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Abstract

Paradigms of parallel object-oriented programming are attractive for the design
of large distributed software. They notably provide sound basis to develop appli-
cations that are easy to maintain and reuse. This paper investigates the issue of
robustness for parallel object-oriented applications. An exception handling mech-
anism for strongly-typed, parallel object-oriented programming is introduced.
The mechanism is based on a parallel exception handling model whose features
enforce the development of correct and robust programs. Moreover, the proposed
mechanism is defined according to object-oriented programming paradigms. In
particular, the effect of exception declaration upon subtyping is addressed. Ad-
vantages ol the mechanisin are illustrated through an example. A reusable imple-
mentation of the two phase commit protocol is presented. Finally, an assessment

of our proposal and a comparison with related work arc described.
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Un Mécanisme de Traitement des Exceptions
pour
La Programmation Paralléle & Objets

Vers la conception d’applications distribuées réutilisables et robustes

Résumé

Les caractéristiques de la programmation paralléle a objets sont attrayantes pour
la conception d’applications distribuées de taille importante. En particulier, la
facilité d’héritage permet la réutilisation de composants logiciels existant. Dans
cet article, nous examinons la définition de constructions linguistiques pour un
langage parallele a objets, fortement typé, en vue de permettre le développement
d’applications qui soient non seulement réutilisables mais aussi robustes. Plus
précisément, nous introduisons un mécanisme de traitement d’exceptions qui
exprime un modele dont les caractéristiques encouragent le développement de
programmes paralléles robustes corrects. Le mécanisme proposé est défini en ac-
cord avec les paradigmes de la programmation a objets. La répercussion de la
déclaration des exceptions sur le sous-typage est notamment étudiée. Les avan-
tages du mécanisme sont en outre illustrés au moyen d’un exemple. Une mise
en ceuvre réutilisable du protocole de validation & deux phases est introduite.
Enfin, les apports de notre solution ainsi qu’une comparaison avec des travaux

apparentés sont présentés en conclusion.

Mots clés: exceptions, traitement des exceptions, constructions linguistiques,

programmation paralléle a objets.



1 Introduction

Besides mechanisms to deal with distribution, large distributed software design re-
quires mechanisms for structuring data and algorithms. Furthermore, distributed
applications should be easy to maintain and exhibit qualitative features such as re-
liability and readability. Object-oriented programming fulfills many of the above
desiderata and also provides paradigms that greatly facilitate reusability. Ex-
pression of parallelism in object-oriented languages gave rise to many satisfying
proposals (e.g., [Yonezawa et al.87]) even though some fail to integrate prop-
erly inheritance. However, parallelism makes language design more complex if
features for fault tolerance are to be provided. To help the design of fault toler-
ant (or robust) applications, dedicated mechanisms, such as ezception handling
mechanisms, have been integrated within programming languages. Sequential
exception handling has been widely examined (e.g., [Cristian84, Yemini et al.87,
Bolot et al.89]) and is now a well understood subject. On the other hand, parallel
exception handling has been scarcely studied and existing proposals tend to evict
fundamental issues such as program correctness. Furthermore, in the framework
of strongly-typed, object-oriented programming, benefits of subtyping in the pres-
ence of exceptions 1s often weakened; for instance, specialization of exceptions is
not considered in operation redefinition. In this paper, we introduce an exception
handling mechanism for strongly-typed, parallel object-oriented programming.
The mechanism is based on a parallel exception handling model whose features
enforce the development of correct and robust programs. Moreover, the proposed
mechanism is defined according to object-oriented programming paradigms. In
particular, the impact of exception specialization on subtyping is addressed. In
order to illustrate our proposal, the mechanism is defined in the framework of a
particular language. However, we claim that the mechanism may be integrated

within other existing parallel object-oriented languages.

1.1 Exception Handling

Exception handling relies on the decomposition of operation domain into opera-
tion standard and exceptional domains. An operation (e.g., a procedure) that is
invoked in an initial state belonging to the operation’s standard domain, a subset
of the operation’s domain, returns a result satisfying the operation’s standard
output assertion. On the other hand, if an operation is invoked in an initial state
outside the operation’s standard domain, this state belongs to the operation’s



exceptional domain. The actual detection of the exception during the operation
execution leads to the exception raising, which is followed by the execution of
a specific computation, called ezception handling. If the exception cannot be
handled within the operation where it was raised, the exception is signalled to
the embedding environment and the operation is referred to as the ezception sig-
naller. A model of exception handling defines the interaction between a signaller
and its handler. Finally, an ezception handling mechanism defines a set of appro-
priate language constructs that are integrated within a programming language to
express a given model of exception handling.

There exist two major sequential exception handling models [Knudsen87]: the
continuation model and the termination model. In the continuation model, the
signaller suspends its execution, invokes the handler and resumes its activity.
In the termination model, signalling an exception causes the termination of the
operation raising the exception and the subsequent execution of the handler. The
main advantage of the termination model stands in its simplicity. It introduces
very few primitives in the host language, that is, a command for explicit signals
and a command to define exception handling scope rules. Examples of languages
using the termination model are Clu [Liskov et al.79], Ada [Ada83], Modula-2 +
[Rovner et al.85] and Eiffel [Meyer88]. On the other hand, the continuation model
is intrinsically complex. In the pioneering proposal of [Goodenough75], three
cases dependent upon the exception signaller are considered: the signaller has to
be resumed, the signaller must not be resumed and resumption is optional. The
more recent proposal of [Yemini et al.85] alleviated this complexity. Even though
this proposal introduces a model of exception handling (called replacement model)
as powerful as the continuation model, it requires few primitives to be added in
the host programming language. However, this model still remains more complex
than the termination one.

Exception handling has been addressed for various parallel programming mo-
dels (e.g., [Campbell et al.86], [Huang et al.90], [Ichisugi et al.90]). To our knowl-
edge, existing proposals were not directly concerned with correctness of robust
parallel programs. Even though a proof system has been defined for a subset of
Ada with exception handling [Lodaya et al.90], this work was done a posterior:
and did not influence design choices. In this paper, we retain a model of parallel
exceptlion handling whose design was mainly guided by the correctness issue of
robust parallel programs [Issarny91a]. Hence, this model provides sound basis for

the design of correct programs.
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1.2 Towards the Design of Reusable and Robust Dis-
tributed Applications

The chosen model of exception handling defines basic control structures to be in-
tegrated within a parallel language to program robust parallel applications. Ad-
ditional features that are required to maintain all the benefits of object-oriented
programming have still to be specified. For instance, potential reusability and
specialization of classes should be supported in the presence of exceptions. Fur-
thermore, from the perspective of language consistency, notions that are related to
exception handling have to be defined according to object-oriented programming
paradigms.

