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La Logique Conditionelle
“ COCOLOG”
our 1I’Observation et

la Commande des Machines
a Etat Fini

Peter E. Caines Suning Wang

Résumé

On considére des problemes d’observation et de commande des machines a
états finis (& entrée—état—sortie) ; ces problemes sont formulés par un arbre de
théories de logique du premier ordre. Etant donné une machine quelconque
M, on y associe un ensemble de langages du premier ordre qui facilite la de-
scription de I'évolution controlée et de l'estimation de I'état de M ; de plus,
les théories du premier ordre possedent des “axiomes de commande condi-
tionelle” qui prescrivent des actions de commande en boucle fermée lorsque
des conditions (qui dépendent de I’histoire du systeme) sont satisfaites. En
particulier, ces axiomes peuvent contenir des groupes de commandes qui font
passer le systéeme d’un état (ou d’un état estimé) a un état cible, si on peut
démontrer ’existence d’une telle séquence. La théorie initiale est la théorie
générale de M et puis a chaque instant suivant, on accepte des nouvelles
observations (des entrées-sorties du systéme) comme axion.ss nouveaux ;
ceux—ci s’accimulent pour conduive les nouvelles théories. On appelle une
telle collection de théories, pour n’'importe quel systeme, un COCOLOG
(acronyme pour les mots anglais “conditional observer and controller logic”).
Dans cet article on donne une sémantique pour chaque COCOLOG fondée sur
les segments initiaux (partiellements ordonnés) des séquences entrées-sorties
d’une machine. Des regles “hors logique” établissent la correspondance entre
les théories d’'une COCOLOG. Dans cet article on démontre la complétude
et la consistance de chaque théorie d’une COCOLOG et la décidabilité est
aussi établie - grace a la propriété qu’il n’existe qu'un modele de chaque
théorie. Des exemples du fonctionement des controleurs COCOLOG sur des
machines finies simples sont présentés.



Abstract

The problem of observation and control for partially observed input-state-output machines
is formulated in terms of a tree of first order logical theories. A set of first order languages
for the description of the controlled evolution and state estimation of any given machine M
is specified; further, conditional control axioms are formulated so that closed loop control
actions occur when specified past observation dependent conditions are fulfilled. In partic-
ular, conditional control axioms may include commands that steer the system state from a
current partially observed state (estimate) to a target state, if such a sequence of controls
can be proven to exist. Starting from a general theory of M at the inilial instant, observa-
tions on the input-output behaviour of the system at any later instant are accepted by the
system as new axioms; these are then used together with the previously generated theory to
_generate the current theory We use the acronym COCOLOG to denote the family of first
order conditional observer and controller logics for any given input-state-output system. A
semantics is supplied for each COCOLOG in terms of interpretations of controlled transi-
tions on a tree indexed by the possible sequences of input-output observations. Extra-logical
rules relating members of the family of theories of a COCOLOG are then presented in the
form of meta-level axioms and inference rules. In this paper consistency and completeness
of the first order theories in a COCOLOG family are established, decidability is obtained
using a unique model property and examples of the operation of a COCOLOG logic control
gystem are given.



1 Introduction

In this paper we introduce certain partially ordered sets of first order logical theories which
we call conditional observer and controller logics, or COCOLOGs for short. A COCOLOG
provides a logical system for (i) describing and reasoning about the state estimation and
control of a given finite input-state-output machine M, and (ii) acting upon M via a closed
loop logic regulator R carrying the corresponding COCOLOG. (By abuse of language, we
shall refer to all such COCOLOG-structures by the generic term COCOLOG.)

A particular subset of the axioms in each of the constituent logical theories of a CO-
COLOG is called the set of conditional control arioms (CCAs); these are formulated so that
certain control actions are specified at an instant k when certain past measurable (i.e. past
observations dependent) conditions Cj are fulfilled. In COCOLOG this translates precisely
into the existence of a proof, in the corresponding first order logical theory, of a predicate
describing the conditions Cj. Conditional control statements may include, for example, con-
trol commands that will steer the current system state, or its estimate, to a given target
state £T; such commands would be implemented whenever a sequence of controls achieving
this objective can be proven to exist, with the uniqueness of the selected control ensured via
a prescribed arrangement of the CCAs.

The conceptualization of a feedback regulator system adopted in this paper is qualita-
tively different from the usual notion of a feedback system. In the customary formulation, a
classical feedback regulator R is an input-output dynamical system whose inputs are typi-
cally the measured outputs of the controlled system £ and whose outputs are the controlled
inputs to ¥. Hence the system and the regulator are objects of the same type, namely input
(-state)- output dynamical systems. However, in our formulation, when ¥ is in a feedback
loop with a logico-linguistic regulator (henceforth simply a logic regulator) R the situation
is quite different and we now give a sketch of the operation of the system (£,R).

At each discrete time instant k, the output yi of the system ¥, taking the value y’ ¢ Y,
is mapped extra-logically into a predicate which is accepted by the regulator R. In the
present case, R is conceived of as a dynamical logical system mapping theories to theories
(see Caines, Greiner, Wang [1988], [1991]) and emitting outputs via a second extra-logical
map. Let the theory carried by R at the instant k — 1 be denoted Th(of~!), where of™!
denotes the sequence of observations over [1,k — 1]. At the instant k the equality predicate
relating the constant Y (k) at k to the observed quantity y’ is accepted as new information
into the theory Th(o'l"l). By this we mean that the equality predicate is taken as a new
axiom to be added to Th(of™!). In addition, the conditional control axioms CCA; and
the state estimation axioms indexed by k, are also accepted as new axioms. The theory
carried by R is then transformed into the deductive closure of (i) Th(o%™!), (ii) the state
estimation axioms and (iii) the axioms CCAy, and this is relabeled as Th(of). By their
design, the conditional control axioms and the state estimation axioms CCAj yield, within
Th(o%), unique, deducible, values U(k) for the input to £ at k. The predicates defining these
values are then mapped by the second extra-logical transformation referred to above into
quantities which form the inputs to £ at the instant k. This completes the dynamics-to-
logical theory cycle ¥ — R — X. The system £ now performs another dynamical evolution



step to generate the observed output yx4; at the instant k 4 1 and the cycle repeats.

The process above is initiated with the system ¥ in its initial state x5 and the regulator R
carrying only Tho A Th(03), where Th(o%) consists of the deductive closure of the dynamical
axioms of M (i.e. those describing the state transition and output maps), together with the
logical axioms, the axioms for equality and the axioms for the reachability predicates.

(It is evident that the ¥ — R — ¥ feedback loop may be generalized to a loop £ —
R — L, where L is itself a dynamical logical system, but the investigation of this is left for
future work.)

