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abstract

The work described in this paper belongs to the general context of distributed program
debugging. For the goal of verification, the expected behavior or the suspected errors of the
system under test, is described by a global property: basically a global predicate on variables,
or the possible occurrences orders of observable events. The problem is to verify whether this
‘property is satisfied or not during the execution. In the context of asynchronous parallelism on
distributed architectures that wc are considering, the correct evaluation of global properties
requires a careful analysis of the causal structure of the execution. The basis of the method
is a rcachability analysis of the state space associated to a distributed execution. We study
on-line algorithms dedicated to trace checking which are efficient both in time and memory.
We show that the state space can be linearly built due to its algebraic structure of lattice.

Treillis des états accessibles au cours d’'une exécution répartie

résumeé

L’étude de cet article appartient au domaine du déverminage de programme répartis. Pour
faire de la vérification, on décrit le comportement attendu ou les erreurs suspectées par
une propriété globale : par excinple un prédicat sur des variables ou les ordres possibles
d’occurrence d’événements obscrvables. Le probleme est de vérifier si celte propriéié est
satisfaite ou non durant I'éxecution. Notre méthode repose sur unc analyse d’accessibilité du
graphe d’états associé & une exécution répartie. Nous étudions des algorithmes dédiés a la
vérification de traces a la volée qui sont efficaces a la fois en temps et en mémoire. Pour la
construction du graphe des états, nous nous appuyons sur sa structure de treillis.
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1 Introduction

1.1 Problem statement

Progress in computer technology brings up parallelism and data distribution to an
unavoidable level. However this is not a painless way: parallel and distributed programs
are still complex objects. All the aspects of their development are not well mastered;
observing their behaviors often reveals unexpected situations.

Our work belongs to the general context of distributed program debugging. We deal
with verification techniques based on execution traces that we call “trace checking”.
For the goal of verification, the expected behavior or the suspected error of the system
under test, is described by a global property (basically a global predicate on variables, or
the possible occurrence orders of observable events). The problem is to verify whether
this property is satisfied or not during the execution.

In the general context of asynchronous parallelism on distributed architectures that
we are considering, the correct evaluation of global properties requires a careful anal-
ysis of the causal structure (which is a partial order) of the execution. The basis of
the method is a reachability analysis of the state space associated to a distributed
execution. We study on line algorithms dedicated to trace checking which are efficient
both in time and memory.

1.2 Proposed approach

Trace checking rises several problems that must be solved:

e At the lowest level the runtime must provide the basic services of timestamping
the communication actions. This gives information to decide causality between
particular observable events. We use the classical Lamport’s definition of message
causality [12] and its “on the fly” coding given by Mattern and Fidge’s vector
clocks [8, 15]. Although all the communication events are modified at runtime,
just a few significant observable events have to be traced for the goal of analysis.
We slightly modify the timestamping mechanism to deal with observable events
only.

e Deciding causality between events is not the most convenient way to represent
the causality order. We show that in fact the covering relation (i.e. the transitive
reduction of the order) can also be computed on the fly. For the goal of producing
the immediate predecessors of an event when it occurs, we extend the vector clock
with a bit array.

¢ Finally we show that the graph structure of the reachable states can be computed
step by step at each event occurrence.

The last two algorithms are new. They allow to perform a reachability analysis in
parallel with the considered computation. The time complexity is linear in the size of
the state graph. Moreover, provided that observation preserves message causality, the
construction is performed strictly on the fly: event by event with no additional delay.
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The method used is able to code the state graph with the same size that the covering
graph. This should be exploited by verification methods, thanks to the theory of orders
which provides a good basis to deal with these problems.

1.3 Related work

Message causality is fundamental to many problems on distributed traces. In that way
it has been studied for different goals:

e determining consistent snapshots or consistent recovery points in the field of
distributed debugging or distributed database management [4, 15];

e execution replay [13, 14, 10];
e verifying logical properties in order to detect unexpected situations [6];
e getting performance measurements on global indicators [9, 5].

