N

N

Proximal level bundle methods for convex
nondifferentiable optimization, saddle-point problems
and variational inequalities
Krzysztof C. Kiwiel

» To cite this version:

Krzysztof C. Kiwiel. Proximal level bundle methods for convex nondifferentiable optimization,
saddle-point problems and variational inequalities. [Research Report] RR-1742, INRIA. 1992. inria-
00076982

HAL Id: inria-00076982
https://inria.hal.science/inria-00076982
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00076982
https://hal.archives-ouvertes.fr

INIA Rapports de Recherche
. 2

i Q.., GHAIVETSUlre

UNITE DE RECHERCHE N° 1742
INRIA-ROCQUENCOURT

Programme 5
Traitement du Signal,
Automatique et Productique

PROXIMAL LEVEL BUNDLE
METHODS FOR CONVEX
NONDIFFERENTIABLE
OPTIMIZATION, SADDLE-POINT
PROBLEMS AND VARIATIONAL
INEQUALITIES

Institut National
de Recherche
en Informatique
et en Automatique

Krzysztof C. KIWIEL

« -Dormaline de\oluceau
Rocquencourt

. BP105
/8163 Le Chesnay Cedex

France Aot 1992
16L(1)396355T1 R

-

L)

PROXIMAL LEVEL BUNDLE METHODS FOR CONVEX
NONDIFFERENTIABLE OPTIMIZATION, SADDLE-POINT PROBLEMS
AND VARIATIONAL INEQUALITIES

METHODES DE FAISCEAUX PROXIMALES A NIVEAU, POUR
L’OPTIMISATION CONVEXE NON DIFFERENTIABLE, LES PROBLEMES
DE POINTS-SELLES ET LES INEGALITES VARIATIONNELLES

Krzysztof C. KIWIEL?

July 29, 1992

ABSTRACT

We study proximal level methods for convex optimization that use projections onto
successive approximations of level sets of the objective corresponding to estimates of
the optimal value. We show that thev enjoy almost optimal efficiency estimates. We
give extensions for solving convex constrained problems, convex-concave saddle-point
problems and variational inequalities with monotone operators. We present several
variants, establish their efficiency estimates, and discuss possible implementations. In
particular, our methods require bounded storage in contrast to the original level meth-
ods of Lemarechal, Nemirovskii and Nesterov.

RESUME

Nous étudions des méthodes d’optimisation proximales qui utilisent la projection sur
des approximations successives d’ensembles de niveau de la fonction-coit correspondant
a des approximations de la valeur optimale. Nous montrons que ces méthodes ont une
efficacité presque optimale. Nous les étendons a la résolution de probléemes convexes
avec contraintes, de problemes convexes-concaves de point-selle, et d’inégalités varia-
tionnelles avec opérateur monotone. Nous en présentons plusieurs variantes, établissant
une estimation de leur efficacité, et traitant d’implémentations possibles. En partic-
ulier, nos méthodes ne requiérent qu’une mémoire limitée, par opposition a la méthode
originale de Lemaréchal, Nemirovskii et Nesterov.

' On leave from the Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-417 Warsaw,
Poland.

v

~/

-

Q

1 Introduction

We consider various modifications of the recently proposed proximal level method of [LNN91]
for solving the convex program

f"=min{f(z):z€ S} (1.1)

under the following assumptions. S is a nonempty compact convex subset of RN with
diameter diam(S) = sup{|z — y| : =,y € S} with respect to the Euclidean norm |- |, f is a
convex function Lipschitz continuous on S with Lipschitz constant Ly, and for each z € S
we can compute f(z) and a subgradient g;(z) € 8f(z) of f at z such that |gy(z)| < L;. S
should also be simple enough to allow finding minimizers of convex quadratics over S.

The algorithm that we propose for (1.1) is iterative. It generates trial points z* € S at

which the linearizations f*(-) = f(z*) + <g,(mk), - — a:k> of f are computed for k =1,2,...,
and lower bounds ff, < f* such that ff, T f* as k — oco. At the kth iteration, f is
approximated from below by the piecewise linear (polyhedral) cutting-plane model f* =
max;ex f7, where J* C {1: k} contains k and at most N other indices. We set

2" = argmin{ |z — 2¥|¥2:z € S, ff) < £}, (1.2)
where the proz-center a¥ is chosen from the points {z7}%_;, and the target level value

fl};v= § _"‘Aszfl};w+(l_N) :

up up

(1.3)

is determined by the record value f} = min;—y. f(z’), the optimality gap A% = f& — fif,
and the level parameter 0 < k < 1. A descent step to zF*! = 2%*1 is taken if f(z*+1) is
significantly lower than f(2*). Otherwise, a null step 2*+! = z¥ occurs.

We show that the method has the following efficiency for any accuracy € > 0:

k> c(r)(diam(S)L,/€)> = f& — f* < AF <, (1.4a)
c(r) = 1/k%(1 — &2?), (1.4h)
min ¢(-) = ¢(1/V/2) = 4. (1.4¢)

We recall from [LNN91, NYu83] that such estimates are optimal in a certain sense: if S is
a ball and N > (diam(S)L;/€)?/4 then for any method that uses at most (diam(S)L;/¢)¥/4
objective and subgradient evaluations there exists a function for which this method does not
obtain an accuracy better than e.

Our method stems from the pioneering algorithm of [LNN91}, which also has the same
efficiency (1.4). However, the latter is much more difficult to implement because it employs
J* = {1:k}, i.e, f* = max;=14 f7 in (1.2), and replaces f£, in (1.3) by f*,_ = ming f*,
requiring storage of order kN at iteration k. In contrast, we use subgradient selection as in
[Kiw85] to ensure |J*| < N+1 for all k. Moreover, by extending the subgradient aggregation
techniques of [Kiw90], we derive a method of the same efficiency in which f*¥ may involve
only two pieces (f* and an aggregate linearization f*=! € co{f’ f;ll)

The level approach has been extended in [LNN91] to problems with additional convex
constraints, convex-concave saddle-point problems and variational inequalities with mono-
tone operators. As in (1.2), these methods project certain points onto the level sets of

1

/]

-y

!

polyhedral approximations to the problem functions. The methods reduce optimality gaps
suitable for such problems with efficiency similar to (1.4). They are not, however, readily
implementable because they require unbounded storage. We shall, therefore, show how to
bound their storage via subgradient selection and aggregation without worsening their effi-
ciency estimates. In effect, we derive algorithms for the above-mentioned problems that may
be considered as implementable versions of those in [LNN91].

We may add that preliminary numerical experience with the level methods of [LNN91]
has been very encouraging. We hope that our versions will work at least equally well, since
they are able to suppress outdated subgradient information. In order to keep this paper
reasonably short, we intend to provide numerical evidence elsewhere.

The paper is organized as follows. In §2 we introduce our first proximal level method
for (1.1). Its efficiency is analyzed in §3. In §4 we give some useful modifications. Exten-
sions to problems with additional convex constraints, saddle-point problems and variational
inequalities are developed in §5, §6 and §7 respectively. Finally, we have a conclusion section.

We use the following notation. We denote by (-,-) and | - |, respectively, the usual inner
product and norm in IR™. Both superscripts and subscripts are used to denote different
vectors. For € > 0, the e-subdifferential of f at z is defined by 9,f(z) = {p € R" : f(y) >
f(z)+{p,y —z)—e Vy € RY}. We denote by df the ordinary subdifferential 8f. Given a
nonempty closed convex set C C RY and x € RY, we let Pe(z) = argmin{|z —y|:y € C}
denote the orthogonal projection of # on C. Recall that

|z — zc|* > |Po(ze) — 2 + |z — Pe(a)|*? Vr e C,z. € RV. (1.5)

The natural logarithm with base € is denoted by 'ln(-). We let 1: k denote 1,2,...,k. For
brevity, we let a/bc = a/(bc). The convex hull is denoted by co.