The remainder of this paper shows how provision for exception handling can
be consistently integrated within a parallel object-oriented language. Section 2
briefly describes the imperative programming language Arche used as a support
for our discussion. Section 3 introduces the exception handling mechanism of
Arche. Section 4 then exemplifies the advantages of the proposed mechanism to
design reusable robust applications. An implementation of the two phase commit
protocol that can be reused for specific applications is presented. Conclusions

and assessment of our proposal follow in Section 5.

2 Embedding Language

The programming language Arche [Benveniste et al.92] has been developed
to simplify the construction of distributed applications. Arche applications
are intended to execute on a dedicated object-based system called Gothic
[Banatre et al.91]. This system transparently manages distribution and enforces
features of object-oriented programming such as encapsulation. In this section,
only Arche features relevant to the design of reusable and robust distributed soft-
ware are discussed. The interested reader is referred to [Benveniste et al.92] for
a complete definition of the language.

2.1 Types, Classes and Objects

In Arche, types are declared by means of constructors. The type constructor
view defines an entity akin to an abstract data type. The declaration of a view
V embeds the signatures of the methods that may be applied on objects of type

V. A class then defines a view implementation. Such an implementation should



declare a procedure for every method of the view. Finally, objects are instances

of classes. A view and its implementation are exemplified hereafter.

Example 1

Usual expressions and commands of Arche are similar to the ones defined in the language
Modula-2 [Wirth82]. The following view type u_buffer defines an interface of an unbounded
buffer:

u.buffer =
put: (x: t) ();
get: () (x: t);

end u_buffer

A possib)e implementation of u_buffer assuming method get is never called when the buffer is

empty, is:

class c_u_buffer implements u_buffer =
var
in, out: integer; buf: seq of t;
procedure
put: (x: t) () = begin in := in + 1; buffin] := x end put;
get: () (x: t) = begin out := out + 1; return(buflout]) end get;
begin
in := 0; out := 0;
end c_u_buffer

Class c_u-buffer uses the type constructor seq of that declares a sequence of entities. The
proposed implementation c_u_buffer of u_buffer is syntactically correct: a procedure is declared
for every method embedded in u_buffer. Finally, the ending block of c_u_buffer defines a peculiar
method called initialization method. This method is implicitly called when an instance of the

class is created.

2.2 Parallelism and Synchronization

Much as in the language Pool-T [America87], parallelism in Arche relies on amal-
gaming the notions of object and process. An object creation leads to the creation
of a process and then to the asynchronous call of the initialization method. Fi-

nally, objects communicate through synchronous method calls.



As discussed in [Kafura et al.89)], expressing synchronization constraints in a
decentralized way seems to be a key approach for integrating both inheritance
and parallelism in an object-oriented language. This solution has therefore been

retained in Arche. More precisely, synchronization relies on four points:

(i) Any non-initialization method call is synchronous, method acceptance by
the invoked object being implicit;

(i) An object executes only one method at a time, therefore implementing mu-

tual exclusion within the object;

(i21) A conditional synchronization mechanism compatible with inheritance, is

provided; and

(iv) Objects may be strongly synchronized in order to execute the same method

in parallel.

The two last mechanisms are detailed in the following paragraphs.

2.2.1 Conditional synchronization

The Arche mechanism of conditional synchronization was inspired by the notion
of type states [Strom et al.86]. A type t notably defines operations that may be
applied on an entity £ of type t. A type state of ¢ then defines ¢ operations that
can be applied on £ according to operations previously performed on the entity.
For instance, the only operation that can be applied on a non-initialized integer
variable is an assignment.

With respect to the above proposal, the Arche conditional synchronization
mechanism relies on the definition of synchronization states. A synchronization
state s of a view V specifies V methods that are accessible when an object of type
V is in state s. Moreover, post-states are introduced to indicate synchronization
states that may be reached from any method of a view. State transitions appear
within method implementations through the use of the command become that
names the state in which the transition occurs. A state transition becomes ef-
fective only if and when the method terminates. However, if no transition state
takes place while a method executes, the previous object state remains valid. The

notion of synchronization state is illustrated in the following example.



Example 2

Syntactically, synchronization states are declared in the clause stale; post-states of methods
are declared in the clause post; and post-states of the initialization method appear in the view
header. The following type buffer declares a bounded buffer:

buffer =

view (n: integer) { empty }
put: (x: ) ()
get: () (x: t);

state
full: { get };
partial: { get, put };
empty: { put };

post
put: { full, partial };
get: { empty, partial };

end buffer

where n is an instance parameter setting the buffer size. Type buffer defines three synchroniza-
tion states: full, partial and empty. Let us examine state full. This state allows only execution
of method get; any caller of put is blocked until the object reaches a state embedding put. A
possible implementation of get whose execution leads the enclosing object either to state empty

or partialis:

get: ) (x:t) =
begin
out := (out + 1) mod n;
if in = out then become empty else become partial end;
return(buffout});
end get;

2.2.2 Object group synchronization

The language Arche enables dynamic grouping of objects. Calling a method on
an object group is to be related to the multiprocedure notion [Banatre et al.86)
which is the outcome of a generalizing approach to the integration of parallelism
and procedures undertaken in [Banatre80].

Object groups are declared through the use of the type constructor seq of.
Methods of an object group of type seq of V are called multi-operations. A
multi-operation signature is given by applying the constructor type seq of to
each parameter type of the corresponding method declared in V.

8



Let us consider a group G of buffers declared as: G: seq of buffer. The signa-
ture of the multi-operation put of G is: put: (z: seq of t) (). Let b be a variable
of type seq of t, a call to the multi-operation put of G is written as G ! put(d)

and is carried out as follows:

- All the objects belonging to G are synchronized,;
- Input parameters are distributed among G’s components;
- Method put is executed in parallel by all the components of G;

. Objects are synchronized and their respective contributions to the multi-

operation result -if any- are collected;

- Results -if any- are built out of each component contribution and made

available to the caller;

- Objects of G become available to execute further calls.

