N

N
N

HAL

open science

Fast computation of some asymptotic functional inverses

Bruno Salvy

» To cite this version:

Bruno Salvy. Fast computation of some asymptotic functional inverses. [Research Report] RR~1743,

INRIA. 1992. inria-00076983

HAL Id: inria-00076983
https://inria.hal.science/inria-00076983
Submitted on 29 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00076983
https://hal.archives-ouvertes.fr

IRIN

UNITE DE RECHERCHE
INRIA-ROCQUENCOURT

Institut National
de Recherche
en Informatique

et en Automatique

Domaine de Voluceau
Rocquencourt
B.P. 105
78153 Le Chesnay Cedex
France
Tél.:(1)3963 5511

Rapports de Recherche

Programme 2

Calcul symbolique, Programmation
et Génie logiciel

FAST COMPUTATION OF SOME
ASYMPTOTIC FUNCTIONAL
INVERSES

Bruno SALVY

Septembre 1992

Fast Computation of
Some Asymptotic Functional Inverses

Bruno Salvy

Abstract
G. Robin showed that in several naturally occurring asymptotic expansions of the form

y(z) ~ Z P,(loglogz)

log"z
n>0 8

the polynomials P, satisfy a simple relation

P, 1 =aP, 4+ (bn+c)P,.

These results do not give a way to compute these polynomials, since the constant term remains
undetermined by this equation. In this note, we give a new derivation of some of Robin’s results,
and show how the constant terms can be computed with only manipulations of one-variable
formal power series. From there, all the P, can be computed efficiently.

Calcul rapide de certains
inverses fonctionnels asymptotiques

Résumé

G. Robin a montré que dans plusieurs développements asymptotiques courants de la forme

P,(loglogz)
y(z) ~ Z W
n>0

)

les polynomes P,, vérifient une relation simple
P, 1 =aP,+ (bn+c)P,.

Ces résultats ne permettent pas de calculer ces polynomes, puisque cette équation ne détermine
pas le terme constant. Dans cette note, nous donnons une nouvelle preuve de certains des
résultats de Robin, et nous montrons comment on peut réduire le calcul des termes constants a
des manipulations de séries formelles en une variable. Partant de la, tous les P, peuvent étre
calculés efficacement.

Fast computation of
some asymptotic functional inverses

Bruno Salvy

Abstract

G. Robin showed that in several naturally occurring asymptotic expansions of the form

y(z) ~ Z P, (loglog z)’

1 n
= og"z
the polynomials P, satisfy a simple relation
P,'H_l =aP. + (bn + ¢) Py.

These results do not give a way to compute these polynomials, since the constant term remains undeter-
mined by this equation. In this note, we give a new derivation of some of Robin’s results, and show how
the constant terms can be computed with only manipulations of one-variable formal power series. From
there, all the P, can be computed efficiently.

Introduction
Consider the formal equation

eyy_azd—z =z, (1)

where o # 0 and dg # 0. We are interested in finding a formal asymptotic expansion of y(z) as « tends to
infinity. Set D(u) = >_ d,u", then rewriting this equation as

y =logx + alogy —log D(1/y), (2)

and considering the iteration process yny1 = H(yn) where H(y) is the right hand side of Equation (2)
and yo = log z, we get
=logz, wy; =logz+ aloglogz —logdy+ -,

2loglogz — alogdy — dy /d
=logz + aloglogz — logdy + ——828% 1"‘ ogdo —di/do |
og T

It can be shown (see [6]) that this process converges to a formal expansion

. (log log x)
~ 1 3
(x) ~ log(e +Z e (3)

where the P, are polynomials of degree n for n > 0, and Py is of degree 1.

From the computational point of view, it is interesting to note that none of the current computer algebra
systems can iterate this process far without help, some of them by lack of any built-in feature to handle
asymptotic expansions involving simultaneously logz and loglogz, others because they do not simplify
intermediate results and therefore manipulate huge expressions, eating up memory and computation time.

A first step toward a more efficient process to compute the polynomials P, was achieved by G. Robin
in [9]. He showed that these polynomials satisfy a simple relation that does not depend on {d,}. More
precisely, one has

P =a(P,—nP,), n>0. 4)
Besides [9], this relation is more or less preserved by simple operations on y(z): functions like logy, y”
or exp y all have an asymptotic expansion involving polynomials that satisfy a similar recurrence equation.

