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ORDONNANCEMENT STOCHASTIQUE DANS UNE
FILE D’ATTENTE G/G/1 MULTICLASSE

Philippe NAIN! et Don TOWSLEY?
1INRIA, B.P. 93, 06902, Sophia Antipolis Cedex, France

2Department of Computer and Information Science
University of Massachusetts, Amherst, MA 01003, USA

Résumé

Nous cherchons une politique d’ordonnancement pour une file d’attente multiclasse G/G/1 qui minimise
une somme pondérée de la charge dans chaque classe. Nous montrons que la politique d’ordonnancement
statique qui traite en priorité les clients de poids maximum présents dans le systéme, est optimale trajectoire
par trajectoire. Ce résultat qui vaut sur une classe trés riche de politiques d’ordonnancement est établi
a partir de raisonnements élémentaires sur les équations d’évolution du syvstéme. Une nouvelle preuve de
I'optimalité de la yic-rule dans le cas de la file d’attente multiclasse G/A/1 est obtenue comme corollaire
direct du résultat précédent.

Mots-Clés: Files d’attente; Controdle des files d’attente; Ordonnancement stochastique; Arguments
trajectoriels; Ordre stochastique.
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STOCHASTIC SCHEDULING IN A MULTICLASS
G/G/1 QUEUE

Philippe NAIN! and Don TOWSLEY?*
1INRIA, B.P. 93, 06902, Sophia Antipolis Cedex, France

2Department of Computer and Information Science
University of Massachusetts, Amherst, MA 01003, USA

Abstract

We address the problem of scheduling customers in a multiclass G/G/1 queue so as to min-
imize a weighted sum of the workloads of the different classes. We establish that the nonidling,
preemptive, fixed priority policy that schedules customers belonging to the class having the
maximum weight minimizes the cost function pathwise at any pomt in time. This result is
based on the application of elementary forward induction arguments and is shown to hold for
a very general class of policies. A new proof for the optimality of the pgc-rule in the multiclass

G/M/1 queue is then obtained as an easy corollary of the first result.

Keywords: Queues; Control of queues: Stochastic scheduling; Pathwise argument;
Stochastic ordering; pc-rule.

1 Introduction

We consider a G/G/1 queueing system consisting of k' > 2 classes of customers competing for
the use of a single server. The arrival and service time processes are arbitrary processes, possibly
correlated. Within each class the service discipline is supposed to be first-in-first-out. This as-
sumption is only made for sake of notational convenience and can easily be relaxed as discussed in
Remark 2.1. At any time, the allocation of the server to a particular class of customer is performed
according to a scheduling policy. We shall allow for fairly general scheduling policies, including
randomized, idling and anticipative policies. The aim is to find a scheduling policy that minimizes
a weighted sum of the workloads of the different classes.

*This author was supported in part by NSF under grants ASC-8802764 and NCR-9116183.
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The discussion is organized as follows: the mathematical model is carefully defined in Section 2
with a particular emphasis on the notion of scheduling policy. In Section 3 we show the existence
of a nonidling, preemptive, fixed priority policy that schedules customers belonging to the class
having the maximum weight minimizes the cost function at any point in time pathwise. This result
is based on the application of elementary forward induction arguments and is shown to hold over
a set of fairly general policies. The classical result (Baras et al. [4], Buyukkoc et al. [6], Nain
[5]; see also Hirayama et al. [3] for further results on the multiclass G/DFR/1 queue that are not
covered in the present paper) regarding the optimality of the pc rule for the G/M/1 queue is then
established in Section 4 as a simple consequence of the result of the first result.

2 The Model

In this section we construct a mathematical model that captures the behavior of the multiclass
G/G/1 queue loosely described in the introduction. An equivalent and somewhat more convenient
way to view this queueing system is to assume that there are ' queues attended by a single server
and that customers of class 7, 1 <7 < /', are routed to queue 7 upon arrival.

A few words on the notation and convention used in this paper. We denote the set of nonnegative
integers by IN, the set of all real numbers by IR. the set of all nonnegative real numbers by IR,
and we let IRy := IRy U {+o0}. We define S:= {0} U {(21,...,2,),2: > 0,1 < i< n,n>1} to be
the set that contains all vectors with strictly positive components as well as the scalar number 0.
Finally, we assume that the customer in position 1 in any queue is the oldest one among customers
in that queue. Hence, because of the assumption that customers belonging to the same class are
served according to the first-in-first-out service discipline, the customer in position 1 in any queue is
either the next eligible customer for service if the server is not attending the queue or the customer
in service if the server is serving that queue.