The exposition in this paper is in terms of finitl state machines solely to establish the
theory of COCOLOG in its simplest context. There is no obstruction, in principle, to extend-
ing the theory to machines in continuous time, extended state machines and the automata
of Ramadge-Wonham DES theory (see, for instance, Ramadge and Wonham [1987,1989],
Wonham and Ramadge {1987} and Lin and Wonham [1988]) ; such extensions form a part
of our program.

The development of COCOLOG for dynamical control systems has a two-fold motivation:
first, the hierarchical nature of contemporary computer controlled systems may be better
understood and enhanced by a study of regulator systems conceptualized at the logico-
linguistic level. A notable example in this context is the capacity of reasoning systems to
accept and operate on existential assertions, something a classical dynamical regulator is, of
course, incapable of doing. Second, a control objective in COCOLOG, such as steering the
system state to some state zT, may be modified at any instant in the controlled machine’s
operation by conditions which are expressed via conjunctions and disjunctions of predicates;
such conditions will be accepted by a COCOLOG regulator as new CCAs and on the basis of
these new control laws will be deduced. By their nature, conventional dynamical regulators
cannot easily accept significantly modified objectives, but must be redesigned to fit a new
task. (We note this is in contradistinction to the ability of conventional regulators with fixed
control objectives to adapt to changing system dynamics.) We conjecture that, over certain
non-trivial classes of control problems, the computational cost of an automatic (adaptive)
deduction of a new control law as a result of changes of control objectives (and possibly
dynamics) will be smaller than the cost of pre-computing the appropriate laws for all such
possibilities. It would also appear that information concerning system performance and
objectives which involves flexible combinations of rules, necessary conditions and sets of
alternatives is best expressed logico-linguistically and hence a logic based controller is most
suitable for operating in this domain.

Previous work on the formulation of the theory presented here and its ramifications has
appeared in the papers Caines, Greiner, Wang {1991}, Caines, Wang, Greiner [1988], Caines
and Wang [1989 a,b], Wang and Caines [1991], and, in particular, Caines and Wang [1990)
and the thesis of Wang [1991] on which the exposition in this paper is in part based.

Earlier works which are analogous to, but different from, that presented here are the
situated automaton work of Rosenschein and Kaebling [1987] and the line of research of
Thistle and Wonham [1986], Ostroff [1987, 1989a, 1989b] and Ostroff and Wonham [1985,
1989]. In the latter two sets of work a fully elaborated temporal logic framework is presented
to verify the correctness of feedback control algorithms for extended state machines. More
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recently, Kohn [1988, 1991] has devised a formulation of the logic control problem in which
equational axiom systems describe the dynamical properties of continuous time systems
and the declarative language of the system expresses optimization goals and constraints.
Automatic automata based inference procedures then create what is called a declarative
control architecture.

We conclude this introduction with a brief remark about computational implementation.
In its most direct implementation, a COCOLOG controller requires the real time implemen-
tation of automatic theorem proving (ATP) programs. The status of automatic theorem
proving might suggest that this would be a formidable task. However, the restrictive nature
of the system dynamical axioms and the nature of certain restricted classes of CCAs provide
an opportunity to increase the efficiency of standard ATP programs. This has been initiated
in Wang and Caines [1991], where a technique called Function Evaluation (FE) resolution is
introduced. This essentially permits one to exploit the purely dynamical properties of the
system via certain syntactic programs and tables that work in parallel with a given ATP
program. Initial experiments have been conducted in which FE-resolution is implemented
(using software developed by Q-X. Yu) in conjunction with the ATP software (GTP) of
Newborn [1987]. The results are encouraging in that the FE-GTP software demonstrates
simple theorems about non-trivial machines that defeat conventional ATP software (in this
case GTP without the FE extension).

2 Finite State Machines

In this section we formally introduce our finite machine set-up and define just those obser-
vation and control notions which will be required in subsequent sections of this paper.

Definition 2.1. A (partially observed) finite (input-state-output) machine is a quintuple
M = (X,U,Y,®,n) where X is a (finite) set of states, U it is a (finite) set of inputs, Y is
a (finite) set of outputs, ® : X x U — X is a transition function, n : X — Y is an output

tion.
function n

Concerning notation, we shall sometimes write u” for the (n — ¢ + 1)-element sequence
[, Uig1, Uip2, -+ +, Un), Wwhere u; € U denotes the input at the time instance j ¢ Z, (and where
u; is identified with [u;]) and ¢* will denote the empty input string; the same notation will
also be used for output sequences.

The dynamical evolution of a finite machine M = (X,U,Y,®,7) can be displayed by
taking U* to be the set of all finite sequence of inputs and by extending ® : X x U — X to
®: X x U* — X, where for all ¢,n ¢ N4, for all u? ¢ U* and for all z ¢ X, ® is recursively
defined by:

&(z, ¢*)=x

O(z, ul)=0(®(z, u;), ulyy) (2.1)

The initial (respectively, current) state dynamical observer problem for a finite machine
M is to estimate M’s initial (respectively, current) state from observations on its inputs and
outputs over a finite time period. An initial (respectively current) state dynamical observer
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takes, as input, the observed behavior of a system, i.e. a sequence of input/output pairs,
and outputs an estimate of the initial (respectively current) state of the system.

Definition 2.2 The N-element state sequence V¥ ¢ X” is an N-consistent state sequence
with respect to a given input-output sequence, of = [<y1 >, < u,y2 > -+, {un_1, yn)] €
Y x (U x Y)N-1 if the relation CS(z) given by,

T = Q(ml,uf'l) and y; = n(zx) forall ke[l,---,N], (2.2)

is satisfied. The set of all such sequences is denoted C'SS(o}). 0

Definition 2.3  An initial state estimate set, with respect to the N-element observation
sequence, o} , written ISE(o}) or {z,}(oV), is the set of initial elements of consistent state
sequences corresponding to o}, i.e.,

ISE(0Y) = {z:}(o¥) = {z € X; = = Pi(zV) for some z} e CSS(o))}.  (2.3)

where P;(-) denotes projection on the first component of the argument, and, analogously, a
current state estimate set, with respect to the N-element observation sequence o}, written
CSE(o}) or {zn}(o}), is the set of final elements of consistent states sequences correspond-

ing to o, i.e.,
CSE(oY) = {;;}(of’) = {z ¢ X; z = Pn(2) for some zV ¢ CSS(ol)}, (2.4)

where Py(-) denotes projection on the N-th component of the argument. 0

Definition 2.4 A finite machine M = (X,U,Y,®,7) is said to be non-anticipatively
initial (respectively current) state observable if there exists a sequence of non-anticipative
input functions {uy;ux(of) € Usup : UF! x Y¥ 5 U}, k= 1,2,--, i.e,, a (non-anticipative)
control law uN4, and a constant K ¢ IN,, such that for all z ¢ X, and for all N > K the
initial (respectively, current) state estimate {;:T} (o)) (respectively {Zn}(ol)) is a singleton

whenever oY is the output resulting from the input u™4,

O

In other words, there exists a past-dependent control law which forces the initial state
estimate to give a single value after a finite time period.