However, these relations do not give a way to compute the P, since they do not determine their constant
terms. In this note, we give a new proof of some of the results of [9], and describe a simple way to compute the
constant terms. Then we show how the expansions of y, logy, ¥’ and exp y can be computed by elementary
manipulations of one-variable power series.

The approach we take is to view the asymptotic expansion as the generating function of the P,: set-

ting ¢ = logloga and t = 1/log, we consider

P(C 1) = Pa(OF".

n>0

Then we translate the functional equation of y into a functional equation for this generating function. From
this we can compute both the recurrence of the P, and the generating function for their constant terms.
The recurrence is obtained by forming a partial differential equation for P((,t):

1 oP 0P
<E—t>a—c+tﬁ_l, (5)

which is then translated into (4) at the level of the coefficients. The generating function for the constant
terms is seen to satisfy a simple functional equation, derived by setting (= 0 in the functional equation
for P(¢,t). From this equation, the constant terms can be computed independently of the polynomials. This
is summarized in Theorem 1 of Section 1. While this yields an analogue to Lagrange’s inversion theorem
for power series, Section 2 deals with an analogue to the Lagrange-Burmann theorem. Although not all
functions F(y) have such an asymptotic expansion, it is shown there that when F(y) is logy or of the
form exp(fy)y” G(1/y), with G a formal power series, then the generating function for F'(y) satisfy a partial
differential equation induced by (5), while the generating function of the constant terms is easily computed.
In Section 3 we give a few examples taken from [9] and from the references therein. Section 4 is devoted to
complexity concerns.

1 Inversion

In order to get a functional equation for P((,t), we first transform Equation (2) by setting y—logz = P((,1):

P:aC—}—alog(l—}—tP)—logD(l_:tP) . (6)

Since formally ¢ P is of order logloga/logz and thus tends to 0, when we iterate this equation and arrange
the terms in increasing powers of ¢, only manipulations of formal power series in ¢ are involved and ¢ appears
as a parameter. In other words, we have decoupled logz (= 1/t) and loglogz (= ().

Now, differentiating Equation (6) with respect to ¢ and ¢, we get two equations involving (D'/D)[t/(1 +
tP)]. Eliminating this term and rearranging the equation we get the partial differential equation (5). Taking
the coefficient of t” in (5) we get:

!

4l —p' _pP,, n>0, and P)=a. (7)
a

On the other hand, setting (= 0 in (6), we also get the generating function for the constant terms:

Po(t) := P(0,1) = > Pa(0)t

n>0

which satisfies

t
= alog(l+1¢ —log D .
Po = alog(1 +175) ~ oy D 5) 0

Thus we have proved the following theorem, where the notation [t¥]f(¢) denotes the kth coefficient in the
Taylor expansion of f at the origin.

Theorem 1 Let y satisfy ¥y~ *D(1/y) = x, with D a formal power series, « # 0 and D(0) # 0. Then the

formal asymptotic expansion of y as x tends to infinity is

. (log log
& logz + E oa' 2),
n>0 8

where the P, are polynomials that can be computed as follows:
1. Rerate n times (8):
it
1 t) = alog[l + tup(t)] —log D[——
s (0) = aloglt + (0] - log D (s)
from ug = —log D(0), which gives Py(0) = [t*]un(t) for k € {0,...,n}.
2. Iterate P}, = (P, —nP,) from Py = a —log D(0) to get the other coefficients.

While computer algebra systems could not iterate Equation (2), Equation (8) is much easier, since it is
reduced to one-variable formal power series manipulations. For instance, we get with Maple

PO(O) = —h’l(do), Pl(O) = —Ozhl(do) - dl/do,

d% _ d2 + ((X + ln(do))d1

Py(0) = 20 A

—af2 lnz(do) —a? In(dp), ...

We note the following useful corollary from [4], which Comtet proved by Lagrange inversion.

Corollary 1 (Comtet) The asymptotic expansion of the solution of eVy~* = x is of the form (3), the

polynomials P, being given by
k

Pn(C) =a "t Esn,n—k-}—l%,
k=1 '

where s, 1, are signed Stirling numbers of the first kind.