Most work in progress on the fundamentals of traces are based on the partial order
defined by the causality relation [12]. To our knowledge, Cooper and Marzullo [6] were
the first to perform a reachability analysis on the state space associated to a distributed
execution. Their work however gives rise to the problem of the parallelism between the
analysis process and the distributed computation. They require events to be considered
level by level (the “level” is the number of predecessors). The analysis must then be
blocked awaiting an event: in the worst case, where an isolated event occurs at the
end of the trace, the analysis is postponed to the end of the trace. The basis of their
algorithm is to enumerate all the possible nodes of the largest state space (p™ where
p is the number of events per processor and n the number of processors), and then to
remove nodes that are not reachable for the considered trace (by considering vector
timestamps associated to the events).

We considerably improve the technique in allowing the analysis event by event: any
linear extension can be processed. It can be referred as the “on the fly reachability
analysis”. This is made possible by actually computing on line the covering relation,
rather than considering only vector stamps and makes best use of the lattice structure
by a direct construction.

2 Abstract causality order

2.1 Message causality between observable events

From an abstract point of view, a distributed program consists of n sequential pro-
cesses Py, ..., P, communicating solely by messages. The behavior of each process is
completely defined by a local algorithm which determines its reaction towards incoming
messages: local state changes and sending of messages to other processes. A distributed
computation is the concurrent and coordinated execution of all these local algorithms.
A standard way to deal with distributed computations is to consider that local actions
are defined as events. Only a few of them are significant for the purpose of verification.
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We will denote by E = X & X & O the finite set of events occurring during a
computation. X contains all the sending events, X the corresponding receipts and
O the internal events defined as observable by the user. We also consider that F
is partitioned into disjoint subsets FE; of local events occurred on process P;: E =
Ul <idn E.

Arguing from the fact that the only mean to gain knowledge for a process in a
general distributed system is to receive messages from outside, one considers the receipt
of a message as causally related to the corresponding sending. The causality between
local events is defined by the local algorithm: a simple way is to consider the total
ordering induced by the local sequentiality (denoted by <;). The causality relation
(defined by Lamport in [12]) in E? is the smallest relation < satisfying:

1. Vie {1.n},Vz,y€ E;, z<;y=>21 <y
2. Vz € X, z <% ( Z the corresponding receipt of the sending event z)

3. < is transitive

Notations and definitions

Now we give some general definitions and notations related to partially ordered sets.
A set P associated with an order relation <z is called a partially ordered set or poset.
Such a poset is denoted by P = (P, <p)- If the order relation is irreflexive, we write it
P = (P,<p).

Let P = (P,<5), be a poset and = and y two elements of P.

Ifz<gyandVze P, (z<gz<py)= (z=y) wesay that z is covered by y or z is
immediate predecessor of y and we write z -<z y. We obtain the covering relation
of P.

Let A be a subset of P.

The subposet of P on A, denoted by IS/A, is the poset induced by P on A.

In that way we shall write :E = (E, <) and O=E/o=(0,=).

A is a chain (resp. an antichain) in P iff all elements of A are pairwise comparable
(resp. incomparable) in P.

Maz(A,P)={a€ AVz € 4, (a <p ) = (a = z)} is the set of maximal elements
of Ain P.

Min(A,P)={a€ AVz € A,(z <p a) = (a = 1)} is the set of minimal elements of
Ain P.

lpA1={z € P,Ja € A,z <p a} is the predecessor set of A in P.

lpAl=lpA]\ A is the strictly predecessor set of A in P.

l;{-"A = Maz({5Al 13) is the immediate predecessor set of A4 in P.

If the set A is a singleton {z}, we shall simply write |3z}, Ipzl and 1};"1:.