Definition 2.5 A finite machine M = (X, U, Y, ®,7) is said to be strongly initial (respec-
tively current) state observable if there exists a K € IN,, s/u\ch that for all N > K, and all
ul¥ € UV, the initial (respectively current) state estimate {z;}(o) (respectively {Zn}(o}))
is a singleton. The analogous weak notions of observability are said to hold if there exists at

least one input sequence ul¥ ¢ UN such that the corresponding properties hold. a

Clearly the strong i.s.o (respectively c.s.0.) property implies the non-anticipative i.s.o.
(respectively c.s.0.) property holds. For any input-state-output finite machine, M =



(X,U,Y,®,n) we have the property: M is weakly current state observable if and only if
M is non-anticipatively current state observable (see Caines, Greiner, Wang [1991], Wang
[1991}).

In the rest of this paper observability will always be taken in the strong sense.

Consider any finite machine M = (X, U,Y,®,7), then for any observation sequence,
oY ¢ OV, the following equations hold:

ISE(P*) = {zi}(ol ) = {21} (o) ) @7 (17 (yna), ud) (2.5)
= é‘l"l(n“’(yk),u{"l),
CSE(oY*) = {zna} (o)) = &({zn}ol'), un) 0~ (yv41) (2.6)
c ﬁ o(n" (gs), ul ),

with equality in (2.6) if ®(-, u) is one to one for each u ¢ U, where in (2.5), (2.6) ® has been
extended to take sets of states in its first argument: ® : P(X) x U* ——— P(X), where P(S)
denotes the power set of the set S by ®(4,u}) = {z € X;z = ®(z’, u}) for some z’ € A}, !
denotes the inverse of &, &~ : P(X)xU* +— P(X), given by ¢7'(A,u) = {z € X;¢(z,u}) €
A} and similarly for n~?, and finally {zo}(0?) is defined to be X. (See Caines, Greiner, Wang
[1988, 1991).) It will be noted that these equations possess the predictor-corrector form of
many recursive algorithms in systems and control theory.

The corresponding partially ordered sets of initial and current state estimate sets will
be referred to as the initial and current observer trees respectively (for the given machine).
Observe that, although the state estimate sets may be identical for distinct input-output se-
quences, such distinct sequences uniquely define a directed acyclic graph with no confluences
of edges. So, at the cost of some redundancy, we shall label the current state observation pro-
cess by branches of the tree of input-output sequences, and the same is true of a COCOLOG
family of theories.

Definition 2.6 A finite machine M is said to be controllable to =T (respectively control-
T
lable) if for all z ¢ X (and all y € Y, respectively) there exists a sequence u;‘("’ ) (respectively

4) such that ®(z,u]"*") = o7 (respectively &(z,u;*¥) = y). g

In this paper controllability is taken in the second stronger sense.

The papers Caines and Wang [1989], Caines, Greiner, Wang {1988, 1991], contain results
concerning the combinatoric properties of initial and current state observer trees for any
given automation. Furthermore, a dynamic programming theorem is given for a current
state observable and controllable finite state machine; it states that in order to steer the
system state to a target state 27 there exists a controller whose feedback law is a function
only of zT and the state estimate sets.



3 COCOLOG: Syntax and Semantics

3.1 Syntax of COCOLOG L

The COCOLOG language consists of a set of symbols S(L) and specified formation rules (or
syntax). The subject of the COCOLOG language is a finite machine M = (XM, UM, YM &, 1),
where XM is the set of states, UM is the set of controls, Y™ is the set of outputs, ® is a state
transition function ® : XM x UM — XM and 7 is a state output function, n: XM — YM,

We first define S(L) as follows:
S(L) = Consy, U VarLUFunLU Aprp U Qual,U Lecoy, U{_L}

The component sets of S(L) are defined as follows:
Constant Symbols

Consy = {xl,--- ,:vN}U{yl,---,y”} U{ul,---,u"‘,u‘} U{O,l,--- JE(N),k(N) + 1},

where k(N)+1 will denote the upper bound on time to which our arithmetic axioms will give
some of the properties of infinity. Here k(N) is taken to be an arbitrary number, for example
a number greater than |X|, or |X|?, since (see Caines, Greiner, Wang [1991]) an initial, or
current, state observer tree can have at most |X|, or | X|? respectively, non-singleton layers
before it splits into nodes that will not further reduce in size.

Variable Symbols

VarL = {x)xly:l:’,, T } U{y7y'1y”7' o )}U{uau”u”’ Ty } U{l) I,) R }
Where the variables are intended to be varying in different sorts or domains: the variables '’

z,z',z", - - will be interpreted to represent elements in the set of states X, variables y,y’,- -
will be interpreted to represent elements in the set of state output Y, and so on.

Function Symbols
Fung = {8, ),70), 410, ) =)

where the sort of each function symbol is defined as follows:

®(a,b) = c: where a and c are symbols in {z!,---,z"} orin {z,z’,---} and b is a symbol
in {u!,---,u™ u*} orin {u,u’,---,}.
f(a) = b: where a is a symbol in {z',---,2¥} or in {z,2’,---} and b is a symbol in

{y*,y%---,y?} or in {y,¥',y", - }.

+1(a,b) = cand —r(a,b) = c: wherea,band caresymbolsin {0,1,2,---,k(N),k(N)+1}
orin {L,l',---,}. '



Terms
The elements of the set Term;, are defined via:

(i) Each constant and variable symbol is a term, i.e., Cons,JVar, C
Termy,.

(i1)) Iftisaterm and f is a function symbol, then f(t) is a term.

(ili) The elements of T'ermy, are constructed only by steps (i) and (ii) above.

Atomic Predicate Symbols Apr; = {Eq(o, -),Rbe(-,-,-)},

Quantifiers Quap = {V}
Logical Connectives Lcoy, = {—»}

Logical Constants {L1}.
Any well formed formula wif of L is given by the Backus-Naur syntactic rule, see Goldblatt
[1987]:
An=(t, - ta) | AL — Az | L | VoA
where ¢(ty, - ,tq) € Apry, Ay, Az are wifs and ¢4, --,t, € Termy, in the sense that a wff is

an expression that parses according to these rules until after a finite sequence of steps one
halts at elements of S(L). The set of such formulas will be denoted Fmay, or L.

The other logical connectives —,V, A, —— and the quantifier 3 are defined as follows,
where the parentheses ( and ) are used whenever they clarify the meaning of the formula:

“Au=A—- L
Al A A2 o= ‘“(Al - —!Az)
Ay — Ay = (A = A) A (A2 = A))
AV Ap =4, - A,
JvA ::= (Vv A).

