Building Carmichael numbers with a large number of prime factors and generalization to other numbers

D. Guillaume François Morain 1
1 ALGO - Algorithms
Inria Paris-Rocquencourt
Abstract : We extend the method of Loh and Niebuhr for the generation of Carmichael numbers with a large number of prime factors to other classes of pseudoprimes. In particular, we exhibit the first known strong Fibonacci pseudoprimes. The method can be viewed as a simplified version, yet practical, of the method used by Alford, Granville and Pomerance to prove that there is an infinite number of Carmichael numbers.
Type de document :
Rapport
[Research Report] RR-1741, INRIA. 1992
Liste complète des métadonnées

https://hal.inria.fr/inria-00076980
Contributeur : Rapport de Recherche Inria <>
Soumis le : lundi 29 mai 2006 - 11:45:52
Dernière modification le : mardi 17 avril 2018 - 11:32:03
Document(s) archivé(s) le : vendredi 13 mai 2011 - 22:20:01

Fichiers

Identifiants

  • HAL Id : inria-00076980, version 1

Collections

Citation

D. Guillaume, François Morain. Building Carmichael numbers with a large number of prime factors and generalization to other numbers. [Research Report] RR-1741, INRIA. 1992. 〈inria-00076980〉

Partager

Métriques

Consultations de la notice

152

Téléchargements de fichiers

164