To describe this model, we start with a probability triple (2, F, P)., where the state space Q defined
as

. . IN . .
Q:= N x 88 x {2 x {1.2..... K} x [0.1)% x [0,1]%, (2.1)

simultaneously carries

e an IN".valued random variable (RV)Q := (@1,Q2,...,Q ), where Q, describes the number
of customers in queue 7 at time t = 0;

e an SM.valued RV W := (Wi Wo, oo W) with W= (W, Wig, ... W 0,) if Q; > 0 and

with W; = 0if Q; = 0, where ¥’} ; describes the service requirement of customer in position
7 in queue t at time ¢t = 0;

o asequence {An, Sn,Cr}® of RZ x {1,2...., A'}-valued RV's such that 0 < A; < Ay < --- <
Ap < Apyr1 <---as.and S, > 0as. foralln > 1, where A,, S, and C,, represent the arrival
time, service requirement and class. respectively, of the n-th customer to join the system;
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e two sequences of [0,1]-valued RV’s {a,};® and {8,}7°. These sequences will be used to

construct randomized scheduling policies.

In the following, any sample path w € © will be written in the form
o0 o< o
w = (w],wQ,{wg'l,wg_z,wg_B}l ,{wg}l ,{wi}l ), (2.2)

with w! € INM, w2 e S, wiwd, € Ry, wlsze{1,2,... K}, wi,w) €[0,1] for all m > 1.

Further notation are needed at this point. Let Hy := Q, K; := Q@ x {0,1,..., K}, Hyopy :=
H, x {0,1,...,K} x R2 x INK x 8%, K41 := K, x R} x N¥ x S x {0,1,...,K'} for n > 2.

Any element h, € H, will be written in the form

by = wi (2.3)
hn = (w;1ll,l.].f].(12.'L‘-2,ll.2,i2,f~2,....‘(In’l,‘”)_‘ n > 2 (24)
with w € @, u; € {0,1,.... K}, ij.t; € Ry for j 2 1 and g; 2= (¢).¢}..-.¢)") € N*, v, € ST for

all 7 > 2. Similarly, any element %, € K,, will be written in the form

ky = (wiw): (2.5)

kn = (Wit 0y 2. 9. U 09,80, oo s ny U Un ), 2> 2. (2.6)

A scheduling policy 7 is a collection {#}.72}3 of mappings

.1 H, —{0.1,...,K};

1
72 . K, — IR,.

such that 7l(h,) #iif ¢ =0for1 < i< I and xl(h,) =0if ¢, = 0, for all n > 1 (by convention

q1 := w'). Let TI be the collection of all scheduling policies.

Let us comment on the definition of a scheduling policy. Given the information h, available at the
n-th decision epoch (see below) to the decision-maker, 71(hy) gives the class of customers that is
elected to receive the server’s attention until the next decision epoch if 7l(h,) € {1,2,....K}; if

ml(h,) = 0, then the decision is to idle the server until the next decision epoch. The mapping 72

is used to determine the time of the (n + 1)-th decision (see below).

For every scheduling policy = € II. we generate five sequences {Q7(t),t > 0} {W7(t),t > 0},
{U735°, {T7}3° and {I7}7° of RV’s such that for all » > 1,1 > 0,

o Q7(t) := (QT(1),Q3(1),....Q%(1) € INM, where Q7 (t) gives the number of customers in
queue ¢ under policy m at time {. including the customer in service, if any, for all 7 €

{1,2,...,K};



o W7(2):= (W] (1), W7 (2),...,Wl(1)) € S™, where W7 (1) := (W[} (1), WhH(1), ..., W on (1))

1,
if Q7 (t) > 0and W7 (t) :=0if Q7(t) = 0,1 < i < K, with the interpretation that W[ (1) is
the service requirement of the customer in position j in queue 7 under policy = at time ¢ if
QT(t) >0 forall j =1,2,...,Q7(t);

o UT gives the n-th action taken when policy 7 is used;

e T gives the occurrence time of the n-th decision when the policy 7 is used. We shall assume

that 77 = 0 for all = € II (i.e., the first decision is always made at time 0);
1

e I7 is used to generate the RV TT

a1 (see below).