2 The proximal level algorithm

By (1.2), we have a**! = Pgi(a¥) if S* = {x € S: f*(x) < fk.} is nonempty. Since f* < f,
S* contains the optimal set S* = Argming f whenever ff, > f*. Thercfore, by choosing
f&, large enough, we may always ensure that S* # . Then 2%*! solves the convex problem

minimize |t — z¥|%/2 overallz € § (2.1a)
satisfying ~ f'(z) < fff, for j e J* (2.1h)

Denote the Lagrange multipliers of (2.1b) by /\;‘7,]' € J*. Let J* = {j€J*: /\f > 0}. By the
Kuhn-Tucker (K-T) conditions, if we select J* C J* such that J* C J*, then J* may replace
J* in (2.1) without changing its solution (see, e.g., [Kiw85, Kiw90] for similar arguments).
In other words, we see that f¥ = max;e « f’ may replace f* in (1.2), so that z**+} = Psi(x})
for S¥ = {z € S: fF(x) < ff.}. This suggests that only the linearizations f7, j € J¥, that
have contributed to z**! need be retained for the next iteration.

We may now state our first proximal level algorithm.

Algorithm 2.1
Step O (Initialization). Select an initial point z! € S, a final optimality tolerance €,y > 0
and a level parameter 0 < £ < 1. Set 2] = 2'. Set f) = oc and f,, = ming f!, where

2

L]

-

”;

' = f(z)+ < gs(a?),- — x! >. Set J' = {1}. Set the counters k =1, [=0 and &(0) =1
(k(1) will denote the iteration number of the Ith increase of f£,).

Step 1 (Level update). Set fk = min{f(a*), fi51}, AF = f§, - fk, and fE, by (1.3).
Step 2 (Stopping criterion). If A¥ < €, or gs(a*) = 0, terminate; otherwise, continue.
Step 3 (Level feasibility check). If (2.1) is feasible, go to Step 5; otherwise, continue.

Step 4 (Update lower bound). Find f¥, = mins f*. Set f, = fx,., A¥ = fk — fk, and
fk. = fE,. Choose z¥ € {27 : j € J¥}. Set k(I + 1) = k and increase [by 1. Go to Step 1.
Step 5 (Projection). Find the solution z%+! of (2.1) and its multipliers A% such that the set
J* = {j € J¥: Ak > 0} satisfies |J¥| < N.

Step 6 (Objective evaluation). Calculate f(z**') and g;(z**).

Step 7 (Selection). Select J*¥ C J* such that J* C J*. Set J¥+1 = Jr U {k + 1}, 251 = ¥,
k1 = £k and, if k> k(1), flow = fk, and A* = A" Increase k by 1 and go to Step 1.

A few comments on the method are in order.

At Step 0, one may choose any f. € [mins f!, f*], e.g.. fL., = f* il it is known. This
will not invalidate our subsequent efficiency estimates.

Step 2 is justified by the fact that f(z¥) = f~ if g;(2*) = 0, and by the optimality
estimates (2.2). If we let 2%, € {a/}%_, denote the kth ‘record’ point such that f(af.) = f&,
then upon termination z*,_ is an eqp-solution to (1.1).

In most applications, S will be described by finitely many linear inequalities. Then Step
3 may check if S* # 0 and Step 4 find ming f* via linear programming (LP). At Step 5,
many quadratic programming (QP) methods for (2.1) will automatically produce |J¥| < N
(because (2.1) involves N variables). Hence Step 7 may choose J**! such that |J**!| < N +1.

Moreover, using the lepresentatlon fi=fi(z")+ <gf (z7),- — 1"‘> in (2.1), we do not need z’

for updating f7(z¥*!) = fi(a¥*) + <Jf (27), ‘“ -z > at Step 4. Thus the required storage
is of order (N + 1)? (plus the QP wmkspace).

At Step 4, we have f5. < £ (from f* < f) and ff < f*._(otherwise § # Arg ming f* C
S* at Step 3). Since Step 4 increases f, to f. . and then Step 1 sets ft. > f&_ (cf. (1.3)),
we deduce that Step 4 may be executed at most once at each iteration. In particular, f£_ and
A* denote the final values of f£, and A at iteration k. The steps at which these quantitics
and ff, are considered should be clear from context. With this notation in mind, several
simple properties of the method may by derived inductively from the following observations.

Let us split the iterations into groups K' = {k(l):k(I+1) =1} for I > 0 (K' =0 if
) = KT 1), By somstaction, 15, 5 F411 3 - J501 > fo % flwe &0 = £ = .

and A* = fp — fE., so the gaps Ak S Ak over-estimate the optimality gap:
= =min{f(z’):j = 1:k} - f* < A*F < A* (2.2)

and AM1 < A* < AF for all k. Moreover, ff, = Alt)(‘f) at Step 5, so the level fl. =
fE. + (1 = K)A* cannot increase within each group:

P> fez 6 k() <j < k< k(I+1), (2.3)

3

LY

-

Hence f*, and A* only reflect the improvement in ff, and A* at iterations k = k(I + 1),
I > 0. Then at Step 4, ft, > ff, = ~ — £A* implies AF = — f. < kAF. Thus we
have the useful relation

AF > AR > AMHY e if ke K'and 1> 0. (2.4)

In words: each group K (except K°) starts by discovering that the target level is unattain-
able. Then increasing the lower bound reduces the gap between the bounds by at least a
fraction of k < 1. The remaining level and gap decreases within each group occur only when
the objective improves, with the lower bound staying fixed.

Note that the prox-center z* is fixed in each group. This stabilizes the search for a better
point. At Step 4, one may choose z¥ such that f(z¥) = min;c f(a9).

3 Convergence

Our aim is to establish the efliciency estimate (1.4) for Algorithm 2.1. We assume, with no

loss of generality, that the tolerance €, = 0 and that the algorithm does not terminate.

We start by relating the gaps A* with lower bounds for changes in x*.

Lemma 3.1. At Step 5 we have [2¥*' —2*| > kAY L, if k > k(1), and |2*+' —2¥| > kAY L,

if k=k(l).

Proof. Recall that "' = minjoy f(2?). If & > k(I), let j = k. Then f7 < f* from j € J*.

Since z¥*! € S*, we have Fi(a**) = f(29) + <g,(11) k1 _ 1J> < R < fE L so
Lylz™*! — 2 2 |gg(a/)||la™*! — 27| 2 f(27) = fiey 2 fy = (fi — AF) = A

from the assumption |gs(27)| < L, the Cauchy-Schwarz inequality and (1.3). If & = &(/),
let j € J* above be such that x* = 27 at Step 4. 0

Recall that &**! = Pgi(2¥) = Psx(a¥) and S = {z € 5 fi(2) < fi5.).
Lemma 3.2. If k> k(l) at Step 5 then lmk“—x’lz > [:v'—.1~c'|2+|.r"“—mk| and z% = %1,

Proof. By the rules of Steps 4 and 7, a% = 2%-1 g% 5 J¥=1V and f& > fk-1 50 Sk ¢ Sk-1

C

from (2.3). Apply (1.5) with C = S*-1, 2, 1‘) y =231 e Cand 2* = Pe(2f-"). O
We may now estimate the rate of decrease of the gap A* within each group K.
Lemma 3.3. If k(l) <k < k(I +1) and A* > 0 then k — k(I) + 1 < (diam(S)L;/xA¥)?

Proof. Note that A7 > AF for j = 1:k because A’ never increases. Applying Lemmas 3.1
and 3.2 with zJ = 2 for j = k(l): k and 2,25 € S, we get

k
diam(S)? > |[z**! — 2k > |2FOF _ hO)2 4 3 |23%) — 29)?
i=k(l)+1
k
> 3 (RANLp)? 2 (AM/LyP(k~ k() +1). O
J=k()

\¢]

vy

Lemma 3.4. If A¥ > ¢ >0 for some k, then k, < (diam(S)Ly/e)Yx%(1 — &?).

Proof. (i) Let K(¢) = {1:k} C Upo K'. Since A% > € > 0 and A < AF < A* for all k,
use (2.4) and mductlon to obtain AfF > c/fc""' for all k€ K' N K(e) and | = 0: m.

