Existence of attractor for the quasi-geostrophic approximation of the Navier-Stokes equations and estimate of its dimension

Abstract : In this paper, we study the quasi-geostrophic approximation of the Navier-Stokes equations. This approximation is usually used in modelisation of oceanic circulations. First, we consider the barotropic modelisation, and in a second part, we supposed that the ocean is divided in N layers. For the both modelisations, we prove the existence and uniqueness of the solution, and then the existence of a maximal attractor which describes the long time behaviour of the solutions and we derive estimates of its Hausdorff and fractal dimensions in terms of the data.
Type de document :
Rapport
[Research Report] RR-1733, INRIA. 1992, pp.39
Liste complète des métadonnées

https://hal.inria.fr/inria-00076972
Contributeur : Rapport de Recherche Inria <>
Soumis le : lundi 29 mai 2006 - 11:43:44
Dernière modification le : samedi 17 septembre 2016 - 01:06:48
Document(s) archivé(s) le : vendredi 13 mai 2011 - 20:54:58

Fichiers

Identifiants

  • HAL Id : inria-00076972, version 1

Collections

Citation

Christine Bernier. Existence of attractor for the quasi-geostrophic approximation of the Navier-Stokes equations and estimate of its dimension. [Research Report] RR-1733, INRIA. 1992, pp.39. 〈inria-00076972〉

Partager

Métriques

Consultations de la notice

255

Téléchargements de fichiers

71