In particular, the fact that Py is 0, together with Equation (7) yields an efficient program to compute the
asymptotic expansion to any order of Maple’s W function, which corresponds to the case = —1, and is
also related to the generating function of Cayley trees. Currently Maple can only expand W to the order 10.
Proof. In the case when D = 1, considering the valuation of Py in Equation (8) shows that Py = 0. At the
level of the coefficients of P,:

n

Pn(C) = Zun,k;

k=0
this means that u, g = 0 for all n. We also have from Theorem 1 that u,, ,41 = 0 for all n, except for ug; = a.
This gives the boundary conditions for the recurrence we deduce from (7):

(k+1)

Un41,k+1 = (k + 1)un,k+1 — NUn k,

valid for all £ > 0 and n > 0. It is natural to simplify this recurrence by setting v, x = ™"~ klu, :

Un+1,k+1 = Un k+1 — NUn k-

Now, this is almost the classical recurrence for Stirling numbers of the first kind (see [5, ch. V]), which is
reached by setting v, 1 = spn—k+1. The initial conditions deduced from those of u prove that these are
really the Stirling numbers of the first kind. O

From this proof, we also deduce that in all cases (even if the formal power series D is not 1), if we set

then wy, 1, satisfies the recurrence for Stirling numbers of the first kind
Wn41,k+1 = Wp k — NWp k41,

with initial conditions wg ¢ = 1 and wy o = 0 for n > 0. The other initial conditions wg,,, and only them,
are determined by D.

2 Extensions

We consider the effect of the change of variable
f(POJP7t) = F(C:t):

with P((,t) and Py(¢) = a(— In(dg) defined as before. Differentiating with respect to ¢ and ¢ we obtain
two partial differential equations. We then eliminate the partial derivatives of P using Equation (5) and get
(1 >8F ,0F 0f af 2 0f

o S g man 2 2
o et ar =ap tU-lgp 8% ()

From this we deduce the results summarized in the following.

Theorem 2 Let y satisfy eVy~*D(1/y) = x, then the following asymptotic expansions hold with Po(t) given
by Theorem 1:

n(loglog:
logyzloglog:v—i—z %

n>0
with Qo =0, Q) 4,/a = Q;, — nQ, and the generating function of {Q(0)} is log(1 +tPo(t)).

N ’
1Y G(1fy) ~ (d—) (logryoer 3~ Qullosloga)
0

log ™
n>0 8

for any formal power series G with nonzero constant term. Here, Qo = G(0), @1, 41/a = Q, +(af+7—n)Qx
and the generating function of {Qn(0)} is

t
B(Po(t)+logdo) 14t t 'yG<))
¢ (+ PO()) 1—|—t7)0(t)

Proof. The first expansion follows from rewriting y as ¢t 1(1+¢P) and then applying (9) with f = log(1+¢P).
For the second one, we write y as log z+ Py+(P— Pp), and then consider f = exp(8(P—Fp))(1+tP)"G[t/(1+
tP)]. (]

Note that this theorem cannot be much generalized: simple functions like ylogy do not admit a nice
asymptotic expansion of this form.

3 Applications

This section reviews some results from [9] and references therein. In all cases, we give the generating function
for the constant coefficients. As a consequence, we get a fast algorithm to compute all these asymptotic
expansions.

The following is a special case of Theorem 2, when D =1 (see also [4]).

Corollary 2 (Comtet) The asymplotic expansion of y subject to y/log®y = = is:

n(logl
y ~ zlog® :L‘ZQIOL;?@, r — 00,
n>0 8

with Q11 /o= Q) + (@ —n)Qn, @n(0) =0 forn >0 and Qo(0) =

Proof. We first set y = ¢¥, and then apply the last formula of Theorem 2, using the fact already noted in
Corollary 1, that in this case P,(0) = 0. O

Our next corollary is related to a result of Cipolla ([3]).

Corollary 3 The asymptotic expansion of the kth prime number is

Qn(loglogk
P N/clogkz%kg)

bl

with Qo =1, Q)41 = @, + (1 —n)Qn and the generating function of {Qn(0)} is exp(U(t)), U being defined
by

=log(l+tU)—-1
U =log(l+tU) Og8<1+tU)’

E(xz) = > nla™ being the ordinary generating function of n!.

Proof. This results from the fact (see, e.g. [1]) that the number () of primes less than x is Li(2)+O(R(z)),
where Li is the logarithmic integral, whose asymptotic expansion is

Li(z) ~ — |1+ o2y (10)
Hr)~
log logz loga ’

and R(z) depends on Riemann hypothesis. What happens is that (even without the hypothesis), the expan-
sion of p; depends only on the expansion of Li. Thus we have to invert (10). As previously, this is achieved
by setting y = ¢, and then appealing to Theorem 2. (|

Our next corollary gives the constant terms in two asymptotic expansions discovered in [8]. The func-
tion g(n) is defined as the maximal order of the permutations in S,.