(ii) Let b = (diam(S)Ls/xe)?. By (i) and Lemma 3.3, [K'N K ()| < bx*"=1) for I = 0:m.
Hence k. = S0 [K' N K (€)] £ oo bem=0 < b/(1 — «%). 0

The next two results follow immediately from Lemma 3.4 by contradiction.

Theorem 3.5. The efficiency estimate (1.4) holds for each ¢ > 0. O

Corollary 3.6. If €, = € > 0 then the algoritm will terminate with f(af) < f*+ € in
k =1+ k. iterations, where k, < (diam(S)L;/e)%/x*(1 —«?). 0

For completeness, we include an asymptotic result.

Theorem 3.7. If the algorithm does not terminate then flfp, fk. and [k, converge to f*,

and A* and A* converge to zero as k — oc. Moreover, {2¥_} converges to Argming f.

rec

Proof. Since A* > 0 never increases, A* | 0 from Lemma 3.4 (by contradiction). Hence
the facts that A¥1 < AF < A% and max{|ft, — f*|, |fh = [k = 71} < A% for all &
imply the first assertion. The second one follows from f(a*_) | f~, the continuity of f and
the compactness of S. 00

4 Modifications

Algoritm 2.1 keeps the prox-center 2% and the lower bound f. fixed within each group
K'. Our efficiency analysis seems to fm bid the most ‘natural’ choices of x¥ = 2% (with
f(2¥) = min;=14 f(2?)) and £, = ming f* for all k. Consider, therefore, the following
modification of Step 3 that attempts to finish each group quickly in order to allow the
‘natural’ choices more frequently. Let & € [x,1) be fixed.

Step 3’ (Group termination tesl). If S* = @ or at least one of the following four tests is
passed: (i) A* < &RAF-1 and k > k(I), (ii) f‘fp — frO < RAF, (i) A% < RAMD] or (iv)
= i < #AMD | then go to Step 4, setting f£, = max{fL,, f5.} (or ft. = ff. to avoid
finding f. when the first or third test is passed and S* # 8). Otherwise, go to Step 5.

Clearly, (2.4) holds with x replaced by & if the last two tests of Step 3’ are not used,;
otherwise, these tests provide the weaker relations

AR < g ARD and AR > AR > AKHD i L e Kand 1> 0. (4.1)
Theorem 4.1. (a) If Step 3’ is employed then the following estimate holds for any € > 0:

k> c(k, k)(diam(S)L/e)? = " — <A < (1.2a)

c(rk, k) =1/k?R*(1 ~ &?) and minc(-,-) = c(/2/3,,/2/3) = 6.75, (4.2h)

*

but if the last two tests of Step 3’ are omitted then (4.2b) may be replaced by

c(k,k) =1/k*(1 - %*) and minc(- c(1/V2, 1/V?2) = 4. (4.2¢)
(b) If Step 4 is allowed to choose any x* € S then (4.2])) may be substituted by
c(k, &) = 1/K*R?(1 — &%) — 1/2¢In(R), (4.2d)
min¢(-,-) = ¢(0.796718...,0.796718...) = 7.60461. (4.2¢)
If additionally the last two tests of Step 3’ are omitted then (4.2b) may be replaced by
c(k, k) = 1/£%(1 — &%) — 1/2eIn(%), (4.2f)
min ¢(+,-) = ¢(0.677653...,0.677653...) =~ 4.49950. (4.2g)

Proof. (i) We start with the second part of assertion (b). Since the second bound of Lemma
3.1 need not be true for arbitrary z¥ € S and I > 0, Lemma 3.3 now reads: k(I) < k < k(I1+1)
and A* > 0 imply k— k(!) < (diam(S)L;/xA¥)?, where k(!) may be dropped if I = 0 because
z! =2'and 1 € JL.

(ii) Suppose Ak« > ¢ > 0 for some k, € K™ and m > 0. As in the proof of Lemma
3.4, (2.4) with « replaced by & implies A* > E/R"‘ “tfor all k € K'N K(¢) and [= 0:m.
Therefore, with b = (diam(S)L;/xe€)?, (i) vields [K'N K (€)] < 14b&2m=Y/e? for I = 1:m and
K°NK(e)| < bi*™/e?. Hence k. = [, |]\IﬁI\)< mATR 083D < m+b/(1-k?). e,

< (diam(S)Ls/€)*/x*(1 — &%) + m. Therefore, (4.2a,f) will be proved (by contradiction)
if we show that m < —(diam(S)L;/c)}/2¢eIn(#). If m > 0 then (2.4) with s replaced by &
yields € < AKm) < ™Al where A' = f(a!) — f(z!) — ming (gf(.z"),-— al) < Lydiam(S)
by the Cauchy-Schwarz inequality, so m < —In(diam(S)L;/¢)/In(k). Thus, to get the
required bound, it suffices to prove that —In(t)/In(k) < —~2/2¢In(&) for all t > 0. Indeed,
t2 — 2eln(t) > 0 for all t > 0 (minimize it!).

(iii) For the first part of assertion (b), in (ii) refer to (4.1) instcad of (2.4) to get AF >
¢/ kmax{m=1-10} for all k € K'N K (e) and { = 0:m, k, < b/ik%(1 — k%) + m, and € < Ak <
k™A' if m > 0. Hence the desired bounds may be obtained as in (ii).

(iv) To verify assertion (a), proceed as in (ii) and (iii) but invoke Lemma 3.2 instead of
(i) to drop m from the bounds for k.. O

The worst-case efficiency estimates of Theorem 4.1 deteriorate if & # &, but such modifi-
cations may be useful in practice anyway. In particular, if fX. is calculated for each k, then
the corresponding test of Step 3’ may be employed to ensure that f¥, > f&. 4 (i — k)A* at
Step 5 due to ff — fE > RAF de., fE. is ‘significantly’ larger than fX. if & > «.

We may add that the estimate (4.2a,b) (which is slightly weaker than (1.4)) is derived in
[LNN91] for the original proximal level method that employs a test similar to A% < kAFD,

That method keeps z* = z¥_ (i.e., f(z¥) =) by setting =¥ = z* if f(a*) < f(z*-1), and

z¥ = zF-1 otherwise. Wlth Step 3’, our method may change 2% to the best point a\allable

at Step 4if S¥ =19, f" < nAW) A* < RARY or AF < AA"“). Observe that the last
two inequalities may be rewritten as

f&¥) < it = (1= R)AKT, (4.3a)

fAS RS (1= AN, (4.3)

In other words, for stability reasons, our method replaces the more ‘natural’ test f(z*) <
f(z5-1) of [LNN91] with the Armijo-like tests (4.3) for a ‘substantial’ descent. (One may
employ £ = 0.9 to emulate the first test by (4.3a) or (4.3b) without blowing up the efficiency
estimates.) Now, if z¥_ = z7 with j = jX_ say, then the origina] version of Step 4 requires
jk. € Jktoset zF = zrec We may, of course, ensure that j5_ € J* by letting Step 7 select the
corresponding linearization. However, Theorem 4.1(b) shows that it is not really necessary
to increase storage in this way.

Since subgradient selection may require excessive storage for large N, we now turn to
subgradient aggregation, in which aggregate linearizations are produced recursively by taking
convex combinations of the ‘ordinary’ linearizations. Aggregation results from the observa-
tion that the solution to (2.1) does not change when we replace the constraints (2.1b) by
their convex combination with ‘normalized’ weights determined by the multipliers /\J‘ This
may be formalized as follows (see [Kiw85, Kiw90] for more details).