3.2 Semantics of COCOLOG L

In the following we shall distinguish symbols used in the specification of the finite ma-
chine M and those used in the COCOLOG language L by the convention that italic let-
ters denote the constants and variables of M, while COCOLOG function symbols will be
denoted by a bar over the corresponding functions of M. Following standard terminol-
ogy (see e.g. Goldblatt [1987]), an L-structure Uy, = (D, I), or an interpretation I (with
(domain D), is a pair, where, first, D = XUY UUUIgnN), where X,Y,U are sets and
Iyny = {0,1,2,---k(N), k(N) + 1}, is the domain of interest and, second, I is an interpre-
tation function defined as follows:

IF=%:XxU-X,



I =n:X=Y,
I(+1) =+ ¢ Iy X kv — Iy,
I(=1) = =) * Ty % Ty = Ty,
I(c)=ceD where ceConsy.

I(Eq) = {(t,t’) |t,t'eD,t = t'} cp?,
I(Rbe) = {(x,x’, k) | there exists ull‘ e U*, &(x, ull‘) = x'} C X? x L)

Addition +y(N) and subtraction —yN) over the finite set of integers {0, 1,2, .- k(N), k(N)
+1} are defined by the following expressions, where we follow the convention that +y(n) and
k—(~) denote the addition and substraction in the L-structure U/, and + and — denote the
standard integer arithmetical operations:

s b a+b ifa+b <k(N)
KNP =1 k(N)+1 ifa+b>k(N),

b= a-b ifa—-b>0
ATk D=\ k(N)+1 ifa—b<o.

These finite integer arithmetical operations are chosen to express the dynamical properties
of M in terms of a bounded integeral number of steps.

As usual, a Uz-valuation (I-valuation) is a function V : Vary — D satisfying

X ifve{z',z",- -},

Y ifve {y7y’1y"’°"}’
Viv) e 8] ifve {u,u,u" -},
Lny ifvedd, 0,0},

which can be extended to V : Termy — D by

V() ifteVarg,
V(t) = { I(t) ift e Consy,
I(H)(V(t),V(t;)) ift = f(t1,2;) and f € Funy.

We take V ~, V' to mean that V and V"’ are identical except in the value they assign to
v and

Viv/x)=V' if V~,V' and V'(v) =x

UL = A[V] stands for the property that a formula A satisfies a structure Uy, (or satisfies
I) under the valuation V; this is defined recursively by:
Uy = Bq(t, V] i V() = V(E),
Uy = Rbe(z, 2’ k)[V] ff (V(z),V ('), V(k)) e I(RbL),
U, E (A = A)[V] iff Uy | A1[V] implies Ug = A[V],
u, ¢ L vl
UL = YvA[V] iff for all x e D, it is the case that U, | A[V(v/x)].
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The property that a formula A is true in the structure Uy, or equivalently, that I (on the
domain D) is a model for A is defined by

UL A iff for all Vit is the case that UL | A[V];
conversely, A is false, or I (on the domain D) is not a model for A, defined by:

UL A ff for all V| it is the case that UL = A[V]

In standard terminology, a formula A is called valid if it is true in all structures Uy, (i.e. all
interpretations I) if and only if for all U, U, |= A. A formula A is satisfiable if there exists
some structure Uy, and some valuation V such that the satisfaction relation U}, = A[V] holds.
Obviously a formula A is valid if and only if —A is unsatisfiable. Unless we relativize to a set
of interpretations, the only valid formulas in a theory are those given by the logical axiom
schlemata given below. This is because these must hold for any set theoretic interpretation.
Other formulas, in particular the special axioms of a particular theory, may not be true
under some interpretation.

3.3 Axiomatic Theory of Th,

The formal logical theory Thg of the language L consists of a set of axioms, that is to say a
set of formulas from F'may, which shall be required to hold in the intended models, the set of
inference rules operating on wffs of Fma,, together with concepts of proof and theoremhood.

A general theory of finite machines is given by simply characterizing the functional prop-
erty and the semi-group property of the state transition function ® and the functional prop-
erty of the output function 5, namely:

(i) For any u € U, any z,z',z" ¢ X™ and any y1,y; € Y™, if ®(z,u) = =’ and ®(z,u) =
x”, then &’ = z”; similarly, if 9(z) = y1 and n(z) = y2, then y1 = ya.

(ii) For all z € X, all n e Ny and u} € (UM)",

O(z,u}) = O(d(z,ul ™), u,).

A general (partially observed) finite machine theory will be a theory true for every finite
machine; such a general theory specializes whenever the transition function and the output
function properties are further restricted. In this subsection we first present the axiomatic
COCOLOG theory Thy corresponding to the information at the root node of the observer
tree for a given finite machine M. Further specializations of this theory to Th(of) are
obtained as observations are collected, as time proceeds, on the input-output behaviour of
M. This development is presented in the next subsection. Note that since the dynamics
of M are known, the incomplete information aspect of Th(of) is solely due to the partial
observation nature of the problem.

Tho has a set of logical azioms, a set of equality azioms for an equality predicate, a set of .
arithmetic azioms and a set of spectal azioms which specify true facts concerning the subject
the logic describes (in at least one of its interpretations). Correspondingly, Th(o}) is a logical
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theory that has the observation azioms, the state estimation arioms and the control azioms
(all below) added to the logical theory Th,.

Logical Axiom Schemata
For all A, B,C € Fmay,

(i) A— (B—A)
(i) (A-(B—-C)-((A—-B)-(A-C))

(iii) (- B —= -~ A) = ((-B —= A) = B) AXM!os
(iv) Vv A (v) = A (1)
(v) Vv (A — B) = (A = Yv B) v not free in A.

Any formula having the same form as one of these logical axiom schemata shall be called a
logical axiom. Hence the logical axiom schemata give rise to an infinite number of axioms.

Equality Axiom Schemata

In the following equality axiom schemata, P is any wff, i.e., P ¢ Fmar,z,2',2" ¢ Varg
and f € Fung.

(i) Eq(z,z)

(i) Eg(z, ) — Eq(a',2)

(iii)Eq(z, z") A Eq(z’,2") — Eg(z,2') AXM®4(L)
(iv)Eq(z,z") — Eq(f(z), f(z')) for each function symbol f in L
(v)Eg(z,2') = (P(z) = P(z')) for each predicate symbol P in L

Arithmetic Axiom Schemata

For any constants ¢,£,£" € Iy, if 1 +xny ' = 1, then the following arithmetic axiom

holds:
Eq(¢+.¢,¢"),
and if 1 —y(Ny I’ =1”, then

AXM=rth(L),
EQ(e -L ZI’ e”)

11



Finite Machine Axioms

The special axioms for a given finite machine M are as follows: For any pair of constants
z',z’ ¢ XM, and constant u' ¢ U, if z7 = ®(z*, u') holds for M, then the following dynamic
axiom holds:

Eq(®(z', u'), 27) AXMYY™(L).

