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BUILDING CARMICHAEL NUMBERS

WITH A LARGE NUMBER OF PRIME FACTORS
AND GENERALIZATION TO OTHER NUMBERS

Dominique GUILLAUME *
Francois MORAIN t 1§

Abstract. We extend the method of Léh and Niebuhr for the generation of Carmichael numbers
with a large number of prime factors to other classes of pseudoprimes. In particular, we exhibit
the first known strong Fibonacci pseudoprimes. The method can be viewed as a simplified version,
yet practical, of the method used by Alford, Granville and Pomerance to prove that there is an
infinite number of Carmichael numbers.

CONSTRUCTION DE NOMBRES DE CARMICHAEL

AVEC UN GRAND NOMBRE DE FACTEURS PREMIERS
ET GENERALISATION A D’AUTRES NOMBRES

Résumé. Nous étendons la méthode de construction de nombres de Carmichael avec un grand
nombre de facteurs premiers, due & Loh et Niebuhr, & d’autres classes de nombres pseudopremiers.
En particulier, nous donnons les premiers exemples connus de nombres pseudopremiers de Fibonacci
forts. La méthode peut étre vue commie une version simplifiée et pratique, de la méthode utilisée
par Alford, Granville et Pomerance pour prouver qu’il existe une infinité de nombres de Carmichael.
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BUILDING CARMICHAEL NUMBERS
WITH A LARGE NUMBER OF PRIME FACTORS
AND GENERALIZATION TO OTHER NUMBERS

D. Guillaume * F. Morain 1§

June 30, 1992

Abstract

We extend the method of Loh and Niebuhr for the generation of Carmichael numbers with
a large number of prime factors to other classes of pseudoprimes. In particular, we exhibit the
first known strong Fibonacci pseudoprimes. The method can be viewed as a simplified version,
yet practical, of the method used by Alford, Granville and Pomerance to prove that there is an
infinite number of Carmichael numbers.

1 Introduction
A Carmichael number C is a composite integer for which the identity
a®'=1modC

holds for all values of a prime to C. These numbers are of interest in the study of pseudoprimality
tests, where they can be seen as worst cases for the Fermat compositeness test (see [29]). We
denote by C(z) the number of Carnichael numbers up to z. Many properties of these numbers are
described in {32).

Recent tables of Carmichael numbers include that of Keller up to 1013 (see [16]), that of Jaeschke
[15] up to 102 (Jaeschke gave C(10'2) = 8238 hut the correct value was found by Keller: C(10!?) =
8241; this is in agreement with our own calculations and that of Pinch) and by Pinch up to 1015
(see {28]).

Yorinaga [39] has found many Carmichael numbers using several methods including Chernick’s
“extension Theorem” (see Section 2). In particular, he found numbers with 12 and up to 15 prime
factors. Pinch found the smallest numbers with up to 20 factors [28]. Wagstaff [36] used the so-
called “universal forms” of Chernick [6] to find large Carmichael numbers. Woods and Huenemann
[38] gave larger numbers using the extension Theorem. Dubner [9] found even larger Carmichael
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numbers using a modification of the universal forms, culminating in a 3710-digit number (Dubner
informed the second author that he found a 6025-digit number with his method). Léh and Niebuhr
have built numbers with up to 10058 factors and 81488 digits [23, 24]. Recently, Zhang has built a
Carmichael number with 1305 prime factors and 8340 digits.

The purpose of this paper is to analyze the method used by Léh and Niebuhr and to extend it
to other classes of numbers.

By one of these coincidences frequently occurring in Science, Carmichael numbers were studied
simultaneously by many people with many striking independent results. We began to work on that
topic around August 1991. At the end of 1991, we had built Carmichael numbers with up to 5000
prime factors, as well as other numbers that will be described later. The paper was finished at
the end of January, 1992 (this formed [14]). At this point, we learned that, following the work of
Zhang [40], Alford, Granville and Pomerance had just proved that there is an infinite number of
Carmichael numbers [1]. Then, around May 15, 1992, we heard from the work of Keller and Léh
and Niebuhr. (We note that very few people were aware of this work.) Though part of our work
is subsumed by that of L6h and Niebuhr (according to a private communication of Keller, they
have built numbers with 125,000 and 500, 000 prime factors), we think we shed some light on their
method, including an analysis of it and some refinements. Moreover, we generalized it to other
classes of pseudoprimme numbers.