Ais an ideal of Piff Va € A, |5a1 C A.
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Figure 1: Computation of message causality

2.2 On the fly computation of causality

In order to characterize on the fly the message causality, Fidge and Mattern (8, 15]
have developed a mechanism of logical clocks. Each event is stamped by a vector of
IN™ and the stamps ordering exactly codes the causality: it is an embedding of the
causality order in (IN™,<pn»)!. Formally, the timestamping is defined by the map [7]:
6 : E— IN"
e— (| lze1N Eil)icign

and we have the fundamental property:
Ve, f € E e < f <= 6(e) <nn 6(f).
We modify the algorithm proposed by Fidge and Mattern to stamp only observable

events. We compute the map:

6 : O — N

e — (| lae] N Eil)lsisn

which obviously codes O. Stamps are growing slower because they count less events
and, as we will see in the next section, computing the covering graph of O also simplifies
our on the fly algorithm. The timestamping mechanism follows:

e Each processor P; owns a logical clock ¢; € IN*. Each ¢; is initialized to (0...0).
e Each message sent by P; is stamped by the current value of c;.
o When P, receives a message stamped by c,,, P; updates its clock?: ¢; := maz(c;, ¢ ).

e When an observable event e occurs on P;, P; increments the :** component of
its clock: ¢; := ¢; + (0..1;..0) (only the :** component is incremented), and e is
stamped by ¢;: §(e) :=¢;.

The figure 1 shows an application of this algorithm. We only put the event stamps and
the message stamps. This execution is used throughout the paper.

'<pn is the canonical order on IN™: Vz,y € IN", z <~ y <= Vi € {1..n}, z[i] < y[i] and
3j € {1..n}, z[j] < y[j]
Yz, y € IN" Vi € {1..n}, maz(z,y)[i] = maz(z[i], y[i])
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Figure 2: On the fly computation of the covering

2.3 On the fly computation of the covering

We now present an algorithm based on the vector clock mechanism which computes
on the fly the covering relation of the message causality order. It avoids an expensive
computation stage: the computation of the covering relation from the vector stamp
trace.

This new algorithm is based on the following remarks :

1. Vie {l.n),Vj€N, j <|ONE]|=> Jec ONE;, §(e)fi] =
(Vf € ONE;, fis the 6(f)[¢]" observable event on P, hence it’s unique.)

2.Vee ONE,Vfe O\ E;, e-< f==68f)z) =6(e)7)
(When f occurs on Pj, the last event which P; knows on P; is necessary the

§(f)li)* on P..)

Therefore, in order to know the immediate predecessors of an event e, we only have
to know both its stamp é(e) and the processors where they occurred. Thus, in addition
to 6, we have to compute the map:

p: O—{T,1}"
¢ pfe)

verifying: u(e)[t] = (lg—"e NE; #0)

Computation of p goes with computation of logical clocks ¢;. This is performed on
the fly according to the following rules (see figure 2 for an example):

o Each processor P, owns a boolean vector m; € {T,.L}" which indicates where the
events currently covered occurred. For instance, if m;[7] = T then an observable
event currently covered by P, has occurred on P;. Each m; is initialized to (L...L).

e Each message sent by P; is stamped by the current value of m;.



Figure 3: The execution covering graph

e When P, receives a message stamped by ¢, € IN* and m,, € {T, L}, P; updates
m;. The new value of m; depends on m;, ¢;, m,, and c,,.

Vi€ {1.n} if cnlj] > alf] then mi[j] := mnu[j]
else if ¢;[j] > cn[7] then my[j] := my[4)
else m;[j] := (m:[7] A mn[J]) (A: logical and)

¢ When an observable event e occurs on P, e is stamped first (u(e) := m;) and
then P; updates m;: m; := (L...T;...1) (only the i:** component is equal to T:
the only covered event is €).