Corollary 4 The following asymptotic expansion holds:
log1
log g(n) nlognZQk(Og og) ,

>0 log n

with Qo = 1, Q)41 = Q) + (1 —k)Qy, and the generating function of {Qr(0)} is exp(U(t)/2), with U defined
in Corollary 3. The number of prime factors of g(n) satisfies asymptotically

Qr(loglogn)
w(g(n)) ~ 2, :
logn kz>0]ogkn

where Qo =1, Q11 = Q;, — (n +1/2)Qn and the generating function of {Qn(0)} is

exp(U(t)/2) 2t
1—-tU(t) g(l—}—tU(t)) ’

with U and € as in Corollary 3.

Proof. This results from a theorem of [8] stating that for a > 0,
logg(n) = Li~'(n) + O(y/ne~Vlesn),
w(g(n)) = Li(y/Li~'(n)) + O(/ne=*Vien),

In the first case, we set z = e¥ in (10), and then apply the last case of Theorem 2 with # = 1/2, v
and G = 1. The second case is obtained by setting § = 1/2, y = —1, and G = £(2y).

ol

4 Complexity estimates

Once the generating function for the constant terms has been computed, the polynomials are obtained by
iterating

Pugi = P, +(an+b)/Pn,

from Py a polynomial of degree less than 1. Thus, computation of the (n 4 1)st polynomial from the nth one
requires 2n multiplications and n additions in the coefficient field. As a consequence, the polynomials up to
the nth are computed with n? multiplications and n(n — 1)/2 additions in the coefficient field. The order n?
seems unavoidable since there are n?/2 coefficients to compute.

Computation of the constant terms turns out to be the most expensive part of the process. We first have
to compute the iteration of Theorem 1. Each of the n iteration steps requires substitution of a formal power
series of length n into a formal power series of length n. Without any supplementary information on D,
this can be achieved in O(n®/2\/logn) coefficient operations, or O(n?’/zlog?’/zn) if FFT is used (see [2, 7]).
Since this is done n times, we get the generating function Py of the constant terms in O(n7/2w/log n)
coefficient operations. This series has to be substituted in Theorem 2, into a series which can be computed
in O(n®/?\/Togn), the substitution requiring O(n°/%\/Togn) coefficients operations.

As a conclusion, in all our theorems and corollaries, all the polynomials up to the nth one can be computed
mn O(n7/2«/10g n) coefficient operations, the cost being dominated by the computation of the constant terms.
If the formal power series D and G satisfy “suitable” differential equations, then the complexity can be
lowered to O(n?3) coefficient operations (see [2]).

In practice, we want to compare this algorithm with the simpler one outlined in our introduction that
consists in iterating a substitution of a formal power series with polynomial coefficients. Our algorithm
is definitely more efficient since its cost is dominated by a similar iteration, but the series involved have
“constant” coeflicients, and whatever the constant field K, operations over K are bound to be more efficient
than operations over K[(].

References

[1] AposToL, T. M. Introduction to Analytic Number Theory. Springer-Verlag, 1976.

[2] BRENT, R. P., AND Kung, H. T. Fast algorithms for manipulating formal power series. Journal of the
ACM 25 (1978), 581-595.

[3] CrpoLLA, M. La determinazione assintotica dell’n®™® numero primo. Rendiconti Acad. Sci. Fis. Mat.

Napoli & (1902), 132-166.

[4] CoMTET, L. Inversion de y*e¥ et ylog®y au moyen des nombres de Stirling. Comptes—Rendus de
U’Académie des Sciences 270 (1970), 1085-1088.

[5] CoMTET, L. Advanced Combinatorics. Reidel, Dordrecht, 1974.

[6] DE BrUIN, N. G. Asymplotic Methods in Analysis. Dover, 1981. A reprint of the third North Holland
edition, 1970 (first edition, 1958).

[7] KnuTH, D. E. The Art of Computer Programming, 2nd ed., vol. 2: Seminumerical Algorithms. Addison-
Wesley, 1981.

[8] Massias, J. P., Nicoras, J. L., AND RoBIN, G. Evaluation asymptotique de 'ordre maximum d’un
élément du groupe symétrique. Acta Arithmetica L (1988), 221-242.