These RV’s are recursively defined as follows:
UF =l (Qu W, {4, S G Y3 {0 155 {80355 (2.7)
U7 = mh(Q WA S Cn Y o 10 {80 5

U T3 QT (T Wh(T ). US4 Iy T Q7T W(TT)), n > 2 (23)

Tl"' = 0
7, = min{inf{:‘lm.m 21 A4, >T7)
N
T+ 1(U] = 0)I] + 1] #0) S UUT = )W (T, T] + 17}, n> 15 (2.9)
=1
17: = 71'31, (Q',“Vv{AmeSm-.C‘NI}?'{C"”"}?I'{’Bm TI;U;,I;’T{’

.,Qz(ﬂ:_l)sl‘/”(Tv;T—l)'L':—;x-l—l‘]r/:—l‘Tr’:sQﬁ(T:)fl'Vﬁ(T;)‘l]:>s n 2 1. (210)

The (n + 1)-th decision epoch occurs either at the time of an arrival, a service completion, or after

I7 time units bevond the n-th decision epoch. whichever occurs first. Here I

» is the length of time

that the scheduling policy allows the server to idle (if U7 = 0) or after which it may preempt the
customer in service (if U € {1.2..... I'}). This definition of the decision epochs will allow one to
consider arbitrary (possibly randomized) preemptive and idling policies. Last, it is worth observing
from the above definitions that scheduling policies that may know (in particular) future arrival

times and future service times — usually referred to as anticipative policies — are also allowed
here.

It remains to construct the queue-length process {Q7(t), t > 0} and the workload process {W™(t), t >
0}. The RV Q7(t) is defined as follows:

Q7(0) = Q;
Qr( :;—{-1) = Q;K(Tr.z.) + Z 1 ((.4,”.6'"1) = (T;-HI))

m>1
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=1(U7 =4 Wi (T7) = Ty, -

Q™(1) = Y QUINI(I] <t <T[,), t>0. (2.12)

n>1

T7), n>1,1<i< K; (2.11)

On the other hand, the RV W7(t) is defined as follows:
wT(0) = W;

Wi (Toy) = (Wi’,rl(T:)-l(U:=f) (Tor = T)  WATT), - s Wion (1),

Z Sm 1 ((Amacm) = (T1:+117)))’ n Z 1’1 S ‘l S I\'; (213)
m>1
Wi = (WRTD) - WU] = i)t — T5), Wip(T3),
AWiorn(T5) i T] <t<Tlyn>11<i <K, (2.14)

for all t > 0, where (2.13) and (2.14) must read with the abuse of notation (0,zy,....24) =
(215...,24,0) = (0,21,...,24,0) = (21,....: vi) for all & > 1 and (0) = (0,0) = 0, so as to be
consistent with the definition of the set S.

Observe that, by construction. the sample paths of both the queue-length and the workload pro-
cesses are right-continuous with left limits. It is also worth noticing from (2.12) and (2.14) that
Q7(t) and W7 (t) are well defined for all 1 > 0 if and only if the nondecreasing sequence {77} of
decision epochs satisfies

nli—]-]-L\T'l’? = 4+ a.s. (2.15)

We conclude this section by commenting on the role of the sequences {a,}7" and {3,}7".
already mentioned, these sequences mayv be used to generate randomized policies. For the sake of
illustration, let us consider the following example.

Let m be a policy such that if all queues are non-empty at the n-th decision epoch then the server
is allocated to queue 7 with probability p,,; for 1 <7 < K. and is kept idle till the next decision
epoch with probability 1 — ,"=, Pai. 7 > 1 (observe that this description only partially defines =
since nothing is said as to the behavior of this policy when at least one queue is empty). Let us

show how this behavior can be captured within the setting developed in this section.

Fix w € Q and assume that the sequence {a,}5" is a renewal sequence of uniformly distributed
RV’s, further independent of the RV's Q, 1V, {4,,5,,C,}$ and {8,}$°. Then, it suffices to set

iy [ B T <6t < S
e 0. 1f1—2,1pm<w4<1

(2.16)

for all h, € H,, so as to reflect the (partial) behavior of the policy #. Indeed, by construction of
the RV U (see (2.7)-(2.8)) it is seen that for 1 <7 < K

P(U7 =41QUT])>0.1<j < K)



= P(n(1,) = ilQ)T]) > 0.1 <5< K). (2.17)

-1 1

P an,j Loy < an,j , from (2.16)
1=1 i=1

= Pns

where in (2.17) the RV H, denotes the argument of the mapping 7} in (2.7)-(2.8). Similarly, it is
seen that P (U,’,r =0|QH(T7)>0,1<5< I\') =1-1 pai.