Let és denote the indicator of S (és(z) = 0 if z € S, oo otherwise). By the K-T
conditions, (1.2) holds iff z¥*! € S* and there exist g} € 8f*(z**') and M5 > 0 such that
gk — 2% — Akghk € 965(x¥*t) and M[f¥(a**) — fE] = 0. Constructing the aggregate
linearization f*(z) = f*(z*+!) + <g“ T — xk+l> and redefining f*¥ = ma*({fk,ma\'JeJk f}
with any J* C J* (possibly J* = @), it is easy to check that f* may replace f* in the
conditions above, and hence also in (1.2). Therefore, f*+! = max{f max; e r+1 f7} with
J¥1 = JFu{k+1} would suffice for the proof of Lemma 3.2 (for k increased by 1). Notice that
f* < f¥ < f and fE(2*t1) = f¥(a*+1), so that f* might be treated like any ‘ordinary’ f7 at
later iterations (except when we need fJ(mj) = f(z’) at Step 4; see the proof of Lemma 3.1).
Another useful characterization of f* is derived from the form of f* = max ;e sk f7 as follows.
We have g} € A f*(x**+1) iff there exist multipliers 5\;‘ > O satisfving ;\f[_f"(:rk**‘)—fj(;r'k*‘)] =
0 for j € J* and (gf,l) = Y jeJk :\f(gj(arj),l), in which case f* = Y ek 5\;‘[’ By the
K-T conditions for (2.1), we have a¥ — M T Agp(al) € 8s(xF*Y), XX > 0 and
)\f[fj(xk“) — fk] = 0for j € J*. Comparing these conditions with those for (1.2), we
may identify 5\;‘ =)\;‘/z\'} for j € J*if Ak = L jedr /\f is positive. Otherwise, i.e., if all
/\;‘7 = 0, we may take any 5\;' > 0 such that 3~ ¢« ;\k =1 to define f* = 2 iedk 5\"'[' again
obtaining f* < f* and z*t! = Psk(). Indeed, if all Ak vanish, then the K-T conditions
yield z%¥+1 = Pg(a¥) (= z* from 2% € S), whereas we have +++1 = Psi (%) and S* c Sk

In view of the above rema.ll\s, consider the following use of aggregation in Algorithm
2.1. At Step 0 let f© = f!. At Steps 1 through 4 use f* = max{f*~!, max;ex f7}, where

510 = f1 b+ <gf y = 1é> At Step 5, append to (2.1) the constraint f*~1(z) < fX |
ﬁndirig its Lagrange multiplier /\5 Set A'} = Y iesk /\f+/\§-. If /\’; > 0,~set ;\f = /\;‘//\k,j e Jk,
and A§ =)\’}/A"; otherwise, choose any convex combination, e.g., A\¥ = 0 for j € J* and
X; = 1. Set

(f487) = 22 A5(f,95(27)) + A (£ g57). (4.4)

Jj€J*

(Thus f*-! is treated in the same way as any other linear piece f7 of f* in constructing f*
as in the preceding paragraph.) At Step 7 choose any J*¥ C J* (possibly J* =).
It is easy to verify all the preceding convergence results for the above version with ag-

7

gregation. If J* = 0, then only two linearizations f* and f*=1 need be stored. In practice
convergence can be slow if J} is too small.

5 Constrained minimization
We shall give an extension of our method for solving the convex constrained program
ff=min{f(z):x €S, F(z) <0} (5.1)

under the following assumptions. S is a nonempty compact convex subset of RY, f and
F are convex functions Lipschitzian on S with constants L; and Lr respectively, for each
z € S we can compute f(z), F(z) and subgradients g;(z) € 8f(z) and gr(z) € OF(z) of f
and F at z such that |g;(z)] £ L; and |gr(z)| £ LF, and F(z) < 0 for some z € S.

We associate with (5.1) the improvement functions H(z;t) = max{f(z) —t, F(z)} and
h(t) = ming H(-;t) defined for for t € IR and z € S (see, e.g., [Kiw85, LNN91]).

Lemma 5.1. For any fized t € R, H(-;t) is conver and Lipschitzian on S with constant
Ly = max{L;,Lr}. For any fired x € S, H(x;-) and h are nonincreasing, conver and
Lipschitzian on IR with constant 1. Moreover, h(f*) =0 and h(t) > 0 for all t < f~.

Proof. The function max{-,-} is monotone, convex and Lipschitzian with constant 1 on IR?
in the norm ||z||.. = max{[z;[,]z2]}. Therefore, the assertions concerning H follow from our
assumptions on f and F. For each 1, since H(-;t) is continuous on the compact S, there
exists z(t) € S such that h(t) = H(x(t);t), i.e., h is well-defined. Clearly, ming H(-;t) is
nonincreasing, convex and Lipschitzian in ¢t with constant 1, since h(t') = h{t) < H(z(t);1') -
H(z(t);t) < |t' —t| for all t,t' € IR. If h(t) < 0 then f(z) <t and F(2) < 0 for some = € S,
so (5.1) yields ¢t > f* and h(f*) = 0. Similarly, k(t) < 0 implies ¢t > f*. [0

Notice that if 2 € S,t < f*and H(x;t) < ethen f(z2) < f*+e¢and F(x) < e, i.e., xisan e-
solution to (5.1). This suggests the following procedure, which requires an initial lower bound
t() < f~ and a parameter 0 < g < 1. At iteration n > 1, having some ™) < f*, minimize
H(-;t™) over S approximately with Algoritm 2.1, stopping when it discovers that h(t(") >
wH(z™;¢™) for its best point (™ € S. (In view of Theorem 3.7, a stopping criterion of
the form AF < (1 - y)pr will work, since ming H(-;t(™) = A1) > 0 due to 1 < f* by
Lemma 5.1.) Choose any t"+1) € [t™) 4y H(2(™; ™), f*) (e.g., t0+D) = () 4 H (20 1)y,
since h(t(™) = A(t™) — h(f*) < f* - t™ from Lemma 5.1). Increase n by 1 and perform
the next iteration. This procedure produces H(z(™;t(") — 0 and ¢t 1 f*, since we have
t) 4 pH(z™; ™)) < t0+) < f* and 0 < pH (z™;t0M) < h(t™) < H(z™;t™) for all n,
whereas h is continuous and h(t) > 0 for t < f* by Lemma 5.1. Moreover, for any € > 0, we
must have H(z(™;t(™) < ¢ for some n < 1 + (f* — t(M)/ue. To obtain better bounds, we
shall modify a much more refined scheme for updating ¢t due to [LNN91].

Our algorithm will generate trial points z¥ € S at which the linearizations f*(.) =
f(z*) +<gf(a:k), - — w"'> and F*(:) = F(z*) +<gp(xk), - — :rk> of f and F are computed, and
lower bounds ff, < f* such that f¥ 1 f*as k — co. At the kth iteration, H(-; f¥,) and h
are approximated from below by H*(-; f¥) = max{f* — f£.. F*} and A¥(1) = ming H*(-;1),

8

where f* = maX;e sk i, Fk = max e jk Fi and Jf U JE C {1:k}. These models correspond
to the following relaxation of (5.1):

=min{ f*(z):z€ S, FFz)<0), (5.2)

i.e., we have f5. < f* and h*(mm) = 0 by Lemma 51 applied to (5. ‘7) We set 2%+ =
arg mm{l:t —z¥|:z €S, H¥z;fE,) < Hlev} where z¥ € {z7}%_, and Hf, depends on the
current bounds HY, < h(fE,) = ming H(; f§,) < H" Thus :t"“ solves the problem

minimize |z —zF|%/2 overallz € S (5.3a)
satisfying f'(z) < HE, + ff, for j€ Jf, (5.3D)
Fi(z) < HE, for je JE. (5.3¢)

We may now state our extension of Algorithm 2.1.

Algorithm 5.2
Step 0 (Initialization). Select an initial point gt e S, a ﬁnal optima]ity tolerance ¢, 2> 0,

a level parameter 0 < x < 1 and p € (1/2,1). Set k=1, ! =z}, = 2! and J} = Jp = {1}.
Set fil . = fL. by (5.2), H., =0 and 11},,, = H(z'; fl,). Set the counters | = 0, k(0) = 1

and A’(0) = 1 (k(!) will denote the iteration number of the Ith increase of f£ . to fA (- 1)).

Step 1 (Level update). Set A* = H} — Hy, and Hf, = H}, — vAF.

up

Step 2 (Stopping criterion). If H(ak_; ff.) < €op, terminate; otherwise, continue.
Step 3 (Gap test). If A* > (1 — p)HE

up?

Step 4 (Group start). Set f& = f5U0 k= H(z* ; fk) and HE, = 0. Set k(1+1) = k

min up

and increase [by 1. Go to Step 1.

go to Step 5; otherwise, continue.