In practice, each process informs a “global observer” when an observable event
occurs: it “traces” its identifier e and its two stamp values 6(e) and p(e). The observer
maintains a sequence of events for each process. When an event e € E; N O is traced,
the observer determines its immediate predecessor set according to the relation:

| [ fee u(l] A B = 8]
vi€{l.n},¥feON E{ ifj=i f<eepe)i]A G =b6e)f]-1)

For each j # 1 for which u(e)[j] is true, the §(e)[s]** event in the sequence corre-
sponding to the j*h process is an immediate predecessor of e. If u(e)[¢] is true, the
(6(e)[:) — 1)* event of P, is also covered by e. Thus we have to do the realistic assump-
tion that all predecessors of e have been already traced. (If we are not in this case,
there exist algorithms constructing a linear extension of the causality.) Therefore to
calculate the covering relation without delay, we have to process the events according
to any linear extension of the causality order and we have to memorize all sequences
of events. The figure 3 shows the covering graph of our example.

3 Associated state graph

3.1 State graph and the ideal lattice

Building the state graph associated to a distributed trace consists in “replaying” the
trace, recording the changes of a global state vector. The only constraint during the
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replay is the causality preservation. We adopt the standard interleaving semantics for
parallelism which considers only one move at a given time. The local state of a process
P; is picked up between two local events. In order to capture in the state all the
messages 1n transit, we can identify the local state with the set of all the local events
which have been already considered in the past of the process. To define the initial
state, one can consider a minimal event @ in the past of all the observable events. The
global state is the union of the local states for each process.

Notice that the causality constraint only produces global states being closed by
the causality relation: the set of global states is isomorphic to the ideal lattice of the
causality order. See figure 5 to have a look of the state graph of our example.

3.2 Fundamentals

Since our goal is to compute on the fly the state graph of a distributed execution, we
studied correlations between ideal lattices yielded by a poset and by one of its subposet
when the missing vertex is a maximal one. We obtain a complete characterization of
correlations between these two lattices assuming that the initial poset has at least a
maximal element. :

We denote by I(P) the set of all ideals of P and by 1?15) this set ordered by

inclusion.

Remark 1 For any I, I; in I(P), ) UI; and Iy N1; belong to I(P). Moreover, I, UI,
(resp. 11N 12) is the smallest (resp. greatest) element of I(P) including (resp. included

in) both I) and I,. Thus this gives to I(P) a lattice structure (a poset T is a lattice iff
any of its two elements subset has a supremum and an infimum in T).

In order to establish our characterization theorem, we have to introduce some defi-
nitions and we need a result from Bonnet and Pouzet [2] extending to the infinite case
the well known result of Birkhoff [1] on finite distributive lattices and posets.

Let T be a lattice, and for any subset A of T let us denote by V5 A (resp. Az A) the
supremum (resp. the infimum) of A in T. Then:

* T is complete iff VA C T, VFAE€eT.

*Tis completely join distributiveiff VAC T,Vz € T, (V5 A) Az =V#{yAsz,y €
A}.

* T is join generated by a subset Aof Tiff V2 € T,3BC A, r = VB and VB C A,
V%‘B eT.

* an element z of T is completely join irreducible in T iff VA C T, (x=V5A) =
(z € A).

Theorem 1 [2]

1. Let P be an order, then I’(\f") is:



Figure 4: Illustration of theorem 2

(a) a complete, completely join distributive lattice,

(b) join generated by its completely join irreducible elements.

Moreover, P is isomorphic by the map i(z) = {y € X, y < =} to the suborder of
I(P) on its completely join irreducible elements.

2. Let T be an order satisfying conditions (la) and (Ib) then T is isomorphic by
the map j(z) = {y € T, y C z} n {completely join irreducible element of

T in T} to the order I(P) where P is the suborder of T on its completely join
irreducible elements.

For the proof of the following theorem, we need the following Lemma:

Lemma 1 Let P be an order, VI, J € I(P), I <) J<=ICcJand|J\I|=1
Proof: (i) Assume that I C J, then | <;% it J The result follows directly from the
fact that VZ, K € I(P), Z<( )K=>ZCK
(7t) Assume that I - <i J,then I C J. If | J\ I |=0 then J = J which is in
contradiction with I <iF J. Assume that | J\ I |> 2 and let z,y € J\ I with
z #y. W.lo.g. we can assume that y £5 z, then | <iF 1V |51) <iP J which

is in contradiction with [ - <I(P) J. 0



Theorem 2 Let P’ be a poset with a least one mazimal element. Let be a marimal
element in P’ and let P be a poset such that P'\ P = {z} and Plp=

Let I(lx1) = {I € I(P), |pxl <1(P) I} (we have |5,z € I(P)).