The sequence {8,}$° may be used in the definition of the mappings {72}3* to construct random
idle periods (see (2.9), (2.10)).

Remark 2.1 The assumption that the order of service within each queue is first-in-first-out is only
used in the construction of the queue length process (see (2.11)-(2.12)) and of the workload process
(see (2.13)-(2.14)). In particular, it will not affect the generality of the results in Sections 3 and 4
since only the total workload in each queue is considered in these sections. If one wants to relax
this assumption, then the scheduling policy must also specify which customer should be served in
the queue (if any) that has been elected to receive the server’s attention. This can be achieved, for

instance, by introducing a third component 7> in the definition of a scheduling policy =, for all
n2>1.

3 Scheduling in the G/G/1 Queue

In this section we consider a cost function corresponding to a weighted sum of the workloads of the
different classes. We show that the nonidling. preemptive. fixed priority policy that assignhs priority
in decreasing order of the weights minimizes the cost function pathwise at every point in tie.

Let 4 := {71.742}5* € 1 be the nonidling and preemptive policy that always allocate the server to
class ¢ customers when there are no longer class j < 7 customers in the system, 1 < < A", In
terms of the setting introduced in Section 2 this means that for all n > 1, h, € H,, k, € K,.
Y hn) = min{i,1 < i < K : gui # 0} if ¢n # 0, v1(h,) = 0if ¢, = 0 and (for instance)
v2(kn) = oc. Let

Q7 ()

V(1) = Y W),
j=1

be the total workload due to class i customers at time t > 0,1 < ¢ < K.

Let 7;, 1 < i < K be given real numbers such that ry > r9 > --. > ;0 > 0. We shall show the
following result: '
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Proposition 3.1 Assume that condition (2.15) holds. Then, for every sample path w € R,

k k
PIEAAUED PR A (3.1)
=1 i=1

for1<k<K,t>0, nell

Recall that a real-valued RV X is smaller than a real-valued RV Y in the sense of stochastic ordering
(written X <, Y)if E[f(X)] < E[f(Y)] for all nondecreasing mappings f : IR — IR such that the
expectations exist. Proposition 3.1 yields the following result:

Corollary 3.1 Forallt > 0, 7 € II,

N

N
ST AT <o Y V()
=1

=1
Proposition 3.1 follows from the following two lemmas:

Lemma 3.1 Let N > Q be an arbitrary integer and let (Xy,....Xn) € RY and (Y1,...,¥n) E RN
be two vectors such that 57, X, <312, Y, for1 <n < N. Then,

N N
X< Y. (3.2)
=1 =1

for any sequence {c;}, such that ¢y > ¢3 > --- > ex > 0.

Proof. The proof is by induction in N'. Inegality (3.2) is trivially true when N = 1. Assume that
it is true for 1 < N < m — 1 and let us show that it is still true for N = m.

We have

m m-—1 m

SVi=X)ei= D> (Y= Xi)(ei—em) +em 3 (Yi— Xi),
=1

i=1 i=1

which is nonnegative from the induction hyvpothesis. which concludes the proof. g

Lemma 3.2 Assume that (2.15) holds. Then. for every sample path w € 9,

k

k
SV <Y v, (3.3)

=1 =1

for 1<k <K, t>0 7mell.

-1
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Proof. Let 7 be an arbitrary policy in II.

Let {t,}{", 0 =1 < 1 < ---, be the sequence resulting from the superposition of both sequences

{T;7}53° and {T}}1°. The proofis by induction on the timesof events t) <1, < -+ <1, < tpyy < ---

Basis step. Trivially true for t = 0 (since by definition of the model V,”(0) = V,"(0) for 1 < 1 < K').

Induction step. Assume that the (3.3) holds for 0 < t < t,, and let us show that it is still true for

th, <t <lilngt. There are two steps.

Step 1: 1, <t < tot1.