Further, for any pair of constants 2* ¢ X,y € Y such that g(z*) = y* holds for M, the
following output axiom holds:

Eq(7i(z"), y") AXMPU(L),

a

The finite machine axioms given above possess an infinite number of models. It is proved
below that we get a unique model (up to relabeling isomorphisms) when we impose as axioms
the restrictions |X| = N, |Y| = p and |U|=m.

Reachability Axioms
We recursively define the reachability predicate Rbl(-,-,-) by the following axioms:

0. VzVz',Eq(z,2z') — Rbl(z,z’,0)
1. VzVz', (Ju, Eq(®(z,u),z')) «— Rb{(z,z',1)

2. VzVz'VI,Eq(¢, k(N)) V Egq(¢,k(N) + 1) V [{3z'3u, Rbl(z',2",£) A Eq(®(z,u),z")}
— Rbl(z,z", £+ 1)) AXMRbYL,)

3. VaVz', Rbl(z,z', k(N) + 1).

The reachability axioms specify the ! step reachability relation Rbl(z,z’,!) among any
pair of states z,z’. We note that in these formulas the variables z,z’, 2" range over X, the
variable u ranges over U and ! ranges over the integers 0,1,---,k(N) + 1. Formally Axiom
3 make all states reachable from each other in k(N) + 1 steps, i.e. in the number of steps
that plays the role of infinity in our arithmetic, while Axiom 2 excludes consideration of the
infinity case in order to characterize reachability on the finite numbers in the arithmetic.

Rules of Inference:
R1. Modus Ponens

A,A- B

5 ; where A,B e Fmar

R2. Generalization

— ; where veVarg
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We write ¥ to denote the set of special axioms of L, i.e., £ = {AXM°"**(L), AX M#¥"(L),
AX ML), AXM™(L)}. A proofin L is a sequence of formulas Ay, - - -, Ag in Fmay, where
A; 1 €1 < k, is either an axiom or a direct consequence of previous formulas via Rl or
1?2. The last formula Ax in the sequence is called a theorem and A,,---, Ax_; is a proof
of the theoremn Ax. A formula A is a theorem of a first order theory with equality, written
., A, if, in a proof of A, only logical axioms and equality axioms have been involved; A is
called a consequence (or theorem) of T, written £ b1, A, if, in a proof of A, axioms in ¥ are
involved; For brevity we write Tho = Tho(L) for the set of theorems of ¥; hence we have
Thy = {A: Xt A} and we use the standard notation Tho | A, which is customarily read
as A is a theorem of, or is provable (derivable) in, the theory Thy.

A structure Yy, (i.e. an interpretation I on a domain D) of the theory Thy is called a
model of the theory if and only if all the axioms of Thg are interpreted true in Uy, i.e. if and
only if I is a model for each axiom of T hq.

Example 3.1 The following is a simple example illustrating the notion of the logical
control theory Th, in COCOLOG. The finite machine M = (XM, U,Y,®,n) is given in
Pigure 1, where XM = {z1,2%,23},U = {ul,u?}, Y = {y', 5%}, n(s") = n(s?) = y',n(s%) =
y? and @ is given cxplicitly in the graph in the figure.

Figure 1: A Three State Machine

The COCOLOG system for this finite machine M consists of a tree of first order theories
Tho,Th(o}),Th(0?),---. Here we deal only with the theory Tho. We shall take k(N) =
k(3) = |X™|? = 9 and so “infinity” for the finite arithmetic of this theory is k(N) + 1 = 10.

The general logical axioms, the equality axioms, the axioms of reachability and the rules
of inference are as given above and the special axioms of the machine are given explicitly as
follows:

Eq(®(z®,u!), ') Eq(®(z!,v?), %) Eq(®(z?, u?), z?)

AXM¥2(L;)
Eq(®(z',u"), 2% Eq(®(2?,u'), 2%) Eq(®(X3,u?),2%)
Eq(7(z'),y") Eq(n(z*),y") Eq(@(z®), v?) AXM°"(Ls).
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The set of theorems of Tho is exactly the set of true formulas of L3, as guaranteed by
the general completeness result proved below.

To illustrate logical deduction in COCOLOG we shall give a proof of the theorem
Rbe(z!,z°,2) in theory Tho; this theorem asserts that the state x! is controllable to the state
x3 in two steps. Note that we can verify from the model in Figure 1, that Rb(z!,z3,2), is
true in T ho.

Proof of Rbl(z?,z3,2)

1. Eq(®(z? u'), z%) Finite Machine Axiom

2. Su, Eq(®(z?,u), %) 1 and AX M'9(iv)

3. Rb{(z?,2°,1) 2 and AXMP(L) (1) and MP
4. Eq(®(2', u?), z?) Finite Machine Axiom

5. Ju, Eq(®(z!, u), 2?) 4 and AXM"9(iv)

6. Ju, Rbé(z?,23,1) A Eq(®(z',u),z?) 3 and 5

7. Eq(2,14.1) Arithmetic Axiom

8. Rb(z',23,2) 6,7, AX MR (L3)(2) and MP

3.4 The COCOLOG Language L(of): Syntax and Semantics

The language L* A L(of) is an extension of the language L obtained by adding new function
symbols and atomic predicates in the following way:

S(L¥) A L(o5) = L 0 Consy, 0 Apr;, Fmapy
j=1 i=1

where Apr; = {CS’E,-(-)} and Consp; = {U(3),Y(5)}. The sort of each new function symbol
in L¥ is given by:

U(j) is a symbol in {u!,...,u™}

Y(j) is a symbol in {y?,---,y"}.

Set Fmag. = Fmap; then the set of well formed formulas Fmay; for j > 1 is defined by:

A:=CSEi(z)|B| A" — A" | WA,

where B € Fmapgi-1, and A', A" € Fmay;.

As before, an Li-structure Upx = (I, D) is a pair, where the interpretation function Ij
is an extension of I by:

I(CSEy) = {x;x e {ze}(0%) C x}

I (U(k)) = U(k) e D where U(k) € Conspx,
I(Y(k)) = Y(k) ¢ D where Y (k) ¢ Consps.

14



The satisfaction relation U+ = A[V]is an extension of U k-1 = A[V] obtained by adding
the following definitions:
Uy k= CSE()[V] iff V(z) € {zx}(0}) where o(1) = y(1),
of2) = (u(1),4(2)), -, o(k) = (u(k — 1), 5(k)),
U = B[V] iff Upr = BlV] for any B € Fmagc-1,
Ur = YvA[V] iff for all x € D, it is the case that
Uy, E A[V)(v/x) for any A € Fmays,
Llu '= (Al — Ag)[V] lﬂ uLk l= AI[V] imph'es L(u )= AQ[V]

The properties true and false for a formula and the concept of a model for a theory Th(o¥)
are defined in analogy with those of Thy.

