42 and rank(y~2XY — I) = k. As confirmed in the sequel, rank deficiency of
¥~ — RS is characteristic of reduced-order H,, controllers and the rank of this “coupling matrix”
determines the controller order (see Subsection 4.4).

We now turn to the converse of Theorem 3.1. Observe that the controller state matrix Ax does
not appear in (C1)-(C3). Hence the main concern is whether the knowledge of R, S, M, N and
Bg,Cg, Dk satisfying (C1)-(C3) is sufficient to reconstruct the Ax matrix of some y-suboptimal
controller. The next theorem confirms the feasibility of this operation.

Theorem 3.2 (Sufficiency Part) With the notation and assumptions of Theorem 3.2, consider
any matrices R,S,M, N, Byx,Cg, Dk such that



e R=RT ¢ R™*", §=8T ¢ R"*", and M, N € R"** have full column rank (k < n).
e R,S5,M,N, Bk,Ck, Dk jointly satisfy (C1)-(C3).

Then there exists Ax € R*** for which the controller K(s) := Dy + Cx(sI — Ax) 'Bk is 7-
suboptimal and of order at most k. Such a matriz Ak is constructed as follows.

(i) Compute matrices Ay, € R™* and A,; € R¥** such that ( LATS ‘2” ) >0 and
12 22
-As A R
2 s Qi _
AR + v (R’ M) ( A’{‘z A22 ) ( M’I’ ) =0. (3'7)

(ii)) Compute Ax € R¥** as the unique solution of

~NAgMT = 472AT + S(y7*B, BT + B,CxM™) + (y7*C{Cy + NBxC,)R +
S(A+ ByDkCy)R+ v 3Ns(I — v~ DEDg) 'DEMY — AsR + A, MT. (3.8)

Proof: See Appendix B.
|
Hence some suitable controller state matrix Ax can be computed by solving two systems of
linear equations. Note that Ay is directly sought of dimensions k x k in the reduced-order case.
Consequently, no switching to descriptor form is needed when y~2I — RS or equivalently I —-y~2XY
is rank-deficient. Interestingly, this scheme also applies to optimal central controller design when
I — 472X, Y, is singular at v,, [4]. Finally, observe that (3.8) can also be written (with the

notation Z := y~%I — RS):

~NAMT = ZT(A+ RCTC,)T + NBxCy,R + SAr — AsR+ A, MT
{v"®*NBx Dy + Z"C] D% — SMCy} (I -7 *Dk Dg)™' M, (3.9)

or equivalently as:

—NA}(MT = (A + BlB’lI‘S)TZT + SBzCKMT + A12MT +
Ns(I —v=2DLDg) {y~2MCL Dy + ZB,Dx — RNBx}' . (3.10)

Simple algebra involving (3.2)-(3.3) accounts for these reformulations (see Appendix B for detail).
At first glance, the trading of the unknown Ay against the four unknowns R, S, M, N seems
rather unfavorable. However, much structure has been gained in the process. In the full-order
case for instance, M and N are square invertible and can be absorbed in Ck, Bx without loss of
generality. The two Riccati inequalities then decouple and given any R, S satisfying (C3) and

AR + RAT + RCTC\R+~72B,BT - B,BT < 0;
ATS + SA+ SBBTS +~7%CTcC, - CTC, <0,

some By ,Cg, Dk can be constructed such that (3.2)-(3.3) hold. This simple observation is the
gateway to the state-space parametrization introduced in the next section.



4 Convex Parametrization of Suboptimal Controllers

The results of Section 3 are awkward for design purposes because the unknown controllers pa-
rameters By ,Cx, Dk still appear in (3.2)-(3.3). In this section, M, N, Bx,Cgk, Dg are removed
altogether from the formulation. This leads to our main result: a parametrization of y-suboptimal
controllers (of order no larger than the plant order) by all pairs (R, S) in the set

A, :={(R,S): R=RT and S = ST and R, § satisfy the constraints (C,) } (4.1)
where
AR + RAT + RCTCyR+~72B,BT — B,BT < 0
(€y) ATS + SA+ SBiBTS+77CTC,-C7C; < 0 (4.2)
R>0, §>0, Ann(RS)277?

Note that (4.2) is equivalent to (1.4) in the transformation (R, S) — (X,Y) := (R™},S71).