The paper is organized as follows. First, we recall some basic facts on Carmichael numbers.
Next, we present the algorithin of Lol and Niebuhr. We compare the method with that of Zhang.
Then, we generalize this work to other classes of numbers, such as Williams’s numbers and elliptic
pseudoprimes. Also, we address the problem of finding strong Fibonacci pseudoprimes and we give
the first known examples of such numbers. We conclude with some remarks on problems related
to Carmichael numbers: we discuss Lehmer’s problem and Giuga’s problem. We also state some
conjectures related to the major result of Pomerance.

2 Background

The defining property of Carmichael numbers is equivalent to [6, Theorem 1]

Theorem 2.1 A Carmichael number C is an odd squarefree composite number, C = py -+ -p, with
r > 3 such that
C—-1=0mod(p;—1)forl <i<r. (1)
An alternative statement is that
AMC)|C -1
where X\ denotes Carmichael’s function (see [33]). Recall that A(p®) = @(p®) for p an odd prime (¢
is Euler’s totient function) or p = 2 and € < 2, A\(2%) = 2¢7% for ¢ > 2 and

A (flpf‘) = lem(A(pr'), - - -, A(p77))-

=1

From this, we easily derive the property that
piEFlmodpforl<i<ji<r. (2)

For convenience, we cite Chernick’s “extension” Theorem, which makes it possible to construct
larger Carmichael numbers from a known one.



Theorem 2.2 Let C = p; - - -p; be a Carmichael number and L = M(C) =lem(p; — 1,...,p, - 1).
Put D = (C —-1)/L. If there is a divisor F of D for which p= FL + 1 ts a prime distinct from the
pi’s, then pC is a Carmichael number.

3 The algorithm

3.1 The idea

The idea of [23, 40, 14, 1] is to search for Carmichael numbers C' with a fixed value of A = A(C).
Let

S(A) = {p,pprime,p{ A,p— 1| A}.

It is clear that a squarefree product N of elements of S(A) satisfies
AN A

as well as property (2). Suppose one wants to find Carmichael numbers with r factors built up
with the primes of S := S(A). It is enough to look for r distinct elements p, ..., p, of S such that

C:=p X---Xp =1modA.

If this is the case, we have C = 1 mod A(C) since A(C) | A.

3.2 An informal description of the algorithm

Let t = Card(S) and
P(S)= H .

PES

Suppose one is looking for a Carmichael number with r prime factors, r < ¢t and u = t — r small.
One looks for u primes of S, say @ = {6,,...,6,} such that

TI(®) := P(5)/(61---6,) = 1 mod A.

We examine all u-tuples of primes 6; in S in order to fiud a good one. Let us describe the program.

procedure FindCarmichael(S(A),r)
(* one wants r-factor numbers *)
1. Set t = Card(S),u=1t—r.
2. Compute Py = [I,es p mod A.
3. For all u-tuples of distinct primnes 6,,...,#6,, check whether

0 X8 x---%x8, =P, mod A. (3)

Loh and Niebuhr used this idea to find a 81488-digit number with 10058 prime factors.



3.3 A rough analysis; choice of A

One can see the situation as follows. One builds the sets of squarefree products of u elements of S

Su={m---p. mod A,p; # p;,pi € S}

and we ask: When does S, contain the residue Py := P(S)mod A? It certainly does if S, =
(Z/AZ)*. A necessary condition for that is of course

(i) > Card((Z/AZ)*) = @(A). )

Experiments show that this condition is sufficient in practice. (A more careful study of this problem
is carried out in section 5.) Let uy denote the first u satisfying (4). As a consequence, when u > ug,
the probability that p; - -p, = Py mod A is (of the order of magnitude of) 1/¢(A). This suggest
to choose A with a “small” value of ¢(A). This we will explain below.