If R, V(t,) = 0 then (3.3) clearly holds for #, < t < t,4;. Consider the case that 31t U (t,,) >

0. By the definition of v there exists an [ € {1.2,..., A’} such that

(Vi (1), .., V(1))

On the other hand, we have for I <k < K. cf. (3.4),

IN

IN

(3.4)

(3.5)

(3.6)

Inequality (3.5) follows from the induction hypothesis. Equality takes place in (3.6) if and only if

the server does not idle in (¢,,1,41) under 7 and is allocated to a customer from one of the classes

1,2,...,k during this period of time.

Step 2: t = t,4;.

Consider different events. If ¢4 is not an arrival epoch, then V;’(t,,ﬂ ) = ‘»‘;”'(t,_lﬂ) and V" (1n41) =

VM (t,4q) for 1 <@ < K. Inegality (3.3) at time {,,4; then follows from step 1.

If t,41 is an arrival epoch, then clearly

‘/,")'(tnﬁ-l) = "2’q(177+1 ) + Z Sm (4, = ’-n-{»—]-.c"m = 7)’

ni>1
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Vitngr) = V(5 + Z Sm 1 Am = tng1,Cm = 1),

m2>1

for 1 <i < K. Again, inegality (3.3) at time 1,4, follows from step 1, which concludes the proof.
[ ]

4 Optimality of the uc-Rule

In this section we establish the optimality of the jc rule for the G/M/1 queue as a simple conse-
quence of Corollary 3.1.
Let S: denote the service requirement of the n-th customer of class i, n > 1,1 < i < K. Observe

that Si = 3,5, Sk 1 (Ck =4,35 T UC =i)=n~ l) . We shall assume throughout this section
that

A1 The sequences {S}}5°,...,{SM}7 form A" mutually independent renewal sequences, further
independent of the sequence {A,.C,.a,.3,}7;

A2 P(Si <z)=1l—-e*Tforallz>0.n>1.1<i<K.

Let IT" C II be the set of all scheduling policies that do not know future service times of the
customers. Formally speaking this means that for any policy = € II* there exist two collections of

mappings {fa}7° and {f7}{°

1. H: —{0.1,....K);

fa: K; — R,.
where Q= := NV x {IRy x {1,2...., KF}}" x[0.1]%x[0,1]F, H := O, H;,, = H;x{0,1,... A"} x
RS x INY, K := 0 x {0,1,..., K}, Koy, := Ki x Ra x NN x {0,1,..., K}, such that

m(h) = fi(w")

7:‘711(]1") = f,ll (W iuy. iyt gy 002,000, qn), 0> 2
2. _ =

mi(k) = fiwToy):

m2(kn) = fRwhiuriih U2t gaattn), 122,

for all h, € H,, (cf. (2.3), (2.4)), k, € K,, (cf. (2.5), (2.6)) where
Sl G AR A Ce) N G N

Until the end of this section we shall assume without loss of generality that the system is empty at
time 0. In other words, we assume that Q = 0 and W =0 a.s.

The following lemma holds:

9



Lemma 4.1 Assume that Al and A2 holds. Then, for cveryt >0, 1 <i< k', 7 € II*,

E[QT(1)] = n; E[V]"(1)). (4.1)

Proof. Fixt > 0,7€ {1,2,...,K} and 7 € II".

Let N; := {N,(t),t > 0} be a Poisson process with intensity p;, where N;(t) denotes the number of
jumps in [0,t]. We assume that N; is independent of the RV’s {A,,Cy, Sn,an,5n}5°. Because of
assumptions A1 and A2 and because the policy # does not know future service times, it is seen
that

t
QI (1) = Ai(t) _/ 1(57(s) = 1)dNi(s) a.s., (4.2)
0
where A;(s) := 3,51 1{An < 5,C, = i) gives the number of class ¢ arrivals in [0, s], and where
§™(s):= Y UTUTT < s < Tiyy) (4.3)
n2>1

reports the state of the server at time s. In other words. the Poisson process N; may be secn as
the virtual departure process of queue 7 in the sense that if a jump occurs in N; (say at time {)
while the server is serving quene 7 then a departure will occur in queue 7 at time t, otherwise no
departure will occur in queue 1.

Define F7(t) to be the o-field generated by the RV’s {N;(s),57(s)0 < s < t}. Let us assume that
the Poisson process N;(t) has the F7(t)-intensity y; for all ¢ > 0. that is (Brémaud, [1])

E[N(1) = Ni{(£) | F7(8)] = pilt = ). (4.4)

forall0 < s<t.