3.5 Axiomatic Theory of Th(of)

At each instant k the observer receives u(k — 1) and y(k); for the constants v* and y* such
that u' = u(k — 1) and y* = y(k), the following formulas (i) and (iii) express the fact that
those observations are added incrementally as axioms to Thq to form the theory Th(o¥) of
L*.

Observation Axioms

For & > 1. and subject to the convention that axiom (ii) below holds only in case k > 1,

(i) Eq(Y (ki,y")
(i) Bq(U(k —1),u’) AXMeOb(LK)

O

It will turn out that in the formulation given in this paper the second axiom AXMP®P8(Lk)
is redundant; this is because the control axioms AXM®™(L*-1) assign the value of the
constant U(k—1) at k—1 in the theory Th(of~!) and by the definition of S(L*) S(L*+!),---
this value is inherited by all subsequent theories.

State Estimation Axioms

The following are the set of Azioms of Conditional State Estimation. They express in
axiomatic form the recursive formulas (2.6) for the current state estimate sets.

Incase k=1: ,
Eq(i(z'), Y (k)) «— CSEi(z)

: : AXMet (LX)
Eq(7(z"), Y (k)) «— CSE:(z").
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Incase k> 1:

3z,CSEi-1(z) A Eq(®(z,U(k —1 1)), z') A Eq(Fi(z"), Y (k))

—— CSE(z!)
= AXMe (LK)
3z, CSEx-1(z) \ Eq(®(z,U(k Ll =) A Eq(n(z"), Y (k))

Control Axioms

The following is the general form of a set of Conditional Control Arioms, where C;(-) is
a conditional formula expressible in terms of Fmapx:

Cr(Fmaye) — Eq(U(k),u')
-Ci(Fmaps) \ Ca( Fma«) — Eq(U(k), u?)

— 5 AXM (L)
"A (<C;(Fmags)) \ Co(Fmags) — Eq(U(K),u™)

y=1

A (~Ci(Fmas)) — Eq(U(k), ")

j=1

a

This set of axioms is central to the construction of COCOLOG. They have the following
interpretation: If the condition Cy(Fmags) is prova.ble in the theory Th(o}), then invoking
the first axiom, we obtain the defined constant value u! as the value of the control constant
U(k); if not, but if Ca(F'mare) can be proved, then the second axiom gives the defined
value u? to the control constant U(k); and so on. If none of the conditions C,C3,-+,Cn
hold, then the last axiom sets the control function equal to the arbitrary constant u*. This
procedure uniquely determines the value of U(k). When k — k+1, we make the meta-logical
step of passing to the theory Th(of*!) carrying along all the previous axioms including the
constant value u' chosen above (see Figure 2). This is formally enforced by the following
definition of the axiom set generating Th(o}):

2 = 3 ) {AXMOP (L)), AXM®* (L)), AXM(L)},

1=1

where ¥ is the axiom generating Tho. Hence, in the new Th(of*!), the observed control
action U(k) is precisely the constant value u’ determined in Th(of).
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/ N
Figure 2: A COCOLOG Tree of Logical Theories

Example 3.2 A set of Conditional Control Axioms which display a specific control law,
is the following.

Consider the machine M = (XM UM YM, 8,9),YM = XM 5 = id, together with the
control objective: steer the current state of the system to 7. For this example, the State
Estimation Axioms, AXM®*(L¥) yield:

k =1 Let the initial state of the system M be z7, then Y(1) = y’ = z/. In this case
AX M (L) gives CSE(z’) and 1 <p < N.

k=2 Let U(l) = u* and ®(2/,u*) = . Then Y(2) = y! = z’. So taking u = u?,y =
y', z = 27 we have

CSEx(z’) A Eq(B(«’,u"), =) A Eq(u(1),u') A Eq(7(2°),v*) A Eq(Y(2),3°)
and hence
Judy3z, CSEs(z) A Eq(®(z,u),z%) AEq(U(1),u) A Eq(7i(z%),y) A Eq(Y (2),y)
is satisfied and so we have

CSE;(z°) and ~CSE;(z™),m # £,1 <m < N.
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Let us adopt the following abbreviation: for CSEi(z(k)) A Eq(®(x(k),u),z'), where z(k) is
a state name, we shall write Eq(®(x(k),u), z'). Then set

C; = 32'3¢, Eq(®(x(k), u?), z’) A Rb(2', 27, 0)
C; = 32'3¢, Eq(®(z(k), u?),z) A Rbe(z', 27, ¢)

Cz = 32'3¢, Eq(®(z(k),u™), ') A Rbé(z', 27, 0)

and
* = - Rbl(z(k),zT,0) = ~Eq(z(k), zT).
Then set
Cy=CgANCy
Cn=CiyANC},

and arrange these conditional formulas into the axiom schema AX M (L*).

We.shall assume that M is such that in any state z/ € X, an extra m + 1-th control u*
has the effect of keeping the system at z7, i.e. ®(z’,u*) =27,1 <j < |X|.

The j-th conditional formula C; states that there exists a path of length greater than
or equal to one from the current state z(k) to the target state 7, and a control u/ either
steers the system to z7 in one step or is a.n initial control of a sequence (of length greater
than one) that steers the system state to z7. (Notice that the case of a path of length one
corresponds to £ = 0.) The corresponding Condltlonal Control Axiom states that Cy holds
for no control index k strictly less than j but C; itself holds. We observe that if the control
u* is used at the instant k by this COCOLOG controller it indicates that either z(k) = zT

or zT is not reachable from z(k).

Further inspection of the conditional formulas and the CCAs shows that they allow
the possibility, for certain machines, that the system would maintain itself in a sequence
of states from which z7 was reachable in a fixed number of steps L(L > 1) without ever
actually converging to zT. Such apparently perverse behaviour may be prevented by the
following elaboration of C7 for 1 < j < m:

* = Eq(®(z(k),w),zT)\/
[32'36vs {~Eq(£,0) A [<Eq(€ - s, k(N) +1)\/ ~Rbl(z(k), 2T, s)]
AEq(®(z(k),w’),z") A Rb(z',z",¢) }],

with the final version of the conditional formulas being C; = C5 A C7,1 < j < m. (The
literal ~Eq(¢, 0) is only included for clarity, as the case £ = 0 is excluded by the formula Cj.)
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4 Consistency, Completeness and Decidability of CO-
COLOG Theories

We say a set of formulas T is consistent with respect to the first order theory with equality if
there does not exist a formula A where A and —~A are both derivable from T. A first order
theory with equality generated by a set of special axioms ¥ is complete if any formula true
in every model of ¥ is deducible from Z.

The consistency and completeness of the axiomatic theory presented at Section 3 can be
established by a simple application of classical results on the consistency and completeness
of first order theories with equality.

We consider the following generalized form of completeness theorem for the theory Tho.
As before, we denote by = the set {AXM%"(L), AXM**(L), AXM™ (L)} of special axioms
of Thy; if A is a consequence of ¥ under a first order theory with equality then this is written
as X 1 A, and My will denote any model for X.

