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Graphes d'Evénements Stochastiques :
Bornes, Atteignabilité du Temps de Cycle et Optimisation du Marquage

Jean-Marie PROTH, Natalie SAUER, et Xiaolan XIE
Projet SAGEP / INRIA-Lorraine
Technopdle Metz 2000, 4 rue Marconi, 57070 Metz, France

Résumé

Ce papier est consacré a l'évaluation et a 'optimisation des performances des graphes
d'événements stochastiques. Les temps de franchissement des transitions sont générés
par des variables aléatoires quelconques. Nous proposons d'abord une borne
inférieure et une borne supérieure du temps de cycle. Nous montrons qu'un temps de
cycle, strictement supérieur au maximum des valeurs moyennes des temps de
franchissement, peut étre atteint si un nombre suffisant de jetons est disponible dans
chaque place. Nous donnons également une condition nécessaire et suffisante pour
atteindre un temps de cycle égal au maximum des valeurs moyennes des temps de
franchissment. Enfin, nous proposons un algorithme pour résoudre le probléeme
d'optimisation du marquage qui consiste a obtenir un temps de cycle donné tout en
minimisant un critére linéaire fonction du marquage initial.

Mots clefs: Graphes d'événements stochastiques, Evaluation des performances,
Bornes, P-invariant
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STOCHASTIC TIMED EVENT GRAPHS :
BOUNDS, CYCLE TIME REACHABILITY AND MARKING OPTIMIZATION

Jean-Marie PROTH, Natalie SAUER, and Xiaolan XIE’
INRIA, Technopéle Metz 2000, 4 rue Marconi, 57070 METZ, FRANCE

ABSTRACT: This paper addresses the performance evaluation and optimization of stochastic timed event
graphs. The transitions firing times of such a timed event graph are random variables with general distribution.
We first establish an upper bound and a lower bound for the average cycle time of the timed event graph. We
prove that any cycle time greater than the greatest mean transition firing time can be reached by putting enough
tokens in each place. The necessary and sufficient condition of the reachability of the greatest mean firing time is
established. We then address the marking optimization problem which consists in obtaining a given cycle time
while minimizing a linear criterion depending on the initial marking.

KEYWORDS: DEDS, Stochastic Timed Petri Nets, Performances, Bounds, Optimization

1. INTRODUCTION

Petri nets have been proven to be an adequate tool for modelling discrete event systems
with synchronization, concurrency and common resources. Petri nets have been applied to
telecommunication systems, computer systems, manufacturing systems, etc. Excellent
surveys can be found in [10, 14]. _

In this paper we limit ourselves to stochastic timed event graphs which form an
elementary class of Petri nets. An event graph is a Petri net in which each place has exactly
one input transition and one output transition. A strongly connected event graph has some
important properties, specifically: (i) the number of tokens in any elementary circuit is
constant, and (ii) the system is deadlock free iff each elementary circuit contains at least one
token (see for instance [4, 5, 7, 8] ).

In the deterministic case, it has been proven [4, 11] that: (i) the cycle time of an elementary
circuit is given by the ratio of the sum of the firing times of the transitions of the circuit by
the number of tokens in the circuit; (ii) the cycle time of a strongly connected event graph is
equal to the greatest cycle time among the ones of all the elementary circuits. Furthermore, a
specified cycle time o being given, algorithms have been proposed in [9] to find initial
marking which leads to a cycle time less than o while minimizing a linear criterion.

In the stochastic case, it is no more possible to take advantage of the elementary circuits to
evaluate the behaviour of the event graph and to reach a given performance. Previous work
mainly focused on ergodicity conditions and performance bounds. Ergodicity conditions

* Address all correspondence to Xiaolan XIE, INRIA, Technopdle Metz 2000, 4 rue Marconi, 57070 Metz, France. E-
mail : xie@ilm.loria.fr
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have been obtained for timed event graphs [1], for stochastic Petri nets [6] and for max-plus
algebra models of stochastic discrete event systems [13]. For a strongly connected timed
event graph, it has been proven that an average cycle time exists under some fairly weak
conditions (see section 2).

This paper addresses three different issues : the performnce bounds, the cycle time
reachability and the marking optimization problem. In section 3, we propose an upper
bound and a lower bound for the average cycle time according to the initial marking and
compare them with the existing bounds.

Under some weak conditions described in section 2, we prove in section 4 that it is always
possible to reach an average cycle time smaller than any given value o which is greater than
the greatest average transition firing time. We also establish the necessary and sufficient
condition for the reachability of the greatest average transition firing time.

Section 5 addresses the marking optimization problem which consists in finding a
marking which minimizes a p-invariant criterion and leads to an average cycle time smaller
than a prespecified cycle time. A heuristic algorithm which provides near-optimal solutions
is proposed.

2. NOTATIONS AND ASSUMPTIONS

Let N = (P, T, F) be the strongly connected event graph considered. P is the set of places, T
is the set of transitions, and F < (P x T) L (T x P) is the set of directed arcs. We denote by My
the initial marking of N.

We assume that no transition can be fired by more than one token at any time (i.e.
recycled transitions). We further assume that, when a transition fires, the related tokens
remain in the input places until the firing process ends. They then disappear and one new
token appears in each output place of the transition.

The following notations are used throughout this paper:

X(k) € R*: time required for the k-th firing of transition t. It is a random variable
St¢(n): instant of the n-th firing initiation of transition t

I': set of elementary circuits of N

Mo (7): total number of tokens contained initially in ye I'

uy) = Zte y Xt(1) : sum of the firing times of transitions belonging to y

We assume that the sequences of transitions firing times {Xt(k)}:=1 fort e T are
mutually independent sequences of independent identically distributed (i.i.d.) integrable
random variables.