Clearly, all pairs (R, S) associated with y-suboptimal controllers via Theorem 3.1 lie in A,.
Conversely, the next theorem shows that given any (R,S) in A,, we can reconstruct some 7-
suboptimal controller of order & < n by some elementary matrix computations. This confirms the
relevance of Riccati inequalities in H,, design (see also, e.g., [11, 12]).

Theorem 4.1 Assume (A1)-(A3) and introduce the Riccati residuals:
Rr AR+ RAT + RCTC\R+ v~ *B,BT - B,BT; (4.3)
Rs := ATS+SA+ SBBTS+~72CTC, - CTC,. (4.4)

Given any pair (R, S) in A,, a v-suboptimal controller K(3) = Dx + Cx(sI — Ax)~'Bk of order
no larger than k := rank(y~2I — RS) can be reconstructed as follows.

(a) Compute full column rank matrices M, N € R*** such that MNT = y=2] — RS.

(b) Select Dy as follows. If k = n, pick any matriz satisfying om..(Dk) < 7. Otherwise, chose
Dy so that 0ma-(Dk) < v and

I ~1D -BT -
(;opr T 7%) > (o) BV OPREICAR - Ra)a) ™ VI (~BayyRED) (49)

where V, denotes an orthonormal basis of Ker (y~2I — SR). A possible choice is
Dx = —7*BI Vo {VF (y*RCTC2R - Ra)V2}™ V{ RCT. (4.6)
(¢) For Bg,Ck, chose any matrices compatible with

Ap:=Rp+ (By + RCTD%L + MCE)(I - v~ 2Dk D% )Y (B, + RCT DY + MCE) < 0; (4.7)
Ags:=Rs+ (CT + SB:Dx + NBx)(I =77 *D} D)™ (CT + SB:Dg + NBg)™ < 0. (4.8)

(d) Use Theorem 3.2 to reconstruct Ax.

Proof: See Appendix C.
|
Summing up, there is an exhaustive correspondence between the set of y-suboptimal controllers
of order k < n and the set A, defined by (4.1)-(4.2). Properties and interpretation of this result
are discussed in the remainder of the section.



4.1 Properties of A,

The parameter set A, has nice properties which make this formulation computationally appealing.
First of all, A, is a convex subset of R"*" x R"*". This is easily seen when observing that the
constraints (C,) are equivalent to the three linear matrix inequalities:

AR+ RAT + y~2B, BT - B,BT RC,T) .
( C.R Y <0; (4.9)
ATS+ SA+y72CTC, -CTC, SB ) )
( BTS 1)< 0; (4.10)
R -7
(7_11 s ) >0, (4.11)

each of which define a convex subset of R"*" x R"*". Incidentally, convexity does not hold for the
set of pairs (X,Y) defined by (1.4). This is our main motivation for using the parameters R, §
instead of X,Y.

With v,,; denoting the smallest feasible v, the family of sets {4, },>0 has the following proper-
ties:

o A, #0 if and only if 7 > Yop: ;
o A, CA,, whenever v, < 7.

In other words, the set A, grows larger as <y increases.

Another interesting property concerns extremal points of A, for ¥ > 7,,,. The next lemma
shows that the stabilizing solutions X, and Y,, of the usual H,, Riccati equations (1.1)-(1.2) are
minimizers among all X,Y satisfying (1.4).

Lemma 4.2 Assume 7 > Y, and let X, and Y, denote the stabilizing solutions of (1.1)-(1.2),
respectively. Then for any pair of n X n symmetric matrices (X,Y) satisfying

ATX + XA+ X(v7?B,BT - B,B)X +CTC, < 0; (4.12)
AY + YAT y Y(v~2CTC, - CTC,)Y + BBBT < 0, (4.13)

we have
X < X Yo <Y. (4.14)

Proof: The proof is easily adapted from standard monotonicity results on Riccati solutions (see,
e.g., [13]).
u
Defining R., := X! and S, := Y!, it follows that (R, S, ) is maximal among all (R, S)
in A,. That is, R < Ry and § < S, for all (R,S) € A,. Note that (R, 5«) always lies on
the boundary of A, associated with the two Riccati inequalities. Also, R, (respectively, S) is
unbounded whenever X, (respectively, Y) is singular. The set A, is then unbounded toward
infinity. To gain geometrical insight into the nature of A,, we now discuss a simple example for a
plant of order one.