Let Q be a poset isomorphic to I(lz() by a map ¢.

The poset Z defined by: Z = QW I(P), Z/1p) = I( ), Z]o=Q and

Vp,g € I(P)x Q (p-<3q 4= q=4(p))

is tsomorphic to I(F’) by the map:

o { if z € I(P)
v #(z)U {z} otherwise

For an illustration of the theorem, see figure 4.

Proof: Let I(z)={l € I(F'),z €1}
We are going to show that I( '}/ 1(P\I(z) is isomorphic to I(P) Let A C
I(P')\ I(), it is then clear that N A € I(P) \ I(z) and that UA € I(P NI(z ),
thus I( )/ 1(P)\1(z) is a complete completely join distributive lattice (since I(P’)
is a join distributive lattice). Since z is a maximal element in P', we have:
(7) any completely join irreducible element in I(F’)/I(p:)\l(x) is a completely join
irreducible element in Irﬁ’). Indeed, VI € I(P')\ I(z),{J € I(P),J SI(P, I} C
I(P)\ I(2).
(¢¢) any completely join irreducible element in I(P ) belonging to I(P') \ I(z) is
a completely join irreducible element in I(P )/ 1(P\I(z)- By definition of I'(x).
Thus I( )/ 1(P)\1(z) 1s join generated by the completely join irreducible element
in I(P’) which does not contains {z} as subset. Using Theorem 1, we can imme-
diately deduce that I(Aﬁ’)/l(p/)\l z) is isomorphic to I(P).

Now, we are going to show that I( )/ 1(1z) is isomorphic to I(P’)/I(,) by the map
P from I(lz() to I{z) such that )(I) = U {z}. Since ¢ is a one to one mapping
(1 is injective and since z is a maximal element in P YI¢ I{(z),I\{z} € I({z())
and since VI,J € I(lz)),] C J <= IU{z} C JU{z}, ¢ is an isomorphism
between 1?13)/1(1,) and I(ﬁ')/[(ﬂ.

In order to conclude the proof, it remains to show that VI € I(z),3!I' € I(P')\

I(z) such that I'- <iF) I and that I' = I\ {z}. Since z is a maximal element in

P', VI € I(z), I\ {z} € I(P')\ I(z), thus by Lemma 1 I\ {z}- -<ji, I. Since
VIie I(P')\I(z),z ¢ I and I- <57 Tu{z}, the remaining follows directly from
Lemma 1. O

Remark 2 When P is assumed to be anti well founded (i.e. any non empty set has
a mazimal element), we can denote Z by P*D(r) with D(x) =|%z. Thus we oblain a
coding of the ideal lattice of such a poset from any of its linear extenszons Moreover,
when P is assumed finite, we get an efficient and effective coding mechanism.
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3.3 On the fly computation of the state graph

Assuming that the number of processes involved in a distributed computation is finite,
using our previous theorem, we are now able to give an algorithm for an on the fly
computation of a distributed execution state graph (assuming the knowledge of the
covering causality relation).

Its width, denoted w(P), is the length of one of its largest antichains.

A chain decomposition of P is a partition {P;}:er of P, where each P, is a chain in
P.

The “granulation algorithm”

Input:

1. The transitive reduction of P’ with a chain decomposition {P hicick
2. For any y € P', 6(y) = (] lgn1 N P/|)icick (same definition as in paragraph 2.2)
and i(y) such that y € Pj,. '

3. A vertex = € Maz(P', P") and the set D(z) =T

P —
4. When P = P'\ {z} and P’/p = P, the transitive reduction of I(P), such that:

—

(a) Each y € P is directly related to its corresponding |3y in I(P).