[9] RoBIN, G. Permanence de relations de récurrence dans certains développements asymptotiques. Publi-
cations de UInstitut Mathématique de Beograd 43, 57 (1988), 17-25.

Appendices

A A Maple program

The following program implements Theorems 1 and 2.
Compute n terms of the generating function of {Py(0)}, given o, the power series D in the variable t, and n.
PO:=proc (alpha, d, t, n) local P, u, s;
if coeff(d,t,0)=0 then ERROR(‘Invalid series‘,d) fi;
s:=convert(series(alpha*log(14+t*P)—subs(t=t/(14t*P),series(log(d),t,n+1)),t,n+1),polynom);
u:=coeff(s,t,0);
to n do u:=series(subs(P=u,s),t,n+1) od
end: # PO

Compute the n first Py satisfying P7I1+1 =aP) + (bn + c)Pp, given Py and the generating series s(t) of {Px(0)}.

rec:=proc (p0, a, b, ¢, s, t, n) local P, i; 10
P[0]:=p0—coefi(s,t,0);
for i from 0 to n—1 do P[i+1]:=sort(a*P[i]4+(b*i+c)*(int(P[i],t)+coefl(s,t,1)*t),t) od;
RETURN([seq(P[i]4coeff(s,t,1),i=0..n)])

end: # rec

Compute n terms of the asymptotic expansion of y, where e¥y*D(1/y) = =z,

given o and the formal power series D(z).

theorem1:=proc (alpha, d, x, n) local s, i;
s:=subs(x=log(log(x)),rec(alpha*x—log(coeff(d,x,0)),alpha,—alpha,0,P0(alpha,d,x,n),x,n));
RETURN(convert([log(x),seq(op(i,s)*log(x) " (1—1),i=1..n+1),0(log(log(x)) " (n+1)/log(x) "(n+1))],‘+*)) 20

end: # theoreml!

Compute n terms of the asymptotic expansion of logy, where e¥y*D(1/y) = =,

given o and the formal power series D(z).

theorem?2 log:=proc (alpha, d, x, n) local s, i;
s:=subs(x=log(log(x)),rec(0,alpha,—alpha,0,series(log(1+x*P0(alpha,d,x,n—1)),x,n+1),x,n));
RETURN(convert([log(log(x)),seq(op(i,s)*log(x) " (1—1),i=1..n4+1),0(log(log(x)) "(n+1) /log(x) " (n+1))],+))

end: # theorem?2_log

Compute n terms of the asymptotic expansion of ePYVyYG(1/y), where e¥y~*D(1/y) = z, given a, 3, 7, 30
and the formal power series D and G.
theorem2 part2:=proc (alpha, beta, gamma, d, g, x, n) local P, s, i;
s:=subs(x=log(log(x)),rec(coeff(g,x,0),alpha,—alpha,alpha*(alpha*beta+gamma),
series(subs(P=P0(alpha,d,x,n),exp(beta*(P+log(coeff(d,x,0))))*
convert(series((1+x*P) "gamma*subs(x=x/(14+x*P),g),x,n+1),polynom)),x,n+1),x,n));
RETURN((x/coeff(d,x,0)) “beta*(log(x)) " (alpha*beta+gamma)*convert([
seq(op(i,s)*log(x)"(1—1),i=1..n+1),0(log(log(x)) " (n+1)/log(x) "(n+1))],‘+*))
end: # theorem2_part2

B Asymptotic expansions

We give the first terms of the expansions mentioned in our corollaries. Since in most of this cases, the first
few terms have already been published, these expansions help vindicate both our theorems and our program.

B.1 Maple’s W function
> theorem1(1,1,x,7);

_ln(ln(x):)2 n(ln(z In(In(z))3 _ alln(z))? a(ln(z
In(z) + In(In(z)) + In(ln()) 2 + In(in(z)) + 3 3/2In(In(z))” + In(in(x))

In(z) In(z)? In(x)®
N _11_1§1n4gx)')4 + 11/61n(In(z))* — 31In(In(z))? + In(In(z))
In(z)*
N 1n§1n5gx‘))5 — 25 In(In(z))* _|f3)5/61n(ln(1‘))3 — 5In(In(2))” + In(In(z))
In(z)°
. _11_1§1n6gr'])6 + 227 In(In(e))® — 75/(81n(1n(atf))4 + 85/6In(In(z))* — 15/2In(In(x))? + In(In(z))
In(z)°
| T nin(e))° + 22 nfin(o))” - 0 e 175 =1/ +)