Theorem 4.1 (Soundness) For any formula A ¢ Fmay, and any model M of 3 we have:

L tL A implies Mg E A.

Proof

Soundness follows from the fact that the axioms ¥ are true formulas in every model M
of ¥ and the rules of inference preserve truthfulness, hence all deducible theorems from the

axioms will be true in any model of the axioms. 0

A set of formulas T is absolutely consistent with respect to a first order theory with
equality if and only if there exists some formula which is not derivable from T', i.e., 3A, T ¥/,
A.

Theorem 4.2 (Equivalence) For any first order theory with equality where Modus Ponens
is a rule of inference, the following are equivalent:

() T is consistent,i.e. T ¥/ L

(1) T 1is absolutely consistent, i.e. A, T ¥/ A.

Proof

(i) = (ii): (i) is equivalent to the statement that for any A,T F; A semantically implies
T ¥/ —~A (since otherwise one has T+, A and T -, ~A whichis A -1 and so T +p L
by Modus Ponens). This implies there exists a formula A such that Tt/ A and hence (i)
implies (ii).

(ii}== (i): (i) is false if and only if for some formula A, T 1, A and T k7, ~A. Now take
any formula B ¢ Fmag. Then we have b, ~A — (-B — -A) and T F; ~A. Hence, by
Modus Ponens, we have T 1 =B — -A.
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In the same way, we have -, A — (-B — A)and T+ A, hence we have T 1, =B — A.
Again by Modus Ponens and the third logical axiom we get T I-;, B and hence we get the

negation of (ii) as required. .

Theorem 4.3 (Consistency) X is consistent with respect to the first order theory with
equality, i.e., E Y L.

Proof

This follows from the existence of the model My for the set of axioms ¥. Take any
formula A ¢ £ which is an axiom of The. Then we have My ¢ —A. By the soundness
theorem, this implies ¥ I/, —=.A. By the Theorem 4.4, this implies £ I/;, 1 and hence X is

istent.
consi 0

Theorem 4.6 Generalized Completeness A formula A € Fmay, is true in every model
Mgz of ¥ if and only if A is a consequence of ¥ under the first order theory with equality,
i.e.

Mg EA iff Shps A

Proof

We only prove the completeness part of the theory here, the soundness part follows from
the Theorem 4.1

Suppose X t/p A, we need to show there exists a model Mg such that Mg = A.

Y U{-A} is consistent since ¥ is consistent and the assumption is that £ {/;, .A. Now by
Henkin’s Theorem (see e.g. Mendelsen [1964]) states that every consistent set of first order
formulas has a model. Hence there exists a model M;JU{" 4 for Y U{-A}. But this model

is also a model Mz A MEU (- A}for ¥ and clearly Mg b A, as required for X. 0

Next, we construct the unique model property for £ and therefore we get decidability of
the theoremhood for COCOLOG theorems.

As we mentioned before, we can get a unique model by adding additional axioms to specify
sizes of X, U,Y. Otherwise, there can be infinitely many different models. For example, any
finite or infinite machine M' = (X, U,Y, ®', ') satisfying X C X', U C U',Y C Y’ and such
that ®' and 5’ are compatible with ® and n on X,Y and U, can be a model of the given
machine axioms. Hence the machine axioms alone cannot uniquely characterize a given finite
machine. In fact, one cannot determine a unique model by any given set of axioms. The
most one can achieve by axiomatization is a set of equivalent models up to isomorphism.
Hence uniqueness is only used in this sense.

Suppose |[XM| = N, |[UM| = m and |YM| = p, we first consider the size azioms for XM,
thén we can derive the size axioms for UM and Y™ respectively in a similar manner.
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The Size Axiom of XM

X —Eq(z!,2%) A ~Eq(z!,z3) A Eq(z',z*) A - A -~Eq(z',z")
A—Eq(z* z3) A ~Eq(z®,z*) A --- A ~Eq(2?,z")
A-Eq(z3,2*) A - - A~Eq(z? z")

A ﬂEq(a:N"l, a:N)

X specify the fact that there are at least N distinct constant symbols in the state space
XM of the finite machine M, i.e., |[XM| > N.

Next we specify the fact there are at most N elements in the intended model by ~X#,.

=1

N .
~X{, Ve (\/ Eq(z, z‘)).

By adding X#' and =X4%, to the originally proposed machine axioms the only models
one can get will be the models that have exactly N distinct states. That is the set of N-state
machines in which ® and 7 are given as specified. Further, if we add restrictions on the size
of UM and YM we get a unique model for M.

In the following we denote M and M’ as finite machines and also let M, M’ denote the
sets M = XMUUMUYYM and M’ = XM UM yYM.

Definition 4.1 If M and M’ are two finite machines, then a map h from M to M’ is
called a homomorphism if

h(®(x,u)) = ®'(h(x), h(u)),
h(n(x)) = n'(h(x)),
h(+1y(1L,1)) = +iay (R(D), A(1')),
h("k(N)(lall)) = ‘Z(N)(h(l), h(1')).

h is called an isomorphism if there exists a homorphism ' from M’ to M such that the

composition h' o h of k' and h is the identity on M. 0

If two L-structures Uy, U] for Tho are such that the machines M, M’ are isomorphic we
say U, Uy, have isomorphic pre-interpretations. If the relations on the domains correspond-
ing to the predicates Eq(-,-) and Rb{(:,-, ) are also isomorphic, we say the interpretations
or models, are isomorphic.

Define
E?M = EUX#UﬂX#+1UUy¢4UﬁU'ﬁ1 %MU“KA‘I

as the set of axioms for the given finite machine M, at the instant zero.
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Theorem 4.5 (Unique Model Property) The logical theory generated by £%, has a unique
model up to isomorphism.

Proof

First we establish that all pre-interpretations are isomorphic by showing the existence of
a homomorphic mapping between any given pair of models of £9,.

Now consider any two models M-and M’ where M = (X,Y,U, ®,9) and M’ = (X", Y, U, &', 7').
By the size axioms we have |X| = |X’| = N, |Y| = |Y/| = p and |U| = U] = m. Then
by the machine axioms we have ® : X xU - X and ® : X xU — X;n: X - Y and
n': X x U — X. Now an one-to-one and onto mapping h : M — M can be defined, where
M here is also taken as the union of X, U and Y and M’ is also taken as the union of X,
UandY.

Let L denote the set of symbols of logical theory for a finite machine, I : L —+ M and
I' : L — M’ be the interpretation functions correspond to the model M and M’ respectively.
Construct a mapping h : M — M’ such that the following relation is satisfied:

h(m) = I'(I"Y(m)) for any m ¢ M

The relations among the set of L, M, M’ and the mappings of I, I’ and h are shown as

follows:
/ &
h

M M’

We need to show that h is a bijective mapping. This property is guaranteed by the
bijective property of the mappings I and I'.