Example 4.3 Consider the plant G(s) of order one and state-space parameters (cf. (2.5)):
A=1, By=Cy=0; By=1; C=2; By=1; Dyy3=Dy =1; D), = Dy =0.
The lowest achievable v for this plant is v,,. = 1. Fory > 1, the set A, is defined by the constraints:
2r — 1 < 0; 28 — 4 < 0; r>0; s> 0; rs > y72,

In Figure 4.4, this domain is plotted in the (r, s)-plane for v = 2. Note that the Riccati inequalities
define two strips while the coupling constraint rs > ¥~ selects the region above the hyperbola
rs = y72. Since Xo = 2 and Y, = 1/2 independently of v, (R, Ss) := (X2, Y21) = (1/2,2)
is an extremal point of A, for all 4 > 1. This corner point corresponds to the central controller
design while pairs (r, s) sitting on the hyperbola part of the boundary correspond to reduced-order
suboptimal controllers.

As v decreases from +o00, the region A, shrinks further and further. A particularity of this
problem is that the Riccati constraints are independent of y. As a result, only the boundary
associated with rs > 4~% is moving. As 7 — 7,p, this boundary approaches the corner point
(Ross Seo) and A, shrinks to an empty set as illustrated on Figure 4.5. At vy = v,,, A, is empty since
no controller can internally stabilize the plant while enforcing the strict constraint ||F(G, K)||e <
Yopt- Nevertheless, the corner point (R,S) generally yields a solution of the “optimal” H,
problem where ||F(G, K)||oo = Yopt- Due to the triviality of this example, the central controller
design is the only feasible design at the optimum. In more realistic problems however, there often
remain degrees of freedom in the choice of (R, 5) at Yop:.

4.2 Nature of the Parametrization

The word “parametrization” should be taken in a loose sense here since the correspondence K(s) <
(R, S)is not univocal. Indeed, given any (R, S)in A, we can reconstruct a family of y-suboptimal
controllers where state-space parameters vary in open sets. Conversely, to each suboptimal con-
troller corresponds a convex subset of A,. To see this, recall from Section 3 that S is constructed
from solutions X,; of the Bounded Real Lemma inequality (2.7) written for the closed-loop system.
For fixed (Ak, Bk, Ck, Dk ), the solution set of this inequality is convex since (2.7) can be rewritten
a ATX + XA+7-2CTC ~+-2CTD + XB
( v-2DTC + BTX  ~4~DTD -] ) <0

which is affine in X. The resulting set of S matrices is therefore convex. Similar conclusions hold
for the R component upon observing that y=2X ! solves the Riccati inequality dual of (2.7) in the
transformation (A, B,C, D) — (AT,CT, BT, DT).

This topological rather than pointwise correspondence between suboptimal controllers and pairs
(R,S) may seem a handicap at first. Fortunately, certain important properties of the controller or
the closed-loop system can be monitored through (R, S) independently of the particular controller
reconstructed (see Section 5). Nevertheless, more research is needed to characterize the family of
controllers associated with a given (R, S) € A, and to exploit these additional degrees of freedom.
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4.3 Connection with DGKF’s Results

DGKF’s characterization of suboptimal 4’s (see Section 1) is easily deduced from the previous re-
sults. Indeed, it can be shown that the Riccati equations (1.1)-(1.2) do have stabilizing solution X,
and Y,, whenever A, is non empty (see {5] for details). Invoking monotonicity results comparable
to those of Lemma 4.2, we further have X' > R and Y;! > § for all (R, S) in A,. Hence X,
and Y, satisfy (1.3). As for the converse, it readily follows from continuity properties of stabilizing
Riccati solutions under small perturbations (see e.g., [2]). Specifically, if (1.1)-(1.2) have stabilizing
solutions then for ¢ small enough, the perturbed equations

ATX + XA+ X(v?ByBT — BoBI)X + CTCy + el = 0;
AY +YAT +Y(773CTC, - CTC)Y + ByBT +el = 0

retain stabilizing solutions which continuously depend on ¢. Consequently, A, is nonempty and
there exist suboptimal H,, controllers for this 4. Finally, note that the extremal pair (X, Ys)
corresponds to the central controller. This is best seen on the characterization of Theorem 3.1 once
(3.2)-(3.3) are rewritten in terms of X,Y as:

ATX + XA+ X(v72B,B] - B,B])X + CTCy + Mx(I -y *DgD%) "M} < 0;
AY +YAT + Y(772CTC, - CTC,)Y + ByBT + Ny(I-+972DEDg)'NJ <0
where
My := X B, + C] Dy + MCF; Ny :=YCT + B,Dg + N Bg; MNT = 472XY - I

When (X,Y) approaches (X, Yy ), the quadratic tail terms must approach zero. At the limit, we
have Mx = 0 and Ny = 0. That is,

XoB, + CTDY + MCE =0 YoCT 4 B,Dx + N Bg; MNT = 472X Y, — I. (4.15)

Taking Dk = 0 for strict properness and, e.g., (M, N) = (I,7" %X, Y., — I), the matrices Bgx,Cx
are easily obtained from (4.15) and Ak can be computed from (3.9) with A, = 0. This yields
Ak = A+ (Y7°BiB] = B2B] ) Xoo — (I = 77 Y Xoo) 7Yoo C7 C;
Bg = (I = 7" %Y X0) ™' Yoo CF ; Cx = —-B] Xo
which are exactly the central controller formulas [3]. More detail can be found in [5]. Finally, the

notion of central controller can be extended by allowing Dg to be nonzero. This extension proves
useful for the design of nearly optimal central controllers (see [4] for details).

5 Applications

5.1 Preventing Pole/Zero Cancellations between the Plant and the Controller

The central controller has the undesirable property of cancelling all stable poles of the plant which
are (A, B))-uncontrollable or (C;, A)-unobservable. This behavior is frequently encountered in
mixed-sensitivity design and leads to unacceptable designs in the presence of flexible modes. Can-
cellations in the mixed-sensitivity context have been thoroughly studied in [10]. Various remedies
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have been proposed which generally consist of modifying the criterion to penalize cancellations
[8, 10]. Yet no general and direct remedy is available in the usual framework. By contrast, the
parametrization introduced above offers direct and numerically tractable means of preventing can-
cellations of lightly damped modes. Indeed, if all controllers obtained from a given (R, S) € A,
involve cancellations, then (R, $) must satisfy one the following:

Amax(R) > 13 Amax(§) > 1 [Amax(RR)| < 15 | Amax(Rs)| < 1. (5.16)

Here Rp and Rs denote the Riccati residuals defined in (4.4). “Bad” pairs (R, §) therefore lie near
the boundary of A, corresponding to the Riccati inequalities.

A qualitative justification of this claim goes as follows. Consider some (R, S) € A,, suppose
the norms of R, S are comparable to the scale of the problem, and consider some controller K(s)
associated with (R, S) via Theorem 4.1. Assuming for simplicity that D, = 0, X, > 0 determined
by (3.6) satisfies the closed-loop Bounded Real Lemma equation

AZ;XCI + XcIAcI + XcchlB::I;XcI + 7-203;061 + A=0 (5'17)

—-As Ar
ATZ A22
of (Aety By, Cy). If K(s) cancels some lightly-damped mode of the plant, A, is nearly unstable
and the solution H of

where A := ) > 0 satisfies (3.7). Recall that cancelled modes are nonminimal modes

ATH+ HAL+1=0

has large norm (7]. In fact, this is also true of the upper-left » x n subblock of H because of the
particular structure of the nonminimal subspace here. Observing that X, > Anin(A)H, it follows
that either ||S|| > 1 or Anin(A) € 1. Since § was assumed of relatively small norm, A must
therefore be nearly singular.

Summing up, controllers causing cancellations correspond to nearly singular A’s in (5.17) (pro-
vided that R, S are of small norm). Now, recall from Theorem 4.1 that A is not uniquely determined
by (R,S). Thus, for (R,S) to be unacceptable in the sense that all resulting controllers involve
cancellations, all A’s compatible with (3.7) must be nearly singular. When R and hence M have
small norm, this requires that either Ap or Ag be nearly singular (cf. (3.7) and Lemma A.1 below).
In turn, this must extend to R or Rs because of the remaining degrees of freedom in the choice
of Ag,As given Rr,Rs. Hence (5.16) holds when all designs obtained via Theorem 4.1 involve
cancellations of flexible modes.

Steering clear of such pairs (R, S) can be done in a number of ways. For instance, we can seek
“good” pairs (R, S) by solving

min  Trace(R + S)
(R,S)eAy
while placing a steep barrier on the Riccati inequality constraints. This will drive Anax(Rr) and
Amax(Rs) away from zero and the criterion will ensure that the norms of R and S remain small.
Another possible approach consists of finding the analytic center [1] of the intersection

A,nN {(R,S) : Trace(R+ S) < constant }.