B.2 The kth prime number

> E:=convert([seq(il*k" 1,i=0..10)],"+°):
> theorem2_part2(1,1,0,€,1,k,7);

In(in(k) =1 In(n(k))—2 —20D® 4 3 1n(In(k)) — 11/2

kln(k) |1+ (k) (k) P
W) _ 7/51n(In(k))? + 14 In(in(k)) — 131/6
+ In(k)*
_lln()® 4 53 /61n(In(k))® — 49/21In(In(k))? + 159/2 In(In(k)) — 1222
* In(k)®
s W(n(k)® _ 49 1 (1n(k))* 4 73/2In(In(k))? — 367/2In(In(k))? + 3143/6 In(In(k)) — 12582
In(k)®
N _llin(e))® | 257 1 1 ())® — 122 In(In(k))* + 1027/31In(In(k))> — LT In(in(k))® + L2252 In(In(k)) — 122222
In(k)”
o (ln(ln(k))8)]
In(k)®
B.3 The function log g(n)
> theorem?2_part2(1,1/2,0,€,1,n,6);
In(ln(n)) _In(In(n))? a(ln(n)) — In{In(n))* 11 n(n(n)? + 22 In(ln(n)) — 22
\/nln(n) [1 + 21n(n) 1/2 + 2 +li/(i)l2 (1 ()) o/8 + 16 161 (1 l(n()i);_ = : (1 ()) =

+ —5/128111(111(n))4 + %ln(ln(n))3 — % ln(ln(n))2 + % In(In(n)) — %

ln(n)4
7/256ln(ln(n))5 — % ln(ln(n))4 + % ln(ln(n))3 — % ln(ln(n))2 + 4%;9 In(In(n)) — 12223
ln(n)5
+ —% ln(ln(n))6 + % ln(ln(n))5 - 139007821 ln(ln(n))4 + % ln(ln(n))3 - 1?3319 ln(ln(n))2 + 5%?;29 In(In(n)) — 20511221077
ln(n)6
ln(ln(n))7
[9) - 77
+ < ln(n)7
B.4 The function w(g(n))
> 2*theorem2_part2(1,1/2,-1,€ subs(n=2*n,€),n,6);
Y — lnln(n) 4 3/9 | 3/8In(in(n))? ~ 11/4 In(In(n)) + 55/
logn In(n) ln(n)2
—5/16111(111(n))3 + %ln(ln(n))2 — % In(In(n)) + 711—61
* ln(n)3
+ % In(In(n))* — % In(In(n))? + % In(In(n))? — % In(In(n)) + 143189437
ln(n)4
+ —%ln(ln(n))5 + % In(In(n))* — 2;51 In(In(n))* + 55{;29 In(In(r))? — —472057631 In(In(n)) + —2822263
ln(n)5
. %ln(ln(n))ﬁi _ 126546801 ln(ln(n))5 4 223(7533 ln(ln(n))4 _ 65';366321 ln(ln(n))3 + 56120129453 ln(ln(n))2 _ 34(1322279 ln(ln(n)) + 70}322381
ln(n)6
In(In(n))’
ol ———— 22
+ < ln(n)7
B.5 The general case
Of course, our program is not limited to constant coefficients:
>D:=dy+dix+dyx? : G:=go+ g1z + go2? :
> theorem2_part2(«, 8,7, D, G, z, 2);
_ _ B(ditaln(dg) do)go
(1) ® (e [go , (@8 +7) g0 In(in(z)) + 91 = In(do) 0 L
dg In(z)
1 I:(—a—l—oz(ozﬁ—l—'y))a(aeﬁ—l—'y)go ln(ln(z))2
I
In(z)? 2
d In(dop) d,
+ (a2 (@B+7) g0+ (—a+a(af+7) <g1 o In(do) go — 2l dn(o) O)gO)) In(In(z))
0
d In(do)? (v — d In(do) d —~ In(d
+ v (_d_1 —a ln(do)) g0 + g1 In(do) + g2 — v In(do) g1 + 7In(do) Q(W Y 50 - Al + o In(do) (c)l) (91 = 7 In(do) 50)
0 0
8 (—2 adodi — 202 do? In(do) —2dy In(do) do — aln(dg)? do? — 2dado + di? + Bd1? + 28 d1 o In(do) do + B a? In(dp)? d02) 90
+
2do?