Since one wants Carmichael numbers with many factors, a good A is one for which the set S(A)
contains many prime numbers. Therefore, A must have many divisors. For the sake of simplicity,
one chooses the set

Q = {ql = 2,-“,9:}

with ¢; the i-th prime and an s-tuple of positive integers A = (A4, ..., A,), from which we compute
MQ A) = g gt

The set S is then

S(Q,A) = {p prime |pg Qandp—-1= qu",O <a; < A.}.

=1

An advantage of this construction is that proving the primality of such numbers p is quite simple
since the factorization of p — 1 is known (see {3]).

Loh decided to choose the values of the exponents .4 that yield highly composite values of A
(recall that a highly composite number n is such that m < n implies that m has fewer divisors than
n; these numbers were first studied by Ramanujan [31], see also [27]). In our implementation, we
preferred highly prime values of A, that is these numbers n for which S(n) has more elements than
S(m) for m < n.

3.4 Description of our implementation

We suppose that a pair (Q,.A) is given and therefore, we drop any mention of these in the following,
in order to simplify the notations.

Property (3) is checked by means of the Chinese Remainder Theorem by replacing A by a
suitable product m; x - -+ x my of integers m; < 2!6 and m; > my > --+ > mi. We check

I(©) =1 mod m;

or
6y x ---x 8, = P(S) mod m; := p;



a quantity that is precomputed and that depends ouly on Q and A.

It should be noted that we first look for #’s such that their product satisfies §; x --- x 8, =
p1 mod m; and we check the remaining congruences only if needed. This does not occur too
frequently, since m, is the largest modulus and that it captures almost all the information.

As such, the algorithm (named ALGORITHMO) needs to examine all u-tuples of primes in S.

The cost is
o((2)e0)

where M is the cost of a multiplication modulo a 16-bit number. Asymptotically, this cost is
Co(t) = O(t*).
We can do better.

3.4.1 First improvement

ALGORITHM] is as follows. What we do is to examine all (u — 1)-tuples and find 6, such that
6, = P(S5)/(6;---6,-1) mod A.

If 6, is in S and different from the previous 6;’s, we have found a Carmichael number. (Note that
6, is also computed by using the Chinese Remainder Theorem.) For this to be efficient, we sort §.
The cost of the precomputations is O(tlogt) and the time required for the algorithm is

0 (<ui 1)((u “ DM+t logt))

where ¢y logt is the cost of testing whether 8, is in 5. Asymptotically, the cost of the algorithm is
Ci1(t) = O(t* 'log t).

The number of combinations is reduced, but we increased the space needed.

3.4.2 Second improvement

The best we can do in the same direction is to compute S, sort it, which takes O(t?logt) operations
and then look for an (u — 2)-tuple (6,,...,6.—2) such that

P(S)/(61 x -+ X 0y_2) mod A
is in §2. When this is so, there exists p and ¢ in § such that
P(S)/(6y X -+ X 8y_2)=pxgmod A

and we have a Carmichael number, provided p and ¢ are different from the 6;’s. The asymptotic
cost of the algorithm (named ALGORITHM2) is now

Ca(t) = O(t*?log t).

This is the best we can do, since u is always less than 6 and that storage is now O(t?) which can
be quite large.

Remarks. In practice, we have slightly less than #(f — 1)/2 numbers in $; since there are some
pairs (p;,p2) in S which yields the same value of p;p; mod A. This is a minor nuisance, but it has
to be taken into account when looking for p and ¢ in the process described above.