(b) Each edge yz in the transitive reduction of I(P) is labeled by I, \ I, where
I, (resp. I.) is the ideal of P corresponding to the vertex y (resp. z) in
I(P). —

(c) Outgoing edges of any vertices in the transitive reduction of I(P) are stored
ordered by increasing index of the chain their label belong to.

Body:
1. Find |3D(z)) in I(P).
2. Build a poset § isomorphic to I(lz1), when I(lz1) = {I € I(P), |pD(z)] Sf(?) I}
by a map ¢.
3. For any I € I(|z[), create the edge (I,¢(I)) with label z and store this edge

according to the storage order.
4. Create a link between z and ¢(lzD(x)).

Output:
The transitive reduction of I (15’), such that:

——

(a) Each y’ € P’ is directly related to its corresponding |54 in I(P").

(b) Each edge y'2' in I(P’) is labeled by I/ \ I,» where I,; (resp. I./) is the ideal
of P’ corresponding to the vertex y’ (resp. 2z') in 1(13’). ~

(c) Outgoing edges of any vertices in the transitive reduction of I( P) are stored
ordered by increasing index of the chain their label belong to.

In order to prove the time complexity of the “granulation algorithm”, we need some
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more properties between a chain decomposition of an order and its ideal lattice.

Let P be an order, let {P:}1<i<k be a chain decomposition of P and let A be the map
defined by:

A : I(P) — IN*
I (| INP |)icicn

Proposition 1 VI, J € I(P), the following properties are equivalent:

(i) 1 SRF) J

(ii) A(I) e A

Proof: (i) = (u1): Since I and J are ideals, Vi € {1,...,k} we have INP; C JNPF,.
Then, Vi € {1,...,k} we have A(I)[i] <n A(J)[z] and thus A(T) <pe A(J).
(t7) => (i): For any ideal A € I(P) and for any i € {1,...,k},if | AN P, |=
a; # 0 then AN P, is a maximal subchain in P; with o; elements and containing
the smallest element of P;. Thus, for any i € {1,...,k} we have: A(J)[{] <n
AJ)i] = InP C Jn F. Consequently, I = (IN (Ui ) € (I N
(Ur<i<k B)) = J. o

Proposition 2 VI,J € I(P), the following properties are equivalent:
() 1< Y

(1t) All mazimal chains from I to J in I’(}S) have length 1g(1,J) = S5 (A(J)[i] —
A(I[z]). And there is at least one mazimal chain.

Proof: As the proposition holds clearly for I = J, assume that I # J. Since (1z) =

(7) is obvious, we are going to show that (1) == (:z): Since [ STP) J, there

exists a maximal chain from I to J in I(P). Let (z0 = I,21,...,Z0~1,24 = J)
be such a chain. From Lemma 1 we have | J |=| I | +a and from Proposition 1,
we known that Vi € {1,...,k}, A(J)[s] — A(J)[z] > 0, then since {P;}i<ick is a
partition of P, it is clear that lg(I, J) = a. Moreover, since ITP) is a distributive
lattice, it is modular and and thus graded. So all maximal chains have the same
length. 0

—

Theorem 3 The “granulation algorithm” runs in time complezity:

O(((HI(P) | = 1 I(P) )+ | P Dw(P)).
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Proof: The correctness of the “granulation algorithm” is clearly achieved through
Theorem 2.
The time complexity analysis of the “granulation algorithm” can be perform step
by step:
For step 1): Choose any y in D(z), it is clear that A(]lzy)) = 8(y) and A(]
sD(z)) = 6(z) - (0..1i(5)..0). Then frcan proposition 2, we know there exists
a chain in the transitive reduction of (I(P) from |zy] to | 5D(z)] with exactly
A(1D(z))e} = A(lpy))[i] edges belonging to P. Thus starting from |3y, we
choose an outgoing edge with label z and chain index j belonging to Ind(y, D(z))
where Ind(y, D(x)) = {7, 7(z) > 0 with 4(¢) = A({pD(z))[z] — A[193z({py)[i]}-
Let () = 7(j) — 1, by induction on z we arrive in |5 D(z))] when Ind(y, D(z)) =
0. Since the choice of such an z can be done in O(w(P)), thus step 1) can be
achieved in O((] P [Jw(P)).
For step 2) and 3): Since the number of outgoing edge of any I € I(P) is bounded
by w(P), steps 2) and 3) can be achieved in O((] I(P') | — | I(P) [)w(P)) (for
example through a breadth first search algorithm).