It was proven in [1] that, under the foregoing assumptions, there exists a positive constant

n (Mp) such that:
lim S¢(n)/n= lim E [St(n)] /n=n(Mgy), as.VteT

n—yoco n—o0
n (Mp) is the average cycle time of the event graph.
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Since {Xt(k)};;l are sequences of i.i.d. random variables, the index k is often dropped off

and we use X; to denote the firing time of transition t whenever k is not necessary. We
further assume that the first and second moments of X exists and denote by m; its mean

value and by oy its standard deviation, i.e. m¢ = E [X{] and otz =E[(X{ - mt)z].

3. BOUNDS OF THE AVERAGE CYCLE TIME

In this section we assume that the number of tokens as well as their distribution in the
strongly connected event graph are known at the initial time. Let Mg be this marking. We
provide a lower bound and an upper bound of the mean cycle time of the system.

We consider an operational mode of the event graph model, called earliest operational
mode (EOM), for which transitions fire as soon as they are enabled, provided they are idle.
As shown by Chretienne [4], this operation mode leads to the minimal mean cycle time.
This mode is used in the following.

3.1. The lower bound

Note that the cycle time which is the solution to the deterministic problem obtained by
replacing the random variables which generate the firing times by their mean values is a
lower bound of the mean cycle time. Proposition 1 provides a better lower bound of the
value of the mean cycle time than the previous one. We denote it by x.

Proposition 1:

The following inequality holds:

Wy Mt* ()] + my(y) _
n(Mp) 2 Tgfglgc E [max{ Mo() , mt*(Y)H =

(1)

where:

t* (7) is a transition belonging to ¥ which has the greatest average firing time, i.e.
Myx(,) = Max m
t*(y) ey °

1 [y \ {t*()}] is the sum of firing times of transitions belonging to y except t*(y), i.e.

piyViemn= Y X,
tey, t#t*(y)

Proof:

Consider an elementary circuit y = (t1, p1, t2, p2, --- tv, pv, t1). The following relations hold:
Stl (n) + th (n) < Stz (n + MO (Pl))

Stv (n + Mo(P1)+...+M0(P -1 )) + Xtv (n + Mo(P])+...+M0 (Pv—l)) < stl (n + Mo('y))
which leads to:
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v
Stl_(n + Mo()’)) - St] (n)2 thi (n + Mo(P1)+...+M0(Pi_1))
i=1
Furthermore, we have:
St;(n) + X (n) < Sy (n+1)

Sty (n+Mo(1) =1+ X¢, (1 + Mo(7)—1) S Sy (n + Mo(y)

which yields:
Mo(y)
St;(n+Mo(P)-Sy ()2 Y Xy (n+i-1)
i=1
Combining the above relations:

Mo(y)
Sty (n+Mg(7)) — Sy (n) 2 max {th (n+ Mo(P+...+Mo(Pi_y)), thl(n+1—l)}
i=1

By taking expectation:
E[Sy, (n+Mg()) Sy, (n)]

Mo(y)
> E[th n)] + E[max { Ext (n+Mg(Pp)+...4+Mo(Pi_y)), 2xtl (n+i- I)H
i=2
Since Xti (k), for k=1,2,... whatever t; € T, are i.i.d. random variables, we have:

v Mg(7)-1
E[Stl (n+Mq(7))-Sy (n) > my, +E| max {%Xt , zlxtl (1)

According to Jensen's inequality:
E[stl (n+My(y)) - S, (n)

> mtl + E[max {u[‘Y \ {tl}]l(Mo(Y) - 1)'mt1 }]
= E[max {u['Y Mtgll+ me, 'MO(Y)'mtl }]

By letting n — <« , we obtain:
M, (7). 1(M) 2 E[max {uy\ )1+ my Mo(p)m,, }]
Thus:

[ [ulyM)+m
(M) 2E max{ Mot t My, H

By choosing t1 = t* (y):

-
[y Mt* (D +mgs

which implles that:
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HIy ME* (DN + mys(y,
TI(Mo) 2 I;\ealz({E[max { MO(y) t*(y 'mt*(y)

QED.

3.2. The upper bound

The purpose of this section is to establish an upper bound of the average cycle time of
EOM, i.e. © (Mp). It is based on a constrained operating mode in which some transitions are
temporally blocked. In the following, we first define this operating model. Properties of this
operating mode are then proved and we finally derive an upper bound.

Starting from the initial marking My, the constrained operating mode works as follows.
First, the initial marking M enables a subset of transitions Ty C T. These transitions are
fired immediately. Let t; be the instant at which the last transitions of Ty finishes its firing.
During the period (0, t1), other transitions as well as transitions whose firing ends before
instant t; are blocked. At instant t;, a new marking M; is reached. This marking enables
another subset of transitions T;. As above, these transitions are fired immediately. At
instant t,, all these transition firings end and a new marking M, is reached. The process
continues. We obtain a sequence of markings {M;, for i =0, 1, ...} which appear at instant t;
and which enables the firing of a subset of transitions T;.

The proposition is an important property of this operating mode.

Proposition 2 :

The sequence of markings {M;, V i > 0} as well as that of transition subsets {T;, V i > 0}
become K-periodic after finite time which implies that there exist three positive integers iy, J
and K such that

M; = Mj,j and T = Ty for alli 2iy
and that each transition is fired exactly K times in any J consecutive periods, i.e. it appears K
times in the sequence of subsets (T, Tj,q, ..., Tj;j-1} for all i 2 iy,

Proof :

First, notice that the sequence of markings {M;, V i = 0} as well as that of transition subsets
{Tj, V i 2 0} are independent of transition firing