3.4.3 Third improvement

Let us consider the following example. The largest number we found (before learning about Léh)
was obtained with A* = 27 x 33 x 53 x 72 x 11 x 13 x 17 x 19 x 23 x 29. For this, S(A) has
5111 elements. Our method would have required to examine all 5-tuples of primes in S(A), that
is approximately 29 x 10'® numbers. In order to decrease this number, we used the following idea.
Since P(5)/3697 = 1 mod (23 x 3% x 52 x 11 x 29), we decide to keep those elements of § congruent
to 1 mod 574200 and +1 mod 17, making a subset of 117 primes. Looking at every combination of
numbers 6 by 6 (there are less than 3 x 10° combinations), one finds 13 Carmichael numbers with
more than 37000 decimal digits, the largest of which is

P/(3697 x 195228001 x 634491001 x 5075928001 x 8553283201 x 17960976001 x 545271804001),
a 37425-digit number with 5105 prime factors.

3.5 Remarks
3.5.1 Using outside primes

While working out our ideas, we tried to modify the algorithm so as to produce Carmichael numbers
all of which prime factors where in S(A) but for one. More precisely, we look for C = p; x --+ X
Pr-1 X pr = Rp, with p, satisfying

prR =1 mod lem (X, j), -1)

with K = A(R). Equivalently p, = 1/R := ¢ mod K and (R - 1)/g = 0 mod (p, — 1)/g where
g =gcd(a—1,K,R~ 1) (see [15]). Given a set (p1,...,pr—1), Wwe let p, run through the arithmetic
progression a + X R. Very often, « is itself a prime and we hope that a — 1 | R — 1. We note also
that if a ¢ divides all the numbers p; — 1, for 1 < 7 < r — 1, then ¢ divides R — 1 and also a — 1,
which increases somewhat the probability that « — 1 | R — 1. Thus, we force the p; — 1 to have all
the ¢’s in common. We found a 252-factor number, computed from S({2,3,5,7},(7,6,3,3)), a set
of 257 prime numbers. We took as the set

{p1,-..,p251} = S\{972001,1088641,5334337,14817601,100018801,571536001}.

For these numbers, we have K = 4000752000 = 27 x 3% x 5% x 73 and @ = 813401 which happens
to be a prime dividing R — 1, so that ps2 = e¢. This yields a 1157-digit number.

3.5.2 Comparison with Zhang’s method

Zhang uses also highly composite values of A. Then, he partitions S(A) as ¥; U X, where I,
contains t — n primes. For a subset T of £, with t — n — h elements (h > 0), he computes

f=1lIr
peT
and
g=1/f modA.

If g is squarefree and has all its prime factors in X;, then fg¢ is a Carmichael number. From a
numerical point of view, the largest Carmichael number obtained is a 1305-factor number with
8340 decimal digits.



3.5.3 Generalization to the generation of pseudoprimes

If we just want pseudoprimes to base a, it is easy to modify the construction of the set S. Let I,(p)
denote the order of ¢ modulo p. Then S should be chosen as

S(A) = {p,p prime,p A, Lu(p) | A}.

4 Generalization to other classes of numbers

4.1 Williams numbers
4.1.1 Theory

Let P and Q be two integers such that the quantity A = P2 —4Q is a non-zero integer (A is called
the discriminant). Let a and 3 be the roots of the equation X2 — PX + Q = 0. Then, the Lucas
sequences are defined as

a® — g

a-p4

These sequences have many properties (see [19] or [32]), including arithmetical ones. In particular

‘/n(P) Q) =a" + ﬁ"a U"(P, Q) =

Theorem 4.1 Let p be an odd prime such that pt Q. Then

U,,_c(,))(P, Q)=0modp
, A
where €(p) is the Legendre symbol )
)

A Lucas pseudoprime for parameters (P, Q) is an odd composite integer N which satisfies Ux_n) =
0 mod N. (Here ¢(N) is the Jacobi symbol (-—2—) 2)
Let A be a fixed integer. Williams [37] studied the properties of the numbers N for which

UN—((N) =0mod N

for all choices of integers (P, Q) such that (P,Q) = 1, P2 - 4Q = A and (N,AQ) = 1. Let us
call such a number a A-Lucas pseudoprime (or A-Lpsp in short). The following Theorem is then
proved.

Theorem 4.2 If N is a A-Lpsp, then N is a squarefree product of primes py, ..., px such that
pi— €(pi) | N — «(N).