A multi-operation may issue a coordinated call [Banatre et al.86], which is a
natural cxtension of the method call mechanism. All the group components
then join together to call a multi-operation and are all synchronized. When the
call is terminated, results -if any- are made available to all caller’s components
before their parallel activities are resumed. Naturally, the coordinated call for
a single element group is the traditional method call. The relationship between
a calling group and the called group is a many in many nesting. The strong
synchronization amongst cooperating processes that is offered by the coordinated
call mechanism may be related to the barrier notion [Jordan et al.89]. In the same
way, notations are introduced to express that processes have to wait for each
other prior to continue their execution. However, the barrier notation is a low
level synchronization primitive while the multi-operation notion allows definition

of abstract parallel computation. A multi-operation is presented below.

Example 3

For the sake of conciseness, we introduce an example which may seem contrived but which has
the advantage to simply illustrate both the notions of multi-operation and coordinated call.
Our goal here is to interleave the contents of two disjoint buffers B; and Bz in a buffer R such
that two elements of the same buffer are never contiguous within R. Furthermore, assuming
that B, and B are shared objects, contents of B; and B; should not be altered during the
computation of R. In the following, B; and B> are assumed to have same cardinality.



We introduce two subtypes! of buffer: partial_buffer and composed.buffer. The former de-
fines the type of By and By and the latter defines the type of R. Type partial_buffer embeds
the method partial_put intended to be used for interleaving buffers. This method is called as
a multi-operation, that is, the callee is a sequence composed of the two objects B; and Bs.
The signature of partial_put is: partial_put: (dest: composed_buffer) () where dest is the buffer
within which elements are to be interleaved. Type composed_buffer embeds the method com-
posed_put that is called to add a sequence of elements to the buffer. Signature of composed_put
is: composed_put: (s: seq of t) () where s is the ordered sequence of elements to be added to
the buffer.

An implementation of partial_put is given hereafter, the enclosing class is assumed to inherit

an implementation of buffer.

partial_put: (dest: composed_buffer) () =
var
x: t; 1: integer;
begin
i := out;
while 1 < in do
i:=(i+ 1) mod n; x := bufli];

’cocall dest ! composed_put(s[me] := x);l

end

end partial_put

An object executing partial_put iterates on the number of buffer elements. At each iteration
step, the method synchronizes with the other multi-operation component through a coordinated
call to composed_put where a method (or multi-operation) call is expressed by means of the
exclamation mark, as usual. In the assignment s{me] := z, me is a predefined Arche variable
that determines the order of the calling component within the enclosing multi-operation. The
assignment means that r is assigned to the me'® element of the call actual parameter. Finally,
we do not provide an implementation for composed_put, it consists in adding elements of s to

the buffer.

Let us examine the relevance of the multi-operation notion from the perspec-
tive of fault tolerance. Study of error recovery in asynchronous systems has led
to identifly the decomposition of a parallel application into parallel sub-actions as
cssential for the design of fault tolerant distributed software [Campbell et al.86].
As multi-operations can be composed through coordinated calls, a parallel op-

cration may be defined in terms of smaller ones. Furthermore, replication has

'Subtyping and inheritance in Arche are described in the next subsection. However, a
common understanding of these notions is sufficient for the present example.
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been recognized as worthwhile to enforce fault tolerance in a distributed system.
Multi-operations allow simple management of copy consistency. Among other so-
lutions, a straightforward implementation consists in invoking a multi-operation
any time a replicated entity is modified, the invoked sequence being composed of

all the objects that own a copy.

2.3 Subtyping and Inheritance

Subtyping and inheritance although being distinct notions [Cook et al.90] are
closely rclated in the language Arche. Inheritance is only permitted when a class
implements a subtype. The Arche subtyping relation [Benveniste et al.92], noted
<:, follows from the subtyping relation of the programming language Modula-3
[Cardelli et al.89]. Intuitively, a type u is a subtype of a type v if u is an extension
of v. In particular, a view U is a subtype of a view V if it is ezplicitly defined
as being an extension of V, that is, if it is declared as: & =V view ... end.
Moreover, subtyping of view types should satisfy constraints that are related to
synchronization.

Let us examine definition of type U, two cases have to be considered: (i) a
new method m' is defined in U; (i7) a method m of V is to be redefined in any
implementation of &/. Definition of &/ may thus require redefinition of states oy
of V or definition of new states o7,. Rules are introduced in order to maintain
the specialization notion inherent to subtyping. When redefining a state oy, for
instance to cope with case (i), the rule is that oy should be an extension of oy.
And, when adding a new state o7, for instance to cope with (ii), the rule is that
there should exist a state oy in V such that o}, is an extension of oy. Finally, new
states may be added to existing post-states. The following example illustrates

subtyping of a view, it is inspired by [Kafura et al.89).

Example 4

Type buffer of example 2 is specialized by adding method gef_rear that returns the buffer’s last
element. States partial and full are extended to allow execution of get_rear. We get:

buf_queue =
buffer view get_rear: () (x: t);
state full: { get_rear }; partial: { get_rear };
post get_rear: { empty, partial };
end buf_queue

11



The assignment relation, noted <, is defined to introduce polymorph refer-
ences. The Arche assignment relation directly follows from the corresponding
definition given in {Cardelli et al.89] for the language Modula-3. As an example
of rule of the assignment relation, we have: Given an expression e of type U and
a variablc v of type V, if U <: 'V thene — v.

Inheritance facility is limited to single inheritance in Arche. Furthermore, as
previously stated, the inheritance mechanism allows a class C) to inherit from a
class C; only if C; implements a type that is a subtype of the type implemented
by C;. A subclass may freely access any of the entities declared in its super-
class. Procedure redefinition is explicitly specified in the clause redefines of the
redefining class. Finally, a redefined procedure may be called from its redefining
entity through the use of the command super.

Up to this point, we have given an overview of the parallel object-oriented
language Arche. The next section focuses on exception handling in the framework

of parallel object-oriented programming.

3 Exception Handling

Exception handling within programs relies on a model that defines the interaction
between a signaller and its handler. The model that we have chosen to integrate
within the language Arche was primarily designed to facilitate the development
of correct and robust parallel programs [Issarny91b]. This model is an extension
of the termination model and introduces only three basic additions to the notions
already needed to cope with sequential program exceptions. The remainder of
this section describes the exception handling model and its integration within

Arche.