Then. since S7(t) is F](t)-adapted and left-continuous (cf. (4.3)), it follows from Brémaud [1. T5,
Chapter 1]) that S7(t) is F7(1)- predictable. which in turn implies that formula (2.3) in Brémaud
[1, p. 24] applies to yield

t t
E [/0 1(57(s) = l)(/;\',(.s)] = 1 F [/0 1(57(s) = 1)(1..«J . (4.5)

Combining (4.2) and (4.5) gives
4
E[QT (1)} = E[Ai(1)) - u,E [/0 1(S7(s) = i)ds] . (4.6)

On the other hand, we have

EV (1) '

- K [/0 1{S57(s) = i)(ls] .

-1 . 57 e = iy -
PV E[A)]) = E| | 1(S7(s) = i)ds| . (4.7)
0

A, (1)
E [Z st
n=1

10



where (4.7) follows from Wald’s identity (which applies here since the arrival process and the service
time process for customers of class 7 are independent). Combining (4.6) and (4.7) yields formula
(4.1).

It remains to show that (4.4) holds for all 0 < s < t. Because the service times mutually in-
dependent, exponential and independent of the RV’s {A,,Cy, a,,3,}$ and because the policy =
does not depend on future service times, it follows from (2.7)-(2.8) and (4.3) that N;(t) — Ni(s) is
independent of S™(u) for all 0 < u < s < t. Therefore,

E[Ni(t) = Ni(s)| FT(s))

E[N,‘(i.) - N,’(S)IO'(N,‘(U) ,u < 3)],
it — 8),

for all 0 < s < t, which completes the proof. g

We now turn to the main result of this section. Let {¢;}I be nonnegative constants. Up to a
renumbering of the classes, we may assume that j;¢; > ptig16i4q for 1 <i < LK — 1. Define é € II"
to be the nonidling policy that gives preemptive priority to class ¢ customers over class j customers
if i < j,1<14,j < K. Inother words. policy ¢ := {8},82}5° is such that 8} (hy) = i for all i}, € HJ,

such that ¢,,; =0for1 <i<i-1and¢,; >0.1<i< K, n>1 Aslongas (2.15) holds, the

mappings 62, n > 1, are arbitrary since é is not allowed to idle.

The following proposition holds:

Proposition 4.1 Assume Al and A2 hold. Then. for everyt > 0,

IN

N _
DG EQINI< Y« E[QT(1)),
i=1

=1

for all # € 11" such that (2.15) holds.

Proof. The proof follows from Corollary 3.1 by letting »; := p;c; for 1 < ¢ < I and by using
Lemma 4.1. =

Proposition 4.1 savs that the pc-rule is optimal out of the policies that may know future arrival
times but not future service times. This result can be seen as the continuous-time analog of the
result in Baras et al. {4] and in Buyukkoc et al. [6] (sce Remark (4.2)).

Remark 4.1 Because the service times are exponentially distributed, it is seen that condition
(2.15) is satisfied for any policv # € II™, in particular, if there is a finite number of arrivals
in any finite interval of time (i.e.. the arrival process is non-explosive, sce Brémaud [1]) and if
Lzt Ii 1] < 00) = 0 as.
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Remark 4.2 The discrete-time version of the problem (see Baras et al. [4], Buyukkoc et al. [6])
can be addressed using the same approach. In the discrete-time setting we assume that the service
times are geometrically distributed with queue dependent parameter p;, 1 < 7 < K. Given that
a decision js made at every time t € IN, the objective is to find a policy # € II* that minimizes

E[XE, ¢;QT()]forallte N,1< k< KA. Fixmell",t€IN,1<i< KA. It is seen that

t

E[QT(t)) = E[A;()) - >_ E[S™(s— 1) =1,By(s) = 1], (4.8)

s=1

where {B;(s)}{° is a Bernoulli sequence of RV’s with parameter p;, independent of the RV’s
{An,Crn, Snyan,Bn}3°. The sequence { B;(s)}5° characterizes the virtual departure process of queue
t and is the continuous-time analog of the Poisson process N; introduced in the proof of Lemma
4.1. Because the policy 7 does not know future service times, we observe that the RV’s §7(s — 1)
and B;(s) are independent for 1 < s < 1. Therefore. cf. (4.8),

t
E[A(0] - w Y E[S™(s=1)=1],

s=1

E[QF(1)]

ui E[V7 (D)

The proof that the pe-rule is optimal again follows from Corollary 3.1.
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