4.1.2 Practice

The modified algorithm is as follows. Fix an integer A and a number A. Build the set

Sa(A) = {pprime,p—€(p) | A,pt A}.



As before, denote by t the cardinality of Sa(A) and

P(Say= ]I »

pESa(A)

Let u be a small integer. We look for a squarefree product of u elements of Sa(A) such that
6, x+--x8,=xP(Sa) mod A.

If so, we put N = P(Sa)/(61 x---x8,) and if (N) = e(P(Sa)) [, €(8;), we have found a A-Lpsp.
Take for example A = 7 and A = 2!° x 37 x 53. Then t = Card(S7(A)) = 109. We look for
u = 5 numbers to exclude from the product P(S7). We find that

P(S57) =17 x 359 x 1459 x 23039 x 143999 mod A

and €(P(S7)) = +1 = €(17)€(359)e(1459)¢(23039)€(143999) = (1) x (=1) x (+1) x (=1) x (1) =
+1. The corresponding number N is a 427-digit number.
The largest number is built up from S43(A*) which contains 5047 primes. One excludes 4639 and

looks for combinations of 8 out of the 71 primnes that are congruent to £1 mod (24, 3,52, 7,23, 29).
One finds 24 numbers which are 43-Lpsp, the largest of which is

P(543)/(4639 x 6303151 x 1008503999 x 1714456801 x 2867933249 x 5150574001 x 18241820351
x 4290428141999 x 18632716502401),

a 36869-digit number with 5038 prime factors.

4.2 Elliptic pseudoprimes
4.2.1 Theory

For the definition of elliptic pscudoprimes, we refer to [12] (see also {13]). For our purpose, it is
enough to cite the following result. Let D le an integer among {3,4,7,8,11,19,43,67,163}.

Proposition 4.1 Let N be a squarefrce composite number. If for all prime p dividing N, one has

( —pD ) =—landp+1|N+1, then N is ¢ D-elliptic pseudoprime (in short D-ellpsp).

4.2.2 Practice
The algorithm is exactly that used for Williams numbers. For a given D, the set Sp(A) is

Sp(A) = {p prime, ( _pD ) =-1,p+ 1{A,ptA}.

We have to find a squarefree N with an odd nuinber of prime factors that satisfies N = —1 mod A
since we must have



For example, taking the value of A used in Section 2 and taking D = 43, we find that #S4(A) =
1095. We find that :

P(S43(A))/(71 x 4009823 x 36837503 x 42325919 x 214885439 x 504092159)

is a 7015-digit 43-ellpsp.
For A = A®, one finds that Ss3(A) has 2470 elements. After exclusion of 113 and with those
primes congruent to 1 mod (33,7,11,13,17), one finds that

P(S43(A*))/(113 x 41887 x 2475199 x 8576567 x 373080707 x 1867941503 x 3331520191 x 7461614159 x 22882283423)

is a 18026-digit number with 2461 prime factors.

4.3 Strong Fibonacci pseudoprimes
4.3.1 Definition and properties

In 1988, Di Porto and Filipponi iutroduced a new class of pseudoprimes called Fibonacci pseudo-
primes of the m-th kind [30]. Let ¢ be an integer. The Dickson polynomial of parameter ¢ and
degree n is defined as (see [8, 18])

im0 MU\ !

=/2) no[n—1 . .
gn(z,c) = Z : . (_C)'zn—m'
An odd composite integer N is called a Fibonacci pseudoprime of the m-th kind if

gn(m,—=1) = m mod N. (5)

A number N satisfying (5) for all m such that 1 < m < M is called M -strong Fibonacci pseudoprime.
Then, an N — 1-strong Fibonacci pseudoprime is simply called strong Fibonacci pseudoprime.
In [21], the following theorem is proved.

Theorem 4.3 An odd integer N is a strong Fibonacci pseudoprime if and only if N is a Carmichael
number and N 1is either the product of an arbitrary number of prime fuctors p; = 1 mod 4 such that

(Pi+)IN-lor(pi+1)|N+1
and of an even number of primes p; = 3 mod 4 which satisfy
2pi+1){N-1
(this forms type I) or N is the product of an odd number of primes p; = 3 mod 4 such that
2pi+ )| N -pi
(this forms type 1I).