Here again steep barriers should be used for the Riccati inequality constraints. Note that in
both cases the resulting problem is convex and can be handled by standard convex optimization
algorithms.
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5.2 Reduced-Order Design

Reduced-order H,, synthesis is a promising application of the parametrization introduced above.
Indeed, y-suboptimal controllers of order k£ < n have a simple characterization in this framework:
they correspond to pairs (R, S) of A, for which rank(y=2I — RS) = k. Such pairs lie on the
boundary of A, attached to the constraint Amin(RS) > -2 and saturate this constraint in n —
k directions. Hence the reduced-order design problem has a clear formulation in terms of the
parameters (R, S): it consists of decreasing the rank of Y72/ — RS as much as possible without
leaving A,.

For feasible v’s and with A\ (RS) < --- < A,_x(RS) denoting the n — k smallest eigenvalues of
RS, the synthesis of controllers of order k¥ < n amounts to minimizing for (R, .S) € A, the criterion:

n—k

U(R,S)=Y_ A(RS).

Indeed, there exist suboptimal controllers of order £ if and only if the global minimum of ¥(R, S) is
(n — k)y~2. This objective function ¥ is not convex but in fact concave. Hence global convergence
is not guaranteed. Nevertheless, the structural properties of the problem should help monitor
gradient descent methods so as to obtain significant order reductions upon convergence.

6 Conclusions

A state-space-oriented parametrization of suboptimal H,, controllers of order no larger than the
plant order has been introduced. Here parameters are positive solutions of Riccati inequalities
subject to a coupling constraint. The formalism parallels DGKF’s characterization of feasible 4’s
except that Riccati equations become inequalities. Some significant design problems are easily
formulated in this new framework and the convexity of the parameter set favors the use of convex
optimization techniques.

This algebraic parametrization opens new perspectives for improving H,., design by making the
most out of the suboptimal controller diversity. Applications to plant/controller cancellations and
controller order reduction have been discussed. Further research is however needed to explore and
exploit the full potential of this design tool.

Appendix A

This appendix lists a few technical results which are useful in proving the theorems of Sections 3
and 4.

Lemma A.1 Let P and Q be two positive definite n x n matrices, R € R"*" be nonsingular, and
M € R™** have full column rank (k < n). If k < n, also assume that V] (Q — RPRT)V, = 0
where V, denotes any basis of the null space of MT. Then there exist X € RF** and Y € R™**
such that

cwn(§ ) (5) e

P YT\ . oy )
o (Y X ) is positive definite.
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Proof: Up to redefining R and M as Q™'/2R and Q~'/2M, respectively, assume without loss of
generality that @ = I. Also assume V, is an orthonormal basis of Ker MT and complete it into an
orthogonal matrix V = (V;, ;). Finally, introduce the notation:

(VZT)M_ o) \vr)®=\g,)
o . P YT T D1 .
To ensure the positive definiteness of vy x ) seek X of the form Y* P™'Y + Z with Z > 0.

When pre- and postmultiplied by VT and V, respectively, the first constraint becomes

((R1P+M,Y)P“1(R1P+M,Y)T+M1TZM1 (R1P+M1Y)R§) _ (1 0) (A1)
Ry(R P + M, Y)T R,PRT “\0 1)’ :

Solvability for Y, Z requires that R, PR} = I which is precisely ensured by the assumption VT (Q —
RPRT)V, = 0. Observing that M, is square invertible since M is full rank, it follows that Y :=
~M['R,P and Z := (M;MT)~! solve (A.1). Equivalently, the original requirements are met when
chosing Y = ~M['R,P and X = M]7'(I + R,PRT)M[T.