First, the onto property can be shown by taking any m’ ¢ M’, then we have I'"!(m') = |
for some I ¢ L and I(l) = m for some m ¢ M. This m is the preimage of the m’ under h
because

h(m) = I'(I"(m)) = I'(€) = I'(I'""}(m')) = m.
Similarly, the one-to-one property is immediately obtained from
h(my) = h(my) iff I'(I7'(m,)) = I'(I7Y(m3)) iff my = m,.

Now let h(m) = m' for some m ¢ M and m’ ¢ M’ and take some dynamical for-
mula Eq(®(z*,u'),z?) from the language L. The interpretation I will map this formula to
&(I(z*), I(u')) = I(z’) which is &(xiy,ul,) = x3n and the interpretation I’ will map the
formula to &'(I'(z*), I'(w*)) = I'(z’) which is ®(xi,,,ul,)) = x3,. Then since h(m) =
I'(I7'(m)) we have the following relationship between the two models:

d(xi ,ul ) =, iff ¥'(xi,,ul)= X,
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Similarly, reference to the observation axioms AXM°*(L) yields
N(%m) = Yim i 7'(Xm) = Yo

For the finite arithmetic of Tho things are yet simpler since the properties of +., — were
defined in terms of +x(Ny, —k(N) on the integers. Hence trivially

+iwy(my lig) = 1y 3+ (s L) = U
—k(N)(lm’l;n) = l;,n iff _L(N)(]m'v];n') = l;’n'

From this it follows immediately that the bijection, k yields the desired isomorphism i.e.,
h is a bijection satisfying

h(®(x',u')) = &'(h(x)), h(u')),
h(n(x")) = n'(h(x")),
k() (L,1)) = +iew (R(D), B(1)),
h(=kn(L,1)) = —4my (R (D), A(1)).

It follows that £9, has a unique pre-interpretation up the isomorphism. Evidently, the
equality predicate has a unique interpretation on the domain of the pure-interpretation.
Finally, the recursive nature of the reachability axioms AX M™¢(L) reveals that there is a
unique relation on the elements of the (proven unique) pre-interpretation that satisfies the
reachability axioms.

Definition 4.2 (Proper Formula) A formula P is a proper formula with respect to a
set of formula I if P contain neither any predicate symbols nor function symbols which do

not appear in any formulas in I’ -

Definition 4.3 (Complete Axiomatization) A set of formulas I' is said to be complete

if either P or —P is a consequence of I" for any proper formula P with respect to I' q

It is known result that if a set of axioms has a unique model then that set of axioms is
complete. We state this in the following theorem.

Theorem 4.6 The axiomatization defined by IS, is a complete axiomatization of M.
Proof

To prove that £, is a complete axiomatization of M, we need to show that for any
formula A € L either £, - A or £, I —A is true. We know £}, is consitent by the
existence of a model for £%,. By Lindenbaum’s lemma, see Mendelson [1964], if £9, is
a consistent first order theory, then there is a consistent complete extension of £3,. But
since we know £9, has a unique model, the complete extension of £ is £3,. Hence X3, is

complete, since otherwise £94 could not have a unique model. 0
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Theorem 4.7 (Decidable Theoremhood) The logical theory as generated by £, for
any given finite machine M ts decidable.

Proof

By the generalized completeness of first order logic in general and COCOLQOG in partic-
ular, we know that for any formula P, a proof exists for P and there exists a terminating
search for such a proof if P is a consequence of ¥£3,. Now for any formula P we start a
search for all possible proofs for both P and —-P. One of these two searches will terminate
since £, is a complete axiomatization, i.e., either P or ~P will be a consequence of ¥9,.

Thus we can conclude that the axiomatic theory generated by £, is decidable. 0

Now if we denote X, = X%, U Z* as the axioms generating the theory Th(of) together
with the size axioms, then the above results for £3, generalize to any logical theory in a

COCOLOG family.

5 Extra-Logical Transitions Between Logical Theo-
ries

In order for the family of logics in a COCOLOG to work coherently, certain requirements
have to be met. These requirements can be viewed as restrictions on the transitions between
logical theories which cannot be represented within these theories themselves. As a result,

" the extra-logical features of the transitions are governed by meta-level assumptions including
a meta-level rule of inference.

The meta-level axioms assumptions are that there are no errors on the observation and
control channel and the control commands sent from the logic controller will be implemented
instantly and correctly. Hence there will not exist any conflict between observation and
control axioms and reality as represented by the mathematical model M. Further we assume
that the entire deductive closure Th(of) of the axioms X is instantaneously generated in
the logic regulator R of a COCOLOG feedback system at each discrete time instant k.

From the definition of LY in Section 4 we evidently have the following rule of inference
which connects theories at different instants along a trajectory of observations and control
actions for a finite machine.

Nesting of Theories (Meta-Level Rule of Inference)

A e Tho(ok) implies A € Th°(o*'), for any &' > k and so the sequence of theories satisfies
the following condition
..+ C Th°(o%) C Tho(oF*) C - -

a

We see that this sequence of COCOLOGs combined with the meta-level requirements
constitute a closed loop feedback logical control system as displayed in Figure 5.1
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Figure 3: A Closed Loop Logic Control System

6 Conclusion

Many questions concerning COCOLOG may be posed at this point. Perhaps the most
important of these are the following:

(i) The definition of a tractable, analyzable, fragment of COCOLOG obtained by suitably
restricting the class of CCAs.

(ii) The issue of implementability of COCOLOG for real time systems leads one to the
question of automatic theorem proving in COCOLOG. As remarked in the Introduction, cur-
rent experiments using the FE-resolution extension of the GTP automatic theorem proving
software of Newborn [1987] (developed by Q-X. Yu) are encouraging (see Wang and Caines
[1992]). A complexity analysis of such algorithms would be most valuable.

(iii) A realization of a COCOLOG is a sequence of first order theories generated by a
given sequence of input-output observations and it corresponds to a path in the COCOLOG
tree structure (see Figure 3.1). The true formulas in the nodes of this tree can be captured
by a possible world interpretation of a modal logic, see Goldblatt [1987]. Instead of modal
logic. however,in the current analysis we have used a family of classical first order logics to
codify the state observation and control problem. We believe a modal logic representation
would be too restrictive. The word restrictive is used in the following two senses: First,
it most easily represents a static world. In other words, a modal logic cannot handle in a
simple manner unknowns or the changes in the dynamics, or the environment, of a system
and this prohibits its use as a logic for real time control tasks. Second, it is not necessary to
code all the paths of an observation tree into a control logic since a physical system cannot
realize all such possibilities. Therefore the extra coding of modal logic system would tend to
delay its response time. Despite these reservations, a study of the mathematical properties
of an overall modal logic formulation of COCOLOG families of theories merits attention.
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