Step 4 can be done in constant time during steps 2) and 3).
a

As consequence of this theorem, we are able to achieve the computation of the ideal
lattice of a poset from any of its linear extensions.

Corollary 1 Let P be a poset, I’(TJ) can be computed in time complezity O((] I(P) |
+ | P [P)w(P)).

Remark 3 When | I(P) | is in Q(| P |?), the computation of the ideal lattice of a
poset from any of its linear extensions can be performed with the same time complezity
than with the algorithm given by Bordat [8]. This last algorithm, which is up to our
knowledge the most efficient one, is not accurate for the on the fly case (it is based on
a depth first search of the all poset).

This algorithm is illustrated in Figure 5. However, in the sake of simplifying the
picture, ideals are only labeled with their maximal elements in P and edges are not
labeled. Black nodes denote the nodes containing D(z) and which will be duplicated
when incorporating a new event z. Doted edges denote the edges added between the
duplicated subposet of I(P) and its corresponding copy. Assume that the first three
steps have been performed. We have a lattice 1(13) on {0,c,b,d,cd} and the new
incoming vertex for P, labeled “a”, has for immediate predecessor set D(a) = #. Thus
we have to:

——

1. duplicate the subposet of I(P) on all elements in I(P) containing D(a) (here
the whole lattice). A new vertex “y” obtained from a vertex “z” has for label:
label(y) = (label(z) U {a})\ D(a). New vertices are :{a, ca, ba, da, cda}

2. add a new edge zy between unconnected vertices z and y checking that y was
obtained from z. New edges are :{(, a), (c, ca), (b, ba), (d, da),(cd, cda)}

13



Figure 5: On the fly computation of the state graph

4 Conclusion and prospects

Trace checking for distributed programs is an important aspect of distributed debug-
ging. The problem is complex since it requires a careful analysis of the causal structure
of executions.

The use of the partial order theory is unavoidable to design efficient algorithms.
As in classical verification methods for concurrent systems, the basis is a reachability
analysis, i.e an exhaustive enumeration of the state space associated to the considered
distributed execution. And we have naturally to face the combinatorial problem of state
explosion. Our response to that problem is the development of on the fly techniques
which allows the trace analysis in parallel with its execution: thus there is no need to
store all the trace before checking properties.

In this paper, we have presented such algorithms to build the states of a distributed
execution. Obviously, for the purpose of verification, our algorithm must be coupled
to a verifier which will attribute the states according to the properties that have to be
checked. In this phase, the classical methods used in distributed software verification
can be applied [16].

Our proposal consists in two new algorithms. The first one builds the covering
relation of causality between observable events: when an observable event occurs, we
immediately know what are the observable events that just precede.

The second algorithm takes as input the covering relation event by event (i.e. any

14



linear extension of the causality order) and gives a way to build (or search dependingly
on the verification method) the state graph. This algorithm is based on theoretical
results on lattices and orders. The regular structure of the graph makes it possible
to build it with a linear complexity. Its on the fly characteristic and also its time
complexity substantially improve the Cooper and Marzullo’s contribution for detecting
global predicates.

Our main prospects are to really implement these algorithms in our favorite dis-
tributed environment Echidna [11] and first visualize the covering relation and the
state graph. In second place, we will couple the building of the graph to a verifier of
properties expressed by automata and temporal logic formula.
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