[ ]

Lemma A.2 Let E,Q be two positive definite matrices and M € R"** have full column rank.
Given an arbitrary matriz L of compatible dimensions, the problem of finding a matriz X such that

(L+ MX)E(L+ MX)T < Q. (A.2)
is solvable if and only if VILELTV, < VIQV, whenever MTV, = 0.
Proof: It suffices to consider the case where the columns of V; span the null space of M7. As in

Lemma A.l, assume without loss of generality that @ = I, complete V; into an orthogonal matrix
V = (V;, V,), and introduce the partitions:

v)e=(n)s ()w=(7)
(V2T L= L2 ’ ‘/2’[‘ M= 0
where M, is square invertible. Pre- and postmultiplying by V7 and V, respectively, (A.2) becomes:

((Ll + M\ X)E(L + MiX)T (L, +M1X)EL§> < (1 0)-

L.E(L; + M X)T L,ELT 0 I (A3)

Clearly, solvability requires L,ELT < I or equivalently, VTLELTV, < VTQV,. Conversely, this
condition is also sufficient since (A.3) is then satisfied for X = —M['L,.
]

Lemma A.3 Consider two symmetric matrices R, S € R**" such that rank(y"2I-RS)=k < n.
Let V, denote an orthonormal basis of Ker (y~%I — SR) and introduce the Riccati residuals:

Rr := AR+ RAT + RCTC\R + 7~ ?B,BT — B,BT ;
Rs = ATS+SA+SBIB?S+7_2CITC1 —CzTCz .

Then
V2T {RR + BQBZ‘ - 72R(Rs + C;CQ)R} V'_) =0. (A.4)
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Proof: From the definition of Rz and Rg,
RrS— RRs=(A+ RC,CT)YRS —~v~%I) - (RS —y"*I)(A+ B,BTS) + RCTC, - B,BTS.

Pre- and post-multiplying by V,T and RV;, respectively, and recalling that SRV, = 772V}, it follows
that
VI(y"*Rr — RRsR)V; = VS (RCTC2R — v™ B, B )V,

which is exactly (A.4).

Appendix B

Proof of Theorems 3.1 and 3.2:

Necessity: Suppose the controller K(s) = Dy +Ck(sI — Ax)~!By is v-suboptimal and apply the
Bounded Real Lemma 2.1 to the realization (2.5) of the closed-loop transfer function F(G, K). It
follows that @ya:-(Der) < 7 which is equivalent to (C1) in virtue of (A2). In addition, the Riccati
equation

AZ;XCI + XclAcI +7-2C31‘Cc1 + (7—2031‘Dc1 + XcchI)(I_ 7_2D3;Dc1)_1(7_2CZ;Dc1 + Xcchl)T + A = 0
(B.1)
must have a solution X,; > 0 for some A > 0. This algebraic Riccati inequality (ARI) will readily
yield (3.2)-(3.3) upon rewriting it in terms of the plant and controller parameters.
To see this, partition X,; and y-2X ' conformably to (2.5) as

X, = (;T "I) Y 2X5t = ( Af, "*4 ); R,SE€R™ M,N cR™. (B2

With this representation, X > 0 is equivalent to (C3) and MNT = v72] — RS. To establish
(3.2)-(3.3) and complete the proof, we could proceed as in [5] and block-partition (B.1) as well as
its dual solved by 7y~2X;'. The (1,1) blocks of these partitioned ARI’s would then yield (3.2)-
(3.3). With the sufficiency part in mind, it is however preferable to follow a slightly different route.
Specifically, observe that R, S, M, N fully determine X, as the unique solution of II, = X, I,

where I R g _1y
I, := (0 7’5147'); I, :=(NT 70 ) (B.3)

That is, X = II,IT. When pre- and post-multiplied by N7 and II,, respectively, (B.1) thus
becomes:

H{AZ;HL’ + Hg‘Aclnl + 7_2H’{‘CZ;C¢;1H1 +
(v 0T CEDy + MY Ba)I — v 2DEDy) (v~ 20T CiDy + T B,)T + IT AL, = 0.  (B4)

Note that (B.1) and (B.4) are equivalent since MT and hence II, are full row rank.

Next, replace A, By, Ce, D, 11y, 1I; with their expressions in (2.5) and (B.3), expand the
matrix products, and simplify the resulting block expressions. Introducing the notation (3.5) and
Yk :=I —v~2D% Dg, simple algebra based on (A2) shows that

_ 0T
7ECEDa+ 1T By = (S NS GO Dar )

¥~Y{B: + MprDg D}
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Together with (A 2), this allows to simplify the quadratic term in (B.4) to:
(v"*07 Ch Det + TG Ba)(J =7~ D4 D)™ (v Cg D + M7 Bar) " =
(531335 + NsYTxr'N¥ — NsCy — CINT + CTTkC2  y~' {SBiBf + (NsYg' — CT)D% Mg})

v~ {B1BT S + MrDk (Y§'NT - C2)} v~2{B, BT + MrDx Y5' D} M}}
(B.5)
Completing the calculations with A partitioned as A = (23,1 212), it follows that (B.4) and
12 B2

hence (B.1) are equivalent to the following system of three matrix equations:

AR+ RAT + RCTC IR+ v 2B\ BY — B2B] + Mp(I - v *Dx D%)"'ME + 1*(R, M)A (AfT) =0; (B.6)

ATS + SA+SBBTS +y72¢TC, - €T Cy + Ns(1 = v~ 2DE Dk ) 'NT + Ay, = 0; (B.7)

NAKMT + S(A+ BaDkCy)R+ S(v™2B BT + B,CkMT) 4+ (v7*CTCy + NBkCy)R +
v 2AT + 4y INs(I — v 2 DL Dg) ' DEME + Ay R+ A1aMT = 0. (B.8)

Recalling that A > 0, the ARI’s (3.2)-(3.3) readily follow from (B.6)-(B.7). Hence (B.1) provides
matrices R, S, M, N which satisfy (C2)-(C3).

Sufficiency: Conversely, suppose we are given matrices R,S, M, N, Bx,Cg, Dx which jointly
satisfy (C1)-(C3). Without loss of generality, M and N can be assumed full column rank. Our
goal is to reconstruct some y-suboptimal controller from this data. In light of the necessity part, a
natural approach consists of

(i) constructing A > 0 for which (B.6)-(B.7) hold;
(i) finding a solution Ax € R*¥** to (B.8).

Wh . . _ (S U I ~R f
en feasible, this will ensure that X := NT 0 0 yMT solves the Bounded Real

Lemma equation (B.1). Since this X, is positive definite in virtue of (C3), Lemma 2.1 will in turn
guarantee that K(s) := Dg + Ck(sI — Ax)~'Bg is a kth-order y-suboptimal controller. Hence it
suffices to establish the feasibility of (i)-(ii).

Feasibility of (i): From (B.6) and (B.7), adequate A’s should satisfy (with the partition A =

(An sz))_
AT2 Dy )™

A >0 An+’)‘2(R,M)A (A{I:T) =0; As+ A, =0. (Bg)

Take A, = —Ag. Feasibility of the first two constraints in (B.9) is then addressed by Lemma A.1
with P := —As and @ := —Ag. Since —Agp > 0, —As > 0, and M is full column rank, this lemma
is applicable provided that

VzT(AR - ‘72RA5R)V2 =0 (B.IO)

where V;, denotes any orthonormal basis of Ker MT = Ker (y~2I — SR). To check this condition,
observe from Lemma A.3 that

VI {Rn + ByBT — y*R(Rs + CTC,)R} Vo = 0 (B.11)
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holds for the Riccati residuals
Rr = Ar— Mp(I -7 *DxDE) ' Mg ; Rs=As — Ns(I -y~ 2D} Dg) ' NY.

Using the identities V,T Mg = VJ(By + RCTDY%) and VT RNs = VJ(RC, + v"2B,Dg), (B.10) is
easily deduced by expanding (B.11) and simplifying the resulting expression. Hence Lemma A.1 is
applicable and guarantees the existence of some matrix A satisfying (B.9).

Feasibility of (ii): Given any A solving (B.9), (B.6)-(B.7) hold. To exhibit some controller state
matrix Ax € R¥** for which the Bounded Real Lemma equation (B.1) holds, it now suffices to show
that the third equation (B.8) is solvable for Ax. Note that (B.8) is exactly (3.8) since A;; = —Ag.

When k = n (full-order controller), solvability of (B.8) is immediate since M and N are in-
vertible. By contrast, the reduced-order case (k < n) deserves some attention due to the row rank
deficiency of M and N. Let T denote the right-hand side of (3.8):

T :=~72AT + S(v7*B,BT + B,CkMT) + (y7?CTC, + NBxC3)R +
S(A+ ByDgCo)R+ 7 *Ns(I =y *DEDk) ' DY MY ~ AsR+ A, MT

and consider some basis V, of Ker(y~2I — SR) = Ker MT. Observing that RV, is then a basis of
Ker (7% — RS) = Ker N7, it is immediate that (B.8) is solvable if and only if

TV, = 0; VIRT = 0.