Step 5 (Level feasibility check). If h*(fE.) < HE ., go to Qtop 7, otherwise, continue.

Step 6 (Update lower bound). Set HE, = h*(fE.), fX, by (5.2) and ¥(l) = k. Choose
z¥ € {a7: 5 € JfnJE}. Go to Step 1.

Step 7 (Projection). Find the solution z**! of (5 3) and 1t9 mulhpllcm \fJ and /\ ; such
that the sets J§ = {j € Jf : A%, > 0} and J§ =
Step 8 (Record updates). If H(z**; fkm) < Hf;p,
otherwise, set Hi*!' = HE and zft! = 2k,

rec

set Hﬁ;l = H(z"; f,o“)and L“'H = k4.

Step 9 (Selection). Select Jf, C Jf' and J;ls C JE such that jk C J§, and JE c JE,. Set
JE = T Uk 1), T = JE U k1), 0 = ok, B = B, and 50 = S
Increase k by 1 and go to Step 1.

A few comments on the method are in order.

Let us split the iterations into groups k' = {k(I): k(I + 1) — 1} for I > 0 (which differ
from those in §2). For k = k(l), Step 4 (or 0) gives f, = f‘ @) < £ (since fhn < f7 Yk,
and hence Hf, = 0 < h(fF,) < H" by Lemma 5.1, whereas Step () vields ff = M for

low

k € K!, k > k(l). Thus inside each gloup K'! our method behaves like a version of Algorithm

9

2.1 for minimizing H(-; lo(w)) over S that uses more refined models FT*(; f,’f,(‘i)), which do not

impair the efficiency estimates of §3. In particular, since Hf, cannot decrease within K/,
we have 0 < HY, < Hf_ for all k € K'. 1t is worth obeervmg that f,k““) > f,‘“) for the

next group. Indeed, for k = k(I + 1) Step 4 is entered if HY, > /tHup > 0, so [1f, must
have been increased at iteration k = &'(I) € K' at Step 6 to Hf', = izk(ﬁow) > Hf, 2 0,
whereas h*(f*.) = 0, and hence ff, < f*, by Lemma 5.1 applied to (5.2). Since H(z* : ')
is nonincreasing, Steps 4 and 9 produce Hi' < HE = H(z},; fii,,) for all k. We also note

that R¥O(fX0) = HE, > pHE > puh(f,‘;Q) at Step 3 for k = k(I + 1), i.e.,

RO figw) > 1H (25 fio) 2 wh(fig))- (54)

low

In other words, f,’;(vl,) is increased to the smallest root of A*!) and (5.4) with & > 1/2 ensures
that h*'(") is close enough to h at f,’:,(“l.) in order for f‘,ﬁ;‘,,” to be significantly closer to the
required root f* of A.

Steps 4 and 6 may be enteled at most twice at each iteration. Indeed, if Step 4 gives
hE(fE,) > max{(1 — &), .} HE , then Step 6 will set k(l) = k, and the next h*(f§) = 0 at
Step 4; this is the only possibility. Such empty groups are harmless, but one may wish to
avoid them as follows. First, at Step 4 one may check if the new }zk(flo“) >), in which
case ff, may be replaced by f*. and k’(l) increased to k. Second, one may use this test at
Step 3 on all (or some) iterations, i.e., if A*(f,) > ;lH:p then Step 4 may be entered with
k(1) = k. We may add that such modifications are in fact covered by our efficiency estimate
given below, because the crucial property (5.4) is not impaired.

Upon termination at Step 2, a¥. is an eqp-solution to (5.1), since ff, < f.

Theorem 5.3. The following efficiency estimate holds for any 0 < ¢ < diam(S)Ly:

k> c(k,p)(diam(S)Ly/e)? In(8diam(S)Ly/e) = H(zX_ fr.) <e, (5.5a)
C(h,;l = 1/k%(1 = £?) In(2p)(1 — p)?, (5.5b)
min¢(-,-) = ¢(1/v/2,0.652530...) ~ 124.434. (5.5¢)

Proof. (i) Suppose Hl’;'l‘, > € for some 0 < ¢ < diam(S)Ly, k. € K™ and m > 0. Let
K(e) = {1: k.}. Since H;, is nonincreasing, we have HY, > ¢ for all k € K (¢).

(i1) Our aim is to bound m from above, so suppose m > 1. To unburden notation, let
¢ = h¥'0 for Il=0m—-1and t; = flk(l) for [= 0: m. Recall from our remarks that we have
to<...<tn S f*, 01 < h, ¢i(ti) > ph(t;) > 0 and ¢y(ti41) =0 for I = 0:m — 1. By Lemma
5.1, each ¢1 is nonincreasing, convex and Lipschitzian with constant 1, and ¢(¢) > 0 for all
t < ti41; hence its right derivative ¢} is negative for such ¢, e.g., t = ¢,.

(lll) Let 61 = —¢1(t1)¢;(t1) for { = 0:m — 1. Since ¢1(t1) + ¢;(t1)(t1+1 - tl) S ¢1(tl+1) 0,
we have & > @7(t)/(tiy1 — ;) > 0. Fix I < m —1. Then 0 < —¢],,(t141) < (dia(th) -
d1+1(ti+1))/(tiz1 — 1) by a secant property of convex functions on IR. Moreover, ¢;4(t;) <
h(t:) and &(t;) > ph(t;) imply éi(t;) > péisa1(t). Hence

di41 < (d141(t1) — i1 (tig1)) i1 (tigr) < (1 B ¢1+1(t1+1)) Prg1(tip) 1 < 1
& ~ o7 (t) - drp1(ts)) Gupa(ly) p? = 4p?

10

We conclude that 4, < §/4p? for I = 0:m — 2.

(iv) We have f* — f} < 2L;diam(S) and h(f,})w) < H(z'; fl,) < Ly diam(S). Indeed,
let z* solve (5.1). Then f* = f(z*) < f(z2!) + Ls|a* — 2!, |2* — 2!| < diam(S) and
F(z') € F(2*) + Lp|z* — 2'| € Lrpdiam(S). Similarly, if # solves (5.2) for k = 1 then
fow = frim = SHE) = f(z")+ (gs(2"), & — 2') > f(z')— Ly diam(S) by the Cauchy-Schwarz
inequality. Recall that H(z!; fi,,) = max{f(z') - fi.; F(z')} and Ly = max{Ly;, L;-}, and
combine the preceding inequalities.

(v) Let V = Ly diam(S). By (ii) and (iv), do(to) = A'(fiL.) < R(fL,) € V. Clearly,
|#6(to)] < 1 from Lemma 5.1. Therefore (ii) yields 6m_1 < V/(4p2)™1, so that either
Gm-1(tm-1) < (2p)'"™V or |¢,._1(tm-1)] < (22)'~™. Since ¢m_1(tm) = 0, dn_1 is nonin-
creasing and convex, and f* -~ 2V <ty < ... < t,, < f* by (ii) and (iv), in the second
case we have ¢, 1(tm_1) < @ 1(tme1)|(Em = tmo1) < (20)'~™2V. Thus in both cases
bm-1(tm-1) < 4uV/(21)™. But (5.4) gives ¢pm_1(tmo1) > uHE™ > pe, so

m < In(4V/e)/ In(2p). (5.6)

This bound also holds if m < 1,since 0 <e<Vand 1/2<p <1
(vi) Fix | < m. Let k = k(I+1)~1if 1l <m, k = kil] = m. After Step 14
sets f,’;(w), we have A% > (1 — /L)Hll:p > (1 — p)e for iterations k = k(I): k. which may be

treated as the first & — L.(l) + 1 iterations of Algorithm 2.1 minimizing H(-; ()) over S.

low
Therefore, since AF > (1 — p)e, Ly is the Lipschitz constant of H(-;]AO(“I.)). V = Ly diam(5)
and k — k(1) + 1 = |K' n K(¢)], we deduce from Lemma 3.4 that |K' N K(c)| < (V/(1 —
€)¥/k%(1 — k?) for [= 0:m. Combining these estimates with (5.6), we get k. = T2 |K'N
K(e)| <1 +I(aV/e)/In(2p))(V/(1 = 1))Y k(1 — k?). Since 1/2 <y < 1. we have k, <
c(k, 1)(V/€e)*In(8V/¢), and this implies the required estimate. [

We should add that the above proof is a modification of one given in [LNN91] for another
level method (that enjoys (5.5a) with ¢(x, 1) multiplied by 2).