3.1 Declaration of Exceptions

Representing exceptions as classes, as notably addressed in [Koenig et al.90] for
the language C++, is essential from the perspective of language consistency. Fur-
thermore, such an approach keeps the benefits of subtyping and inheritance in the
presence of exceptions. This allows specialization of exceptions without having
to systematically rewrite operations that are concerned with the specialization.
For instance, a handler whose only purpose is to propagate an exception has not
to be updated.

Since our target language does not offer the metaclass notion, we introduce a

12



linguistic construct specifically dedicated to the definition of exceptions. The only
information pertained to an exception being its parameters, exception declaration
needs no special implementation to be provided. It follows that an exception
declaration defines both a type and a class. Therefore, in the remainder of this
paper, the term ezception designates either exception types, classes or objects
that are instances of exception classes, when its meaning can be deduced from
the context.

Declaration of an exception may be compared to the declaration of a record
type. For instance, an exception e with n parameters a; of type t;, 1 <1 < n, is
declared as:

e = exception a;: t; ...; a,: t, end.

Instance of an exception class is created through the use of the signal command

written as:
signal e(zy, ..., 7).

Invoking the above command leads to create an instance of the class e and then
to the usual signal of the ezception whose semantics is defined in Subsections 3.2
and 3.3. The signal of an exception e is syntactically correct if all the actual
parameters are assignable to the corresponding formal parameters of the excep-
tion. A parameter a; of an object O,, instance of e, is accessed by dereferencing.
Finally, a parameterless exception fis simply declared as: f = exception.

As for subtype views, declaration of a subtype exception is made by extension.
For instance, an exception g, subtype of e, with | additional parameters b; of type
u;, 1 <1 < |, is declared as:

g = e exception b;: w; ...; b w end.

The following example illustrates introduction of exceptions within a view.

Example 5

Type buffer of example 2 is modified according to exception handling consideration. The clause
signals may be used in any operation signature to state the exceptions that the operation may
signal. In the following declaration, the initialization method and the method put may signal
the non-parameterized exception e_full:

13



buffer =

view (n: integer) { empty } signals e_full
put: (x: t) () signals e_full;
get: () (x: b);

state
full: { get };
partial: { get, put };
empty: { put };

post
put: { full, partial };
get: { empty, partial };

end buffer

Specializing an operation may require modification of the set of exceptions
that the operation may signal. Let us examine the subtyping rule defined for
procedure type in the programming language Modula-3 [Cardelli et al.89].

Definition 1 (Subtyping of procedures in Modula-3) Let t and u be two
procedure types, then t <: u if:

(i) t and u have the same number of parameters and parameters that correspond

have same type and mode?;
(it) t and u have same result type or none has a result type;

(iit) the exception set of t is included within the one of u.

This definition states that a subtype procedure may at most signal the exceptions
that are listed in the definition of its supertype. We claim that this definition
is not suited for type specialization. For instance, let us consider the following

subtyping relations between view types:

Earth_transport <: Transport
Air_transport <: Transport

Furthermore, let us assume that the view Transportembeds method Check_engine.
This method may typically signal the exception Failure_engine. If we now exam-

ine subtype Air_transport, the exceptional domain associated to Failure_engine

2The two main modes are by reference and by value.
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may be subdivided, or specialized, into three domains: Failure_left_engine, Fail-
ure_right_engine, and Failure_both_engines. These three exceptions are a special-
ization, or a subtype, of the exception Failure_engine. This relationship is easy to
express when exceptions are types. In order to authorize expression of exception
specialization within procedures, we introduce the following definition.

Definition 2 (Subtyping of procedures) Let t and u be two procedure types,
then t <: u if:

(?) t and u have the same number of parameters and parameters that correspond

have same type ( and mode);
(4¢) t and u have same result type or none has a result type;

(iit) any ezception belonging to the exception set of t should be a subtype of an

exception belonging to the exception set of u.

The above definition enables specialization of exceptions that are signalled by a
procedure while ensuring consistency of the type system.

In the language Arche, specialization of exception signals according to point
(it7) of definition 2 is provided for any operation that is not an initialization
method. We did not feel the need for such a facility for initialization methods
and retained the Modula-3 solution instead (point (ii?) of definition 1). Syn-
tactically, the new set of exceptions that are signalled by a redefined method is

expressed in the clause ezception of the subtype view. This clause is of the form:
exception < m;.e;: exception.set;;; >

where brackets < > are introduced to denote zero or several repetitions of ‘the
enclosed material; m;.e; designates the exception e; signalled by the method m;
of the supertype; and any exception belonging to exception_set;; is an exception
that may be signalled by the method redefining m;, this exception having to be
a subtype of e;.

3.2 Synchronous Exception Handling

We now define synchronous exception handling, that is, handling of excep-
tions signalled by methods called synchronously (e.g., Arche methods and multi-
operations). Its semantics follow from the definition of our base exception han-
dling model. Handlers are declared by means of an ezception handling command

written as:

15



try C except < ¢ (v;): C; > else C end

where C is a command; e;s are exception types; v;s are (optional) identifiers that
name handled exceptions; C;s are commands defining the respective handlers of
e;s; and the clause else is optional, C being a command defining the current
default ezception handler.

The informal semantics of the exception handling command is: if an ex-
ception is raised while C executes then C terminates and the exception han-
dler is sought within the handler list. This search is implemented according
to explicit propagation of exceptions whose benefits are notably discussed in
[Yemini et al.85, Cristian87]. If any of the e;s is a supertype of the signalled
exception then the corresponding handler h; is executed. A handler may propa-
gate the handled exception by using the command signal if a variable is locally
declared for the exception (i.e., v; is specified). In this case, the command sig-
nal specifies the locally declared exception variable instead of an exception class,
which avoids an object creation. One may notice that two exception types speci-
fied in the exception handling command may be in subtyping relation. Therefore,
more than one handler may be eligible to deal with a given exception. In this
case, the retained handler is the first declared in the handler list among all the
eligible handlers. On the other hand, if no explicit handler is found and if a
default exception handler is declared, this handler is executed. Finally, if search
fails, the predefined exception failure is signalled. However, exception handling
being static, absence of exception handlers may be detected at compile time hence
allowing error report to the programmer.

The informal semantics of synchronous exception handling given so far defines
the termination model with explicit propagation of exceptions. However, this
definition has to be further enriched when an exception is raised within a compo-
nent of a parallel operation. The base model of exception handling introduces the
notions of global exception, exception catching, and concerted exception to cope

with this language feature.