Checking these requirements is best done on the reformulations (3.9)-(3.10) of (B.8). To obtain
(3.10), simply replace the term SAR + y~25B, BT of (B.8) by

-5 {RAT + RCTC\R - ByB] + Mg(I - v7*DxDk)™ Mg + 7*(R, M)A (Af")}

in virtue of (B.6). A similar manipulation based on (B.7) yields (3.9).

Using the right-hand side of (3.10) as equivalent expression of 7, the condition 7V, = 0 is
readily verified when observing that MTV, = 0, NTRV, = 0, and ZV, = 0. Similarly, (3.9) allows
to write

VIRT = —-VIRSMCEF(I — v *DxD}) *MF + VI R(SAr —~ AsR + A2 MT)
which also evaluates to zero since VI RSM = 7‘2V2TM =0 and

R
MT
= —-725 {—'RAsR + RA]zMT + MA{ZR + MAzzMT} e ASR + A12MT
= Y(17 1 - SR)(-AsR+ A MT) + Y’ SM(AT,R + A MT).

SAR - AsR+ A MT

—‘)’QS(R, M)A ( ) - A5R+ AlgMT

Hence (B.8) is always solvable and uniquely determines Ay since M and N are full column rank.
]
Appendix C

Proof of Theorem 4.1: Assume (R,S) € A,. First consider the full-order case (k = n) and let
Dy be any matrix such that o,.:(Dk) < v. Since Rg,Rs are negative definite and M, N are
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square invertible, Bx and Ck can always be chosen so that both Ar and A are negative definite.
Invoking Theorem 3.2, y-suboptimal controllers K(s) = Dg + Cx(sI — Ax) 'Bg can then be
derived by reconstructing their state matrix Ax € R™*".

The reduced-order case (k < n) is more delicate because M, N are not invertible but only full
column rank. As a result, Mgz and Ng cannot be arbitrarily set through the choice of Bx and
Cpr. In turn, this constrains the choice of Dg through (4.7)-(4.8). To be specific, introduce some
orthonormal basis V, of Ker (y~2I — SR) as in Lemma A.3. Then the columns of V, and RV, span
Ker M7 and Ker NT and Lemma A.2 shows that (4.7)-(4.8) is feasible for some Bk ,Ck if and only
if Dy satisfies

VI {Rp + (Bz + RCIDL)(I - y~2Dx DL)~'(By + RCTDLY}V, < 0 (C.1)
VIR{Rs + (CT + SByDx)(I —y~2DLDk)"Y(CT + SB,Dk)T} RV, < 0. (C.2)

Using the identity (A.4) of Lemma A.3, it is easily verified that these two inequalities are
equivalent. Hence (C.1) summarizes the constraint on Dg. Observing that

( I y 1D\ (I - y~*DxDE)™ -y~ - 7-2DKD§)—1DK)
y~D¥% I T \-7"'DR(I - y~?Dg D¥})™! (I —4~2DEDg)-! ’
rewrite (C.1) as
I “iDg\"'( -Bf
VI(Rgr - v*RCTC,R)V, + VI (=B,,vRC}) (7_102 7 p ") (70223) V. <0.

By a well-known result on 2 X 2 symmetric block matrices, this last inequality is equivalent to (4.5).

Summing up, (4.7)-(4.8) are feasible if and only if there exists some D satisfying (4.5) together
with Opma: (Dx) < 7. Now, we claim that the Dy matrix proposed in (4.6) does satisfy these two
requirements. To see this, observe that Rr < 0 implies that

Y2CLRV, {VF (Y*RCTC,R — R)Va} ™ VI RCT < I (C.3)

Similarly,
BTV, (VI (12 RCTCLR — Rp)V2} ' VIB, < I (C.4)
since V,J(y2RCTC,R — RR)V; = VJ (B2BT — v R RsR)V, from Lemma A.3 and RRsR < 0.
With the shorthand & = V,T(v2RCTC,R — Ra)V4, it follows that
Omaz(V?BEV,@ VI RCT) < 4 Omac( BT Vo87Y%) 0,0 (79" ?VT RCT) < 7.

Consequently, the expression (4.6) satisfies 0q:(Dk) < 7. Moreover, (4.5) holds for this Dy in
virtue of (C.3)-(C.4).
Hence matrices Dk, By, Ck can always be computed which satisfy (4.6)-(4.7). The construction
of K(s) is then completed as in the full-order case.
|
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