Theorem 5.4. If the algorithm does not terminate then f(aX.) — f*, max{F(z%.),0} — 0

and fE, T f* as k — oco. Moreover, the sequence {z¥,.} converges to the optimal ce[of (5.1)

Proof. Since ff, < fit! < f-,0< ' < HE = H(x}: fi,) and h(fE,) < H(zf finy)
for all k, we have f!, T £, < [, I](Vpocs f]ow) 1 0 from Theorem 5.3, h(f3,) = 0 and
S, = f* by Lemma 5.1. Let 2° € S be any accumulation point of {z¥_} (which lies in the
compact S). Then H(x; f*) = 0 by the continuity of H, i.e., z* solves (5.1). 0

Step 5 may incorporate the additional tests of Step 3’ from §4 for entering Step 6, e.g.,
AF < RAF' O or HE —BE(fE) < RAY!) for k”(I') generated like k(1) in Algorithm 2.1 (i.e.,
Step 0 sets £”(0) = 1 and I’ = 0, Step 4 sets k"(l') = k, whereas Step 6 sets k"(I' + 1) = k
and increases I’ by 1). Invoking Theorem 4.1 instead of Lemma 3.4 in the proof of Theorem
5.3, one may obtain (5.5) with ¢(x, i) replaced by c(x, &, p) = ¢ (K, &)co(p), where ca(y1) =
1/1n(2p)(1 — p)? and ¢1(, k) is given by the various cases of (5.5). Incidentally, although
Hf, = 0 need not equal h¥(f£,) at Step 6, we always have A* < H* < H(z! ;fL.) <

up
Ly diam(S) (see (iv) in the proof of Theorem 5.3), as required in the proof of Theorem 4.1.

11

»

Let us now consider the case of F' = max;_,., F;, i.e., n inequality constraints in
ff=min{f(z):z €S, F(z)<0,i=1:n},

where F; are convex functions with subgradients gg () € 9F(x) satisfying |gr ()| < Lf
for all z € S. Then we may employ more refined models F'* = max,=1.» max e F? with
F;’ = Fi(z?) + (g9r,(27),- — /) and JF C {1: k}, i = 1: n. Replacing (5.3c) by the constraints
F(z) < Hj;, with Lagrange multipliers A%, j € Jf, i = 1:n, at Step 9 we may choose
JF = JE U {k+ 1}, where {j € JF: A5 > 0} C JE C JE. Step 6 may set z¥ = 27 for some
j € Jj or j € Jf and i such that H*(z7; ff) > HE . Since obvious extensions of Lemmas
3.1 and 3.2 are easy to prove, we deduce that all the preceding efficiency results remain true.

To save storage and work per iteration, our algoritm may include separate aggregate
linearizations f*~1 and F*-! in f* and F* as in §4. Thus we may augment (5.3) with the
constraints f*~1(z) < HE, + fk, and F¥-1(z) < Hf,, find their Lagrange multipliers)\'}

and /\’;:,, and normalize each group of multipliers separately to define f* and F* as in (4.4)
(e.g., with ;\’}j >0, /\f >0, ZjeJ," ;\’}J + 5\} = 1). Again, Step 9 may choose any J}‘s C J}‘
and J§, C J§ (possibly Jf, = JE, = 0), without influencing the efficiency estimates.

6 A method for saddle-point seeking

We shall give an extension of our method for solving the convex-concave saddle-point problem

find (y*,2") € Sy x S. such that max d(y*,-) = d(y",2") = n;_in O(-.=7) (6.1)

under the following assumptions. S, and S, are nonempty compact convex subscts of R™
and RM: respectively, ®(-,z) is a convex function Lipschitzian on S, with constant L, for
each z € 5,, ®(y,) is a concave function Lipschitzian on S, with constant L. for eachy € S,
and for each (y, z) € S, x S, we can compute ®(y, z) and a subgradient o, (y,z) € 9,P(y, =) of
®(-,z) at y and a supergradient ®,(y,z) € 9.9(y, z) of ®(y,-) at z such that | (y,2z)| < L,
and |®/(y,2)| < L,. (Here —®/(y, z) is a subgradient of the convex function —®(y,-) at z.)

It will be convenient to identify the product R™ x RM: with R for N = Ny, + N..
Letting z = (y, z) denote a generic point of IRV with components y € IR™ and = € IR™:, we
have |z|? = |y|* + |z|* (all norms being Euclidean, there is no need for extra notation). In
particular, let S = S, x S, denote the feasible set of (6.1).

Let #¢(y) = maxs, ®(y,:), ¥(z) = mins, ®(-,2) and f(x) = &(y) — ¢(z) for all z =
(y,2) € S. Clearly, ¢ is convex on Sy, ¢ is concave on S, and f > 0 is convex on S. Since
d(y) = ®(y,2) > ¥(z) if (y,z) € S, we see that S* = Argming f = {z € S: f(x) = 0} is the
set of saddle-points of (6.1) {we shall prove constructively that S* # 0). Given an € > 0, we
say that £ = (y, z) is an e-saddle-point for (6.1) if £ € S and f(z) < €. Thus e-minimizers for
f on S are of interest, but they cannot be found by Algorithm 2.1 when we cannot compute
the usual linearizations of f. Owing to the special structure of f, we may, however, employ
‘inexact’ linearizations as follows.

Our algorithm will generate trial points z*¥ = (y*,2*) € S at which the ‘inexact’ lin-

earizations ¢*(y) = ®(z*) + (@}(z*).y — ¢*) and ¥*(z) = B(x*) + (L(e*), 2~ 2¥) of 4

12

<

¥

and 1 are computed. By construction, ¢¥ < ®(-,z%) < ¢ and ¥* > ®(y*,.) > ¢, although
we need not have equalities at y* and z* as for the ‘exact’ linearizations considered be-
fore. At the kth iteration, f is approximated from below by f¥(z) = #*(y) — ¥*(z), where
¢ = maxX ek ¢’ underestimates ¢, ¥ = min;e Y7 overestimates ¥, k € J; C {1:k} and
k€ J* c {1:k}. Clearly, f* is convex and f*(z*) > 0, since ¢*(y*) > ¢*(y*) = ®(z*) and
Pk (2%) < P*(2*) = ®(2*). Other useful properties of these approximations are summarized
in the following result from [LNNQI].

Lemma 6.1. Let ¢, = ming, ¢, = maxs, ¥, and Iet pki, 5 € Jk, and pk;, 5 € J¥,
v 7] 2]

max
denote the associated multzplzers satisfying [t >0, ZJeJk yyj = l Minges, ZJE_,» /twcﬁ’(y) =
rﬁun’ II'ZJ Z 0 ZJGJ" ﬂzj =1 and maxZGSz Z:JGJ" #ZJ’(I) () = max Defne III (yreu rec)
by ym = Z:Jejk pwy and zrec = Z:JGJk [lsz , and let f,',‘lm = ming f*. Then fmm = ¢mm -
max S 0 xTCC e S and f — rI:un

Proof. We have ®(y, fec) > ;1',‘] (y,27) >)3 nyqu(Yforally € Sy since ®(y,) is con-
cave and ®(-,z7) are convex. Taking minima over S, we get ¢(z%.) > > d)mm Simi]ar]y, by the
convexity of ®(-,z) and the concavity of ®(y’,-), ®(yr,,z) < >, /1 Py, 2) <% p 1/11()

for all 2 E S lmplles ¢(yrec) < /ll)ma\ I{en(‘e f(.) ¢(yr‘ec) ‘ll)(.‘l'lrcc) l/fk'nax l"}“n = lnln
Next, y*_ € S,, 25_€ S, and 25 _€ S by convexxty so f(zx)>0.0

rec rec)

In view of Lemma 6.1, we wish to find a model f* mth a small f* To this end, the

min*

algorithm sets a**' = argmin{|z — 2% : € S, f¥x) < fi,}, where 2 € {27}%_, and
fEo= —kAF, with A% = — f*1) for some k(1) < k and 0 < k < 1. Thus a*+! = (y+!, 4+1)
solves the problem
minimize |r —x¥|¥2 overallz € S (6.2a)
satisfying f9(z) < ff, for (i,5) € J*, (6.2b)

where f9(z) = ¢'(y) — ¥’(z) = d(a') — B(x’) + <‘I"y($i)’y - yi> — (®.(x7),z — 2%) and

J¥ = J¥x J¥ correspond to the representation f* = max; jjess fY = max e & & —minje 9.
We may now state our proximal level algorithm.