3.2.1 Exception handling and nested parallel operations

For illustration purpose, we rewrite example 3 that deals with buffer interleaving.
We relax our previous assumption setting that the two buffers to be interleaved
have same cardinality. The method partial_put that defines multi-operation com-
ponents now signals the non-parameterized exception e_empty when it reaches
the end of the buffer. We get:
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partial_put: (dest: composed_buffer) () Isignals e-emptyJ =

var
x: i i: integer;
begin
i := out;
while i < in do
i:= (out + 1) mod n; x := bufli];
cocall dest ! composed_put(s[me] = x);
end;
[signal e.empty; l

end partial_put

The notions of global exception and ezception catching are introduced to avoid
deadlock subsequent to an exception occurrence. For instance, let us assume
that in the above example, the two buffers to be interleaved do not have same
cardinality. It follows that one multi-operation component terminates exception-
ally by signalling e_empty while the other becomes blocked at the coordinated
call, waiting for a communication with the terminated component. An exception
whose occurrence prevents achievement of an expected synchronous communi-
cation causes the exceptional termination of its signaller. Such an exceptional
termination is expressed by signalling a global ezception indicating that the sig-
naller failed to ensure an expected cooperation with at least one other process.
A process then catches a global exception only if and when it communicates syn-
chronously with the global exception signaller. The handler of the exception is
sought within the catching process as in the sequential case (i.e., the exception is
defined locally to the process). In our example, the exception e_empty signalled
by a multi-operation component is typically a global exception; its occurrence
may prevent further synchronization with the other multi-operation component.
The non-signalling component catches the exception e_empty when it jointly calls
composed_put. As a result of exception handling, it may signal an exception that
specifies unprocessed elements of the buffer.

Finally, the notion of concerted exzception is related to exception handling in
the presence of nested parallel operations. The exceptional termination of at least
one component of a nested parallel operation causes the exceptional termination
of the operation. The exception signalled by the operation has to be defined
since many components of the operation may concurrently signal an exception.
As notably addressed in [Campbell et al.86], the occurrence of several exceptions
may be symptomatic of an exceptional state, dependent upon the composition of

all the signalled exceptions. A concerted ezception is the resulting exception. The
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computation of a concerted exception may in general not be de defined implicitly
because it requires semantic knowledge about exceptions. A dedicated mechanism
is therefore included in the definition of the exception handling mechanism. Such
a mechanism is presented in the next paragraph. However, an implicit solution
may be retained when exceptional domains are not to be precisely characterized.

The default value of a concerted exception is defined as follows:

Definition 3 (Default concerted exception) The default value of a con-

certed exception is:

() the predefined non-parameterized exception failure if at least two components

signal either a different ezception or a parameterized exzception;

(it) the ezception e if either all the signalling components signal e and e is a
non-parameterized exception or there is only one signalling component that

signals e.

Coming back to our example, two situations have to be considered depending
upon whether the two buffers have same cardinality or not. In the first case, multi-
operation components both signal the non-parameterized exception e_empty. Ac-
cording to definition 3, the multi-operation signals e_empty. On the other hand,
if the two buffers do not have same cardinality and assuming that the compo-
nent handling the largest buffer signals an exception (different from e_empty),
the multi-operation signals the predefined exception failure.

Computation of a concerted exception is also required in the presence of a
synchronous multiparty communication model (e.g., multiway rendezvous, co-
ordinated call). Let us consider a coordinated call issued by a multi-operation
composed of more than two components. If at least two of the caller components
signal an exception, components actually participating to the call catch more
than one exception. A concerted exception is then locally computed within each

of the catching components.

3.2.2 The notion of resolution function

Using definition 3 for computing a concerted exception may sometimes be too
restrictive. In [Campbell et al.86], the use of an exception tree has been sug-
gested. Exceptions that may be signalled by components of a parallel block B
are organized in a tree structure whose root is the universal ezxception, that is,

the exception characterizing the whole exceptional domain of B. When at least
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one component of B signals an exception, the concerted exception signalled by B
is equal to the smallest subtree encompassing all the concurrently signalled ex-
ceptions. Using an exception tree to evaluate concerted exceptions is well suited
in many cases. Nevertheless, it does not address composition of parameterized
exceptions. An alternative solution which would not require the definition of a
specific mechanism consists in executing a distributed agreement protocol. The
advantage of this solution is that it permits to determine the condition under
which a parallel operation terminates, according to final states of all the opera-
tion’s components. Nonetheless, specifying a distributed protocol is a source of
complexity for the programmer and is not needed when all the operation com-
ponents terminate normally. In the following, we propose a new mechanism that
enables taking exception parameters into account for the computation of con-
certed exceptions.

Our proposal relies on the definition of resolution functions within classes.
A resolution function takes a sequence of exceptions® as input parameter and
returns an exception. To allow compile time checking, the header of any resolution
function should carry information about the exceptions that the function handles

and signals. We suggest the following syntactic form:
R handles I, signals |, = C end

where R is the function name, I, and I, are sets of exception types and C is a
command defining the function body. This declaration states that the function
R may take as input any sequence of exceptions provided that the dynamic type
of each exception is a subtype an element belonging to l;; R then returns an
exception whose type is a subtype of a type belonging to l,. The formal parameter
of any resolution function is implicitly declared, it is named ezc_seq and is of type
seq of ezception where ezception is the root of the exception type hierarchy. The
body of a resolution function is defined much like a procedure body. However, it
may use a particular command to identify the dynamic type of the input exception
sequence elements. This command is similar in essence to the well known type
case command. Finally, let us indicate that a resolution function may read (and
only read) state variables of its declaring class. This facility permits to take

object state into account when computing a concerted exception.

3Concurrently signalled exceptions are said to be grouped within a sequence due to the use of
sequences in the embedding language Arche. However, this is not a prerequisite of our proposal,
exceptions could be grouped within any ordered dynamic structure.
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The use of a resolution function can be stated in any exception handling com-
mand. In such a case, the resolution function is implicitly invoked when the
execution of a multi-operation invoked within the command results in the signal
of an exception by at least one of the multi-operation components. The value
carried by the :** element of the resolution function actual parameter is then
defined as follows: if the :** operation component signals an exception e then the
i** element refers to e; on the other hand, if this component does not signal any
exception, the :** element refers to the peculiar ezception “terminated” indicating
that the component terminated normally. The notion of resolution function is
illustrated below.