However, no number of this form was found. A proof that no such number exist would have led to
a new characterization of prime numbers.



4.3.2 Computations

Since an SF-psp is a Carichael number, we start by building a Carmicliael number as described
above. We put A = 27 x 33 x 52 x 72 x 11 x 13 x 17 x 19 and build

S = {p,pprime,p—1]|A,2(p+1)| A}.

We find that Card(.S) = 40. We now apply the method of section 3 and find a squarefree product
of elements, call it N, such that N = 1 mod A. By construction, one has p —1 | N — 1 and
2(p+1)JN - 1.

Using the same argument as in section 3, the smallest value of u for which

(4:) > o(A) = 33.44 x 10°

is © = 15. We examine every combination of 14 numbers of § and try to find a suitable 15-th prime
in §. We finally found that

N = 29x31x37x43x53x067x79x89x97x151x 181 x 191 x 419 x 881 x 883
= 5893983289990395334700037072001

is a SF-psp. Note that
N-o1=2"x33x53x72x11x13 x 17 x 19 x 1949 x 894811 x 3456585949

and
N +1=2x 142591 x 351256343 x 58838638438208777.

The factorizations are listed in Table 1. By construction, N is of type I and moreover, all prime
factors p of N are such that p— 1| N — 1 and p+ 1| N — 1. We found some other numbers, also
of type I:

SFy = 23x29%x31x41 x43 x53x71x89x%x97x103x 131 x 151 x 199 x 379
x449 x 1429 x 3457 x 4159
1678728343247028701014158273333607776G001,
SF; = 23 x31x43x 71 x101 x 103 x 109 x 131 x 151 x 181 x 191 x 199 x 271
%307 x 419 x 571 x 881 x 911 x 1429 x 1871 x 5851 x 11969
1004756342588133553725G29648229826997641769714873961601,
SFy = 23 x31x37x41 x53 x67 x97 x 101 x 109 x 151 x 181 x 191 x 197 x 239
X271 x 379 x 419 X 449 x 571 x 701 x 911 x 1429 x 2549 x 5851
= 151381197297673254570192926273745833804231848549434336001.

Shortly after our discovery, Pinch (private communication) found the smallest SF-psp by in-
spection of his tables of Carmichael numbers up to 10'® (see [28]). With his kind permission, we
list it here. It is

SF' = 443372888629441 = 17 x 31 x 41 x 43 x 89 x 97 x 167 x 331.

The number found by Pinch has also the same property. It seems harder to build SF-psp’s which
are of type II.

10



Lot

plpmodd|p-1 p+1

29 1 22 x 7 2x3x5
31 3 2x3x5 [2°

37 1 22 x 32 2x19

43 3 2x3x7 |2*x11

53 1 22 % 13 2x 33

67 3 2x3x11 |2?2x17

79 1 2x3x13 |24x5

89 1 22 x 11 2x32x5
97 1 2°%x 3 2 x 72

151 3 2x3x5% |22x19
181 1 22x3%2x512%x7x13
191 3 2x5x19 |26%x3

419 3 2x11x19[22x3x5x%x7
881 1 24 x 5x 11 |2x3%x 72
883 3 2x32x7?|22x13x17

Table 1: Factorization of p — 1 for the first known SF-psp

4.4 Some negative results

Let us end this section with numbers that our method cannot tackle.

4.4.1 A question of Williams
In [37], Williams asked the following: Does there exist a Carmichael number C such that C is

A-Lpsp for a fixed A with % = —17 If such a number exists, then for all primes p dividing
C,one must havep—1|C —-1land p+1|C +1.

For our method to work, we would need a set of primes p such that p—1 | A_ and simultaneously
p+ 1| Aj with ged(A_,A4) | 2. Experiments made so far show that it is hard to get values of Ay
reasonably small for our method to work rapidly.