Algorithm 6.2

Step O ([Initialization). Select an initial point a: € S, a final optimality tolerance e, > 0
and alevel parameter 0 < k < 1. Set k =1,z = z' and J' = J] x J} = {1} x {1}. Set

Al = . and find the corresponding z}. = (y}.,2..) as in Lemma. 6.1. Set the counters

[=0 and k() = 1 (k(I) will denote the iteration number of the ith decrease of A¥).
Step 1 (Level update). Set fff = —kAF.

Step 2 (Stopping criterion). If AF < e, terminate; otherwise, continue.

Step 3 (Level feasibility check). If (6.2) is feasible, go to Step 5; otherwise, continue.

Step 4 (Update lower bound). Find . and the corresponding x¥._ as in Lemma 6.1. Set
A¥ = —fk and A¥ = A*. Choose =¥ € {27 : (j,]) € J*} (e.g., 2* = 2*). Set k(I+1) =k
and increase [by 1. Go to Step 1.

13

Step 5 (Projection). Find the solution 2% of (6.2) and its multipliers)\‘ such that the set
J*¥ = {(i,5) € J* : A%, > 0} satisfies]jkl < N.
Step 6 (Objective evaluation). Calculate ®(z*+1), & (z*) and ®(a*).

Step 7 (Selection). Select J* = J¥ x J5 C J* such that J*¥ C JE. Set J¥*+1 = JM1x Ji+1 =
(Jhu{k+1})x (JEU{k+1}), 175“ =gk gkl = gk _ AR = Ak and,if k> k(1), AF = A,
Increase k by 1 and go to Step 1.

Clearly, our method may be considered as a modification of Algorithm 2.1 obtained by
setting f¥ = f* = ming f = 0 and f}, = FHD at Step 1. With this notation, the various
remarks and relations of §2 apply to the present case For instance, (1.3) and (‘2.4) remain
true, whereas (2.2) is replaced by the fact that f(zF.) < A* (from Steps 0 and 4), i.e., 25_
is a A*-saddle-point for (6.1). Hence the efficiency of our method will be analyzed below as
in §3. To this end, observe that the gradients V f* = (®;(z'), —~®'(z7)) of the linearizations
fU satisfy |V f9] < L; with Ly = (L2 + L?)'/%; hence L; may serve as the Lipschitz constant
for fY (as well as for f* and f itself, although we do not really need this property). We also
note that diam(S) = [diam(S,)?+diam(S.)?]'/2, and recall that S* = {z € S: f¥(x) < fE.}.

rec’

Theorem 6.3. The following efficiency estimate holds for any € > 0:

k> c(x)(diam(S)Ls/e)? = f(zk,) < AF <, (6.3a)
c(k) =1/k%1 = x?) and minc(:) = c(1/V2) = 4. (6.3b)

Proof. We claim that Lemma 3.1 remains true. Indeed, if & > k(l), let j = k. Then f¥7 < f*
from (j,7) € J¥, and f7(x?) = ®(27) — ¥(2?) = 0. Since z¥*! € S*, we have fi/(2F+1) =
fjj(:cj)+<ijj(.7;j),:L'k+’ — a:j> < MY < fE) so Lila**t —2?| > |V [()| — 27| >
kA* due to |V f#| < L;, the Cauchy-Schwarz inequality and ff. = —xA*. If k = k(1). let
(7,7) € J* above be such that 2* = 27 at Step 4. Having established Lemma 3.1, it is easy
to verify the remaining Lemmas 3.2-3.4, which imply the desired result. 0

We observe that Step 3 may be modified like Step 3’ of §4, and Theorem 4.1 may
be verified if one notes that A' < L;diam(S). (Indeed, A' = —ming f1' = f1(2') -
ming (Vf11,. — z!) < |V diam(S) due to f1'(z!) = 0 and the Cauchv-Sch\\alz inequal-
ity.) Moreover, the following analogue of Theorem 3.7 holds: A* l 0 and f(af.) | 0 as
k — oo and every accumulation point ¥ of {2X_} solves (6.1), i.e., 2> € § and f(2*) = 0,
since f > 0 is continuous (at least one such point exists because {r .} C S, a compact set).

Instead of (6.2), we may solve the following problem with artificial \arla.bles Yo and zo:

minimize |y — y¥|¥2+ |z - 25|}/2 overall (y,z) €S, o €R, z0 €IR (6.4a)
satisfying o + 20 < fit, #'(y) <o for j € J§, =9 (z) < 20 for j € JE. (6.1D)

Denote the Lagrange multipliers of (6.4) by A, AY. ;j € J§, A, g€ J5. Due to the
structure of (6.4), there exist multipliers such that the sets J!'f = {j € J} : A}, > 0} and
Jk= {5 € Jk: AE > 0} satisfy ljlfl < N, +1 and |J¥| < N, + 1. (Such multipliers may
be found by QP methods when S is described by finitely many linear inequalities.) Hence
selection may require storage of order 2N? + 2N? (for ¢, 37, ¥ and 2%).

14

To save storage, we may aggregate linearizations and corresponding points as follows.
Suppose (¢*=1, §*=1) € co{(¢’,y’) : and (%=1, 251y € co{(¢’, 27) f;]l Append to (6.4)
the constraints q&" (y) < yo and z/)k'l(z) < zp with multipliers)\g and /\ﬁ-}. As in §4, we
may find ‘normalized’ nonnegative multipliers satisfying Zjejyk 5\5] + ;\5, =1, Yjeun jfo +
;\ﬁ» = 1’ and set (q;k’?;k) = szJ;'f A (d’] y’) + Ak(d’k ! .k]) (J’kvgk) = ZjEJf :\lzcj(d)jvzj) +
;\Q(J)"‘I,Ek‘l). Clearly, (¢*,3*) € co{(¢-’,y }_’;=1 and (11! ,3%) € co{(zl)j,::j)};-;1 (as convex
combinations of convex combinations). In other words, we use ¢* = max{qzk‘l, max;e &)
and ¥* = min{%k‘l,minje.,k ¥}, so an extension of Lemma 6.1 is required, in which we
represent (¢¢=1,#-1,1) = LI A51(4%, 47, 1) and (P51, 3671,1) = TS AETH (9, 24, 1) for
some :\'y‘i'l > 0 and :\f‘ 1>0.

Lemma 6.4. Let éfmn = ming, &, Pk = maxg, ¥F, and let u* i J € Jk, ﬂy and /1

max

€ JF, it denote the associated multipliers satisfying us; > 0, ji; > 0, ZJejk [tw +jiy =
1 minyesy Z:JGJk /L§]¢](y + ﬂkék—l(y) = c.all'\;\in’ ll'lzc_; 2 0) ,tlzc Z 0} Z]GJf uz_] + ﬂz = 11
maX.es, Z]EJ" ﬂzﬂﬁ ()+ﬂk¢k 1() “/’ﬁ\ax' Deﬁne x:.ec = (yfecs ~|‘~:ec) bJ Jl":ec = Z]EJ“ #;]y +
,u';yk Vand 25 = 2k [L~JZ‘]+[L" k=1 and let f*, = ming f*. Then fk, qS —gk <
0 .’l) € S and f(xrec) < fri;un

Proof. As in the proof of Lemma 6.1, &(y, #-1y > TPy, 1) > i A=lgicy) =
$1y) and Bly,2L) > Tk By,) + W0l) 2 Tk, 8) + 76 1) for al

y € S,. Getting a similar lelatlon for ®(yX _, z), one may complete the proof as before. O

We conclude that, owing to aggregation, our method will retain its efficiency estimates
even when only @F~1, k=1 g1

JE = 0).

and %=1 are stored and updated recursively (i.e., Jlfs =

7 A method for variational inequalities
We give a modification of our method for the monotone variational inequality problem
find 2" €S suchthat (¥(z),2—2")>0 Vze€S (7.1)

under the following assumptions. S is a nonempty compact convex subset of RN and ¥
is a monotone bounded-valued operator on S, i.e., (¥(z) — ¥(2’),z — ') > 0if z,2’' € S,
and supg |¥(:)| < oo. (See, e.g., [LNN91] for conditions, such as maximal monotonicity or
continuity of ¥, under which (7.1) is equivalent to the classical variational inequality problem
of finding =* € S such that (V(z*),x —x*) >0Vz € S.)