Example 6

Let us consider the management of a sequence of buffers, called seq_buf. Buffer sizes can be
different. Method put signals e_full when there is no more place left once the element has been
appended. Calling the multi-operation put on the sequence segq_buf may result in concurrent
signals of the exception e_full A possible type for the resulting concerted exception may be
seq-full whose parameter identifies all the full buffers:

seq-full = exception b: seq of buffer end.

The following resolution function resol_put computes the concerted exception signalled by the
multi-operation put of seq.buf. This function returns an exception of type seq.full if all the
signalling components of the multi-operation signal e_full, it returns failure otherwise.

resol_put handles e_full signals seq_full, failure =
var
i: integer := 0; c: boolean := true;
buffull: seq of buffer := <>;
begin
while (i < excseq ! length()) and ¢ do
=141
exception case exc.seqli] of
efull: buffull ! append(seq-buffi]);
terminated: skip;
else ¢ := false
end;
end;
if ¢ then signal seq_full{buffull) else signal failure end

end resol_put

The command exception case is used to test the dynamic type of an exception object. Finally,
a call to the multi-operation put of seg.buf may be expressed as:
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try using resol_put
seq.buf ! put(s)

except
seq.full (e): Handler of seq_full
else Default handler

end

where s is a sequence of elements of type ¢t.

Resolution functions may be redefined within subclasses. Let us introduce a

function S redefining R:
S handles [’; signals I, = C’ end

Conditions under which this redefinition is correct are inspired by the subtyping
rule defined on function types in [Cardelli et al.85]. The header of S should satisfy

the following requirements:

(1) Vee€ly, 3f €} such that e <: f (contravariance);
(1) Veell,3f € lssuch that e <: f (covariance).

Up to this point, we have defined synchronous exception handling. The hier-
archical relationship that has been assumed is related to the common procedural
abstraction: the caller is blocked until the callee terminates. In the presence of
asynchronous operation calls, this relationship may no longer be assumed. Fur-
thermore, the result of an operation called asynchronously is not necessarily rel-
evant for the caller. Exception handling in this framework is discussed hereafter

through Arche initialization method calls.

3.3 Asynchronous Exception Handling

Two solutions are introduced to search handlers of asynchronous exceptions. One
is implicit and is chosen by default; it states that an asynchronous exception is
propagated to the calling object. The other solution, which is explicit, enables
statement of the objects to which an asynchronous exception is to be propagated.
Let us consider the creation of an instance of a class, say c_buffer, that implements

buffer (see example 5):

O := new c_buffer(n).
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According to the definition of buffer, the initialization method may signal the
exception e_full. If e_full is signalled, the exception is propagated by default to
the object that created O. However, the exception may be signalled to different
objects by expressing “e_full: handlers” in the list of actual parameters, handlers
being of type seq of T where T is a view. The sequence handlers then defines the
sequence of objects to which the exception e_full is to be propagated. For that
creation to be valid, the exception e_full must be handled by any object of type T.
To allow compile-time checking, exceptions to be handled by any implementation

of a view are stated in the view header whose general form becomes:

T = view (formal parameters) {post-states}

signals ezceptions handles ezceptions.

Asynchronous exception signals are carried out as follows. Exceptions are sent
asynchronously to all the handling objects. From the standpoint of handling ob-
jects, exception signals are processed as incoming method calls and are mutually
exclusive. However, execution of handlers cannot be controlled by synchroniza-
tion states. Furthermore, should a handling object attempt to call a method
of the signalling object, it catches the predefined, non-parameterized exception
async_ezc.

Finally, declaration of asynchronous exception handlers within classes is sepa-
rated from that of procedures. The handlers are declared in an exception handling
command (see Subsection 3.2) that encapsulated the initialization method body.

Our definition of asynchronous exception handling may be compared to the
one proposed in [Ichisugi et al.90] for an actor-based language. In the same way,
the programmer can specify objects to which an asynchronous exception is to be
propagated. However, due to the nature of the considered target language, the

above proposal does not address issues related to strong typing.

4 Example: Two Phase Commit Protocol

This section highlights the benefits of the proposed exception handling mecha-
nism for the design of reusable and robust distributed applications. An Arche
implementation of the two phase commit protocol is presented and reusability of
the proposed implementation is briefly sketched. In the following, the reader is
assumed to be familiar with algorithms of the two phase commit protocol whose

detailed description may notably be found in [Gray78].
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Let us assume a distributed action, qualified as recoverable, that has established
recovery points and that wants to commit its computation after having modified
data located on different nodes. Nodes participating to the action are called
participants. Each of these nodes is supposed to be able to commit and abort the
part of the action it performed. Finally, a particular node, called coordinator, is
assumed to be associated to the recoverable action. This last node can access
all the action participants. The two phase commit protocol ensures that all the
participants either commit or abort their participation to the recoverable action.

The following subsections propose an Arche description of the two phase com-

mit protocol.

4.1 Predefined Types and Classes

The predefined Arche class c_timeris used to detect timeout within participants.
This class takes as input parameter, an object O and an integer At. An instance
of c_timer calls method alarm of O, At units of time after it was created. Type

timer implemented by c.timer is defined as:

timer = view (O: alarm , At: integer) end timer

where type alarm is also an Arche predefined type defined as:

alarm =
view { awake }
alarm: ()();

state
awake: { alarm };
asleep: { };
post
alarm: { asleep };
end alarm

Finally, the predefined exception timeout is used. It characterizes a non-parame-
terized exception that may be signalled by the run-time system when a required

communication has not been be performed for a certain amount of time.

4.2 'Types

Among types defined to implement the two phase commit protocol, there are the
enumeration type action, the exception type nok and the two view types coordi-
nator and participant. These two last types respectively describe the coordinator

and participant interfaces. We define:

23



action = {a_begin, a_ok, avalid, a_rec };
nok = exception,;
coordinator =
view { exec }
add_part: (part: participant) ();
commit: () () signals nok;
state
exec: { add_part, commit };
terminated: { };
post
add_part: { exec };
commit: { terminated };
end coordinator;
participant =
alarm view (delay: integer) { phasel }
vote: () () signals nok;

commit: () ();
recovery: () ();
state

phasel: awake: { vote };

rec: awake: { recovery };

phase2: awake: { recovery, commit };
post

alarm: { phasel, rec, phase2 };

vote: { rec, phase2 };

commit: { awake };

recovery: { awake };
end participant;

The type coordinator embeds two methods: add_part and commit. The former
is used to register a new participant involved in the recoverable action, the latter
is invoked to request action validation. Synchronization states declared within
coordinator are erec and terminated. State ezec holds as long as the recover-
able action is not to be validated. When validation of the recoverable action
is achieved, the coordinator is in state terminated and hence may no longer be
invoked.