In [29], the authors offer soine money for the exhibition of a number N which is strong pseudo-
prime to base 2 as well as a Lucas pseudoprime for the “first natural” discriminant. For this, we
would need the same construction as above, but this time we insist on l3(p) | A—. Even this seems
out of reach for our method.

4.4.2 Lehmer’s problem
In [20] Lehmer raised the following question: does there exist composite integers for which
@(N)|N -1

where ¢ is Euler function. In view of [22, 17, 7] (see also [32]), such a number N, being a Carmichael
number, must have a large number of prime factors (at least 14 and many more if 3 | N). It is
tempting to look at our numbers and test whether they satisfy the condition. However, a look at
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the power of 2 dividing N — 1 ordinarily shows that this cannot be the case. More precisely, if N
has r factors, then 2" must dividle N — 1. Moreover, if 5 divides p — 1 for many p’s dividing N,
then N must have many trailing zeros, which we can spot at once.

4.4.3 Giuga’s problem

In {11}, Giuga asked whether there exist composite integers N such that
N|IN-1poN-1 Ly (N -V 41

Equivalently, N must be a Carmichael number and satisfy

N -1
p| N =>——=1mod p%
p—1

(See [32]). By [2], such an N must be greater than 10!7%%, We did not found any Carmichael
number built with our method that satisfies this property.

5 Speculations

Let us come back to the idea of the algorithm. We can see the situation as follows. We build the
sets
Su={p1...pu mod A,p; # pj,pi € S}

and we wonder when §, contains 1 or a particular residue. Our main conjecture is the following:

Conjecture 5.1 With the preceding notations, there exists an infinite number of A for which there
exists an integer u less than t = Card(S(A)) satisfying 1 € §,,.

If this conjecture is true, then there exists a Carmichael number with u factors, since we have
proved the existence of a u-tuple of primes in § of product 1.
The best we can say is that if there exists u such that §, = (Z/AZ)*, the problem is solved. A
necessary condition on u is that
t
> @(A).
(n) w(A)

Conjecture 5.2 With the same notations, if for u > 2, one has

(i) > p(A)

then S, = (Z/AZ)*. Moreover, the expected number of Carmichael numbers is (})/p(A), so that
the total number of Carmichael numbers built up from S(A) should be about 2!/p(A).

We are led to:
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Note that the preceding conjecture is false if we consider arbitrary subsets S of (Z/AZ)*. In
particular, if S is included in a proper subgroup of (Z/AZ)*, then this is trivially false. However,
this does not necessarily contradict the first conjecture.

The first conjecture is closely related to the Davenport problem: Given a finite Abelian group
G, what ts the mazimal value of n for which there erists a sequence ay,...,a, in G such that
[Ticrai # 1 for all non-empty subset I of {1,...,n}. Let’s call this maximal value o(G). The best
bound on o(G) can be found in [34, 35, 25, 20).

Theorem 5.1 Let |G| denote the cardinality of G and m the mazrimal order of an element in G.
Then

a(G) £ m(1 + log(|G]/m)). (6)

In our case, G = (Z/AZ)*, |G| = ¢(G) and m = A(A). Let @w(A) = AMA)(1 + log(p(A)/A(A))). It
follows that if |[S(A)| > w(A), then there exists a Carmichael numnber built up from the elements
of S(A). However, this is not possible, since |S(A)]| is usually much smaller than A(A) itself.

One of the great achievements of [1] has been to replace S(A) with S'(6A) = {p prime ,6 |
p—1|6A} for some integer 8 prime to A. Then, §’(6A) is contained in a subgroup of (Z/(6A)Z)*
which is isomorphic to (Z/AZ)*. Hence, if 6 is large enough, then |S’(6A)| will be greater than the
bound (6) and we will be sure to get a Carmichael number out of one of the sequences of products

of S'(5A).

6 Conclusions

We have described an algorithm that can build Carmichael numbers with many factors without
using Chernick’s forms. By the way we are doing this, it should be clear that building Carmichael
numbers is quite easy, and we have found lots of numbers with 1000 factors and so on; 500-factor
numbers are trivial to build.
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