We associate with (7.1) the improvement function f(z) = supg (¥(-),x — -) defined for
z € S. Clearly, f > 0 is convex, and S* = {z € S : f(z) = 0} is the set of solutions
o (7.1) (we shall prove constructively that S* # @). Given an ¢ > 0, we say that z is an
e-solution to (7.1) if £ € S and f(x) < €. Thus e-minimizers for f on S are of interest, but
they cannot be found by Algorithm 2.1 when we cannot compute the usual linearizations of

15

f. The situation is similar to that of §6, so we shall again exploit the special structure of f
that allows ‘inexact’ linearizations.

Our algorithm will generate trial points z¥ € S at which the ‘inexact’ linearizations
f* =< (z¥), - — = >off are computed. By construction, f* < f, although f*(z*) = 0 necd

not equal f(z*). At the kth iteration, f is approximated from below by f*(z) = max;e sk 1,
where k € J*¥ C {1: k}. Clearly, f* is convex and f*(z¥) > 0, since f*¥(z*¥) = 0. Another
useful property of f* has been established in [LNN91].

Lemma 7.1. Let f, = mins f*, and let p%, j € J*¥, denote the associated multipliers

satisfying uf >0, e yf =1, and Mminzes 3 ek ;tffj(x) = fk . Letzk_= ek pij.

Then f,’,‘un <0,zF_€ S and f(z*) < —f:un

rec

Proof. Let z € S. We have (¥(z),z — z7) > (¥(2’),z — z7) by the monotonicity of ¥,
so (W(),z — zhe) = X ub (¥(a),x - 27) 2 T (V(ad), o) = S5 () 2 frn
Hence 0 < f(x o) = SUP.es <‘I’ z),zk_ — 1‘> —fk., where z¥_ € S by convexity. 0

Since Lemmas 6.1 and 7.1 are analogous, it is not suprising that our method is similar
to Algorithm 6.2.

Algorithm 7.2

Step O (Initialization). Select an initial point 2! € S, a final optimality tolerance ¢qp > 0
and a level parameter 0 < k < 1. Set k =1, 2! = 2! and J' = {1}. Set A! = —f}, and
find the corresponding z},. as in Lemma 7.1. Set the counters { = 0 and k(0) =1 (k(!) will
denote the iteration number of the Ith decrease of A*).

Step 1 (Level update). Set ff, = —xAF.
Step 2 (Stopping criterion). If A* < ¢4y, terminate; otherwise, continue.
Step 3 (Level feasibility check). If (2.1) is feasible, go to Step 5; otherwise, continue.

Step 4 (Update lower bound). Find f,’fun and the corresponding ’Lm as in Lemma 7.1. Set
AF = —ft.and A* = AF. Choose z¥ € {27 : j € J*} (eg., a¥ = 2*). Set k(I +1) = k and

increase [by 1. Go to Step 1.

Step 5 (Projection). Find the solution 2%+! of (2.1) and its multipliers /\‘ such that the set
JE={jeJk: A¥ > 0} satisfies |J¥| < N.

Step 6 (Objective evaluation). Calculate W(z*+1).

Step 7 (Selection) Select J* C J* such that J* C J*. Set JA1 = JAu {k + 1}, 2! = ¥,
g5l = gk AR = AR and, if k > k(l), A* = A*. Increase k by 1 and go to Step 1.

For the reader’s convenience, we repeat our remarks from §6. Again, our method may be
considered as a modification of Algorithm 2.1 obtained by setting fi = 0 and f, = Ja
at Step 1. Therefore, (1.3) and (2.4) remain true, whereas (2.2) is replaced by the fact that
f(z*.) < A* (from Steps 0 and 4), i.e., z&_ is a A*-solution for (7.1). We also see that
L; = supg |¥(-)| may serve as the Lipschitz constant for our linearizations f7 that satisfy
f?(2?) = 0. These properties enable us to verify Lemma 3.1 as in the proof of Theorem 6.3.

Therefore, it i1s easy to check that Theorem 6.3 holds for Algorithm 7.2 as well. Moreover, as

16

in §6, we observe that if Step 3 is replaced by Step 3’ of §4 then Theorem 4.1 holds. Finally,
as in Theorem 3.7, we have A* | 0 and f(z z¥) 1 0 as k — oo and every accumulation point
x> of {zF } solves (7.1), i.e., z* € S and f(z*) = 0, since f > 0 is closed (at least one
such point exists because {z¥_} C S, a compact set).
Let us now consider aggregation. Thus suppose, as in §4 and §6, that iteration k uses
f* = max{f¥~1, max,cx f7} and #*~! € S such that (f¥-1,3-1,1) = Tk TRV 2
for some A5! > 0. (One may let (f*-!,#-!) = (f1,z!) for k¥ = 1.) Augmenting (1.4)
with & = 5. e Xfa:j + Mszk-1, we see that (f*, &) € co{(f?,27)}5.,, as required for the
recursion. It remains to provide an extension of Lemma 7.1.

Lemma 7.3. Let f*, = ming f*, and let uf,j € J*, and | ll; denote the associated multipli-
ers satisfying uf >0, [1'} 2 0, 3 e uf + [t"} = 1, and mmxes e 1 fJ()+ ﬂjfk)=~
k. . Letzk = > jedk pfa)’ + ﬂ’}i:k"l. Then ff,. <0, zF_ € S and f(zF, —f*

min*

Proof. We have < (), m_j;k—1> = Z‘:\k‘l(\l)(x) -7 > Zi;\f—l (¥(z'), T — %)
PBF /\k Tfi(e) = fk- 1(z) and <\1/(1‘),.T rec) PPN k(W (-)’3-_ij>+/~,5<\1;(1.) B 1>Z

(z) =
PR Kfi(x) + fu f ~!(x) > fk, as in the proof of Lemma 7.1, which goes on as before. O

8 Conclusions

We have presented several implementable versions of the level methods of [[.NN91] for non-
differentiable convex minimization, constrained optimization, convex-concave saddle-point
problems and variational inequalities with monotone operators. We have shown that sclec-
tion and aggregation of linearizations ensures bounded storage without worsening efficiency
estimates. Preliminary numerical experience with the original methods of [LNN91] has been
encouraging, although these methods suffer when their storage requirements become too
large during calculations. We hope, therefore, that our approach will alleviate such difficul-
ties without worsening practical efficiency.

Acknowledgment. This work was inspired by C. Lemarechal. It was done during my
six month stay at INRIA, Rocquencourt, made possible by a grant from the French Ministry
of Research and Technology.

References

[Kiw85] K.C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathe-
matics 1133, Springer-Verlag, Berlin, 1985.

[Kiw90] K.C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization,
Math. Programming 46 (1990) 105-122.

[LNN91] C. Lemarechal, A.S. Nemirovskii and Yu. Nesterov, New variants of bundle methods, Research
Report No. 1508, INRIA, Rocquencourt, 1991.

[NYu83] A.S. Nemirovskii and D.B. Yudin, Problem Complexity and Method Efficiency in Optimization.
Wiley-Interscience, New York 1983.

ISSN 0249 - 6399