Type participant is a subtype of alarm. Thus, any participant may use an
object of type timer to be aware of timeout occurrence during the first phase of the
protocol. The timeout value is passed to any participant at creation time through
parameter delay. The first phase of the protocol is implemented by the method
vote and the second phase by methods commit and recovery. Synchronization

states phasel and phase2 characterize which phase of the protocol the object is
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ready to execute. As state phase2, synchronization state rec indicates that the
object is ready to perform the second phase of the protocol. However, being in
state rec furthermore implies that the participant has replied in favor of action
abortion to the coordinator and thus will not execute commit. Let us remark
here that the definition of synchronization states satisfies subtyping requirements
given in Subsection 2.3; states are all defined by extension of a state (i.e., awake)
of the supertype alarm, and post-states of alarm have been extended.

4.3 Implementation of Coordinator

Class c.coordinator that defines an implementation of coordinator is declared as:

class c_coordinator implements coordinator =
type exc.vote = exception p_ok: seq of participant end;
var p: seq of participant := <>;
resolution
res-vote handles nok signals exc_vote =
begin Later detailed end res_vote;
procedure
writelog: (a: action) () = begin end writelog;
add_part: (part: participant) () = begin p ! append(part) end add_part;
commit: () () signals nok = begin Later detailed end commit;
begin
become exec;
end c_coordinator

Participants of the recoverable action are registered in the sequence variable
p. Procedure write_log aims at recording performed actions within a log and thus
is specific to any recoverable action. In the proposed class, procedure write_log
may be compared to a virtual procedure though not enforced by the program-
ming language; the implementation of write_log is to be provided by subclasses
of c_coordinator. Procedure add_part is straightforward; it appends the newly in-
volved participant to sequence p. Let us now examine validation of a recoverable
action. This operation is carried out through the procedure commit.

The procedure commit whose declaration is given hereafter, first logs the fact
that the recoverable action is in the first phase of validation. It then invokes
the multi-operation vote of p, that is, vote is concurrently executed by each of
the action participants. Due to some failure, none of the participants may be
reachable. - In this case, the exception timeout is signalled to the coordinator

by the run-time system. A component of the multi-operation vote may either
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terminate normally or signal nok (see participant). Signalling nok means that the
participant wants to abort its participation to the action.

commit: () () signals nok =
var ok: boolean := false;
begin
(* Phase 1 %)
try using res.vote
write_log(abegin); become terminated;
p ! vote (); writedog(a-valid);
except
timeout: write_log(arec); p ! recovery(); signal nok;
exc.-vote (e): writelog(arec); e.p.ok ! recovery(); signal nok;
else write_log(a_rec); p ! recovery(); signal nok;
end;
(* Phase 2 ¥)
try p ! commit();
except timeout: p ! commit();
end;

end commit;

Let us first consider that all the participants terminate normally, that is, the
action may commit. In this case, the second phase consists in logging valida-
tion and in calling the multi-operation commit on p. This call is enclosed in an
exception handling command because the exception timeout may still occur, for
instance, due to failure of the underlying communication medium. Notice that if
a subset of the multi-operation components is reachable, this causes concurrent
signals of exception timeout by the remaining components. According to the se-
mantics of the underlying exception handling mechanism, a concerted exception
is computed. However, there is no need for a resolution function here; defini-
tion 3 may be applied. Since exception timeout is not parameterized, the default
concerted exception will always be an instance of timeout.

Consider now that at least one of the components of the multi-operation vote
signals nok. The resulting concerted exception is computed by means of the
resolution function res_vote that always signals ezxc_vote. More precisely, the
resolution function res_vote given below discards participants that signal nok. It
follows that the handler of ezc_vote sends only message recovery to nodes which
either did not reply to the coordinator or acknowledged for validation. Let us
recall here that the formal parameter of any resolution function is the sequence of
exceptions ezc_seq. Furthermore, the actual parameter of any resolution function

contains as many elements as the signalling multi-operation embeds components;
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the ezception associated to a node that terminates normally (i.e., that expects to

validate its participation) being of type terminated.

res_vote handles nok signals exc_vote =
var i: integer := 0; part: seq of participant := <>;
begin
while i < excseq ! length() do
exception case exc_seq|i] of

nok: skip

else part ! append(pli])
end;
1=+ 1;

end;
signal exc.vote(part);

end res.vote;

Finally, for the sake of brevity, re-emission of messages has been omitted in
the proposed algorithm even though the exception timeout may be signalled by

multi-operations called within handlers.

4.4 Implementation of Participants

The class given hereafter defines an implementation of participant.

class c_participant implements participant =
var
my-action: action := a_begin;
alarmclock: timer;
procedure
write_log: (a: action) () = begin end writeJog;
my._vote: () () signals nok = begin if my_action = a_rec then signal nok end end my_vote
alarm: () () =
begin
if my_action = a_begin then write_log(a_rec); my_action := a_rec end
end alarm;
vote: () () signals nok =
begin
try
my-_vote(); write_log(a_ok); my_action := a_ok; become phase2;
except
nok (e): writelog(arec); my.action := a.rec; become rec; signal e;
else write.log(arec); my.action := a_rec; become rec; signal nok;
end

end vote;
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commit: () () =
begin
write_log(a-valid); my.action := a_valid; become awake;
end commit;
recovery: () () =
begin
if my_action = a_ok then write_log(a_rec); my_action := a_rec end;
become awake;
end recovery;
begin
become phasel; alarm.clock := new c_timer(self, delay);

end c_participant

The object alarm_clock, instance of the predefined class c_timer, enables in-
stances of class c_participant to be aware of delay expiration during the protocol
first phase. The creation of alarm_clock within the initialization method (i.e.,
new c_timer(self, delay)) specifies the predefined state variable self as actual pa-
rameter. This variable references the calling object, that is, the enclosing partic-
ipant. Finally, let us recall that the variable delay is an instance variable whose
value is passed as argument when the instance of c_participant is created.

View types and classes defined in this section may be reused to implement a
dedicated two phase commit protocol. Nonetheless, they have to be specialized
to define the implementation of write_log and my_vote, which is specific to the
focused distributed action. It is interesting to note that the exception nok, origi-
nally signalled by my_vote may be specialized to provide more information about
the cause of action failure. In such a case, procedure vote has not to be modified:
the variable e declared in nok’s handler may be any exception whose type is a
subtype of nok. On the other hand, procedure commit of c_coordinator would
have to be redefined; specific handling of the exception is strongly dependent
upon the considered application.

5 Conclusion

In this paper, we have presented a mechanism of exception handling for a strongly-
typed, parallel object-oriented language. Even though our proposal has been
sketched in the framework of a particular language, we believe that the mecha-
nism may be retained for other existing strongly-typed, parallel object-oriented
languages. The choice of the embedding language was primarily motivated by the

fact that the language integrates inheritance and parallelism in a satisfying way,
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and offers a means to declare nested parallel operations. This last feature has
indeed been recognized as a useful tool for the design of fault tolerant software

in asynchronous systems [Campbell et al.86].

5.1 Summary

Definition of exceptions according to paradigms of object-oriented programming
has been discussed. From the perspective of language consistency, exceptions
should be declared as classes. Such a representation of exceptions furthermore
enables specialization of exceptions through the use of subtyping. To keep all the
benefits of this approach, the programmer should be able to reflect specializa-
tion of exceptions when he/she redefines operations. To our knowledge, existing
proposals do not allow such a reflection. We have modified the base subtyping
relation to provide this facility.

We have then defined synchronous and asynchronous exception handling for a
strongly-typed, parallel object-oriented language. The proposed exception han-
dling mechanism relies on the model defined in [Issarny91b]. This model is pri-
marily based on an extension of the termination model designed for sequential
languages. Concerning synchronous exception handling, the model introduces
the notions of global exception and exception catching in order to avoid dead-
locks subsequent to an exception occurrence. When a process P cannot execute
an expected synchronous communication, it signals a global exception e. The
global exception e is then caught by any process trying to communicate with
P. The cooperation model also defines the notion of concerted exception. Con-
certed exception handling enables to cope with global exception occurrences in
the presence of processes belonging to a nested (parallel) block and of multiparty
synchronous communications. A concerted exception results from the compo-
sition of global exceptions that are concurrently signalled. Finally, in our base
model, exceptions signalled by operations called asynchronously are propagated
to remote processes.

The exception handling mechanism that we have defined introduces very few
commands within the host language. In addition to usual sequential exception
handling commands, it requires only syntactic means to compose concurrently
signalled exceptions. This last facility has led us to introduce the notion of
resolution function that enables composition of parameterized exceptions. To our
knowledge, proposals that consider composition of exceptions cope only with non-

parameterized exceptions. In order to maintain the advantages of inheritance and
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subtyping, redefinition of resolution functions has been studied. We have enriched
the base subtyping relation to set conditions under which the redefinition of a
resolution function is statically correct.

Finally, we have exemplified the proposed exception handling mechanism
through an implementation of the two phase commit protocol. The proposed

implementation can easily be reused for specific applications of the protocol.

5.2 Related Work

Our semantics of exception handling for exceptions signalled by components of
parallel operations may be compared to the proposal of [Levin77]. In the same
way, exceptions signalled by processes (operation components in our presenta-
tion) are propagated to other processes. However, occurrence of those exceptions
does not lead to termination, only resumption is provided. The resumption fa-
cility being very tied to the notion of remote procedure calls, we think that
it is more advisable to include such a mechanism in a parallel language. In
the mechanism of [Levin77], a process must rely on “sequential” exception han-
dling to terminate. We believe that termination facility at “processes level” is
an important feature since it enables expressing proper termination of a set of
processes in a straightforward manner. As a consequence, this is a useful mech-
anism for avoiding deadlocks. Finally, other related mechanisms are those of
[Ada83, Szalas et al.85, Huang et al.90]. In the mechanism of [Ada83], a com-
munication with a process that terminates exceptionally leads to catch the pre-
defined exception tasking-error. In our base model, the process catches a global
exception and has therefore a greater knowledge about the cause of the process
exceptional termination. The two other mechanisms do not define precisely the
control points where a global exception can be caught. In our opinion, this feature
compromises the verifiability of the mechanism. Exception handling mechanisms
dealing with nested parallel blocks also adopt a generalization of the termination
model [Campbell et al.86, Jalote et al.86, Taylor86] but to our knowledge have
not been defined formally.

The proposed semantics of asynchronous exception handling may be compared
to the one defined in [Ichisugi et al.90] for an actor-based language. The object
to which an asynchronous exception is to be propagated may be explicitly stated.

However, our proposal additionally addresses issues related to strong typing.
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5.3 Other Issues

Besides the integration sketched in this paper, the Arche base model of exception
handling has been integrated in a CSP-like language [Banatre et al.92a] and in
a simple programming language based on the multiprocedure notion [Issarny91a],
a proof system for the resulting programming languages being proposed in the
mentioned references. The definition of proof systems is worth mentioning; it
demonstrates that features of the model enforce the design of correct and robust
parallel programs. This property mainly results from the precise definition of
global exception catching. As a global exception can only be caught at a com-
munication point, precise properties about the state of a process catching an
exception may be determined. Considering resulting proof systems, the notation
that has been used to deal with exception occurrences is the one proposed in
[Cristian84], exception catching being taken into account within the proof rules
defining communication commands. As formal proof of robust program correct-
ness is beyond the scope of this paper, relevance of the model for this issue is
not detailed further. To get a deeper insight, the interested reader may consult
[Issarny91b] and the above references.

Concerning implementation issues, a compiler for the language Arche integrat-
ing the proposed mechanism of exception handling has been implemented in the
framework of the Gothic INRIA/Bull project at the research institute IRISA. The
compiler generates C code that is intended to execute above the object-based
system Gothic [Banatre et al.92b]. The system Gothic notably provides complex
built-in operations to help management of Arche parallel features (e.g., multi-
operation coordinated call). Finally, experiments have been made to investigate
if the language Arche is appropriate to program robust distributed applications.
This has led to encouraging results. In addition to the example discussed in this
paper, an application based on the technique of N-version programming has been
designed. This last example also uses the facilities of exception handling and
multi-operation. Summarizing the combined advantages of these facilities, the
notion of multi-operation provides a useful tool to simply express management of
distributed data structures while the exception handling mechanism allows keep-
ing these data consistent in the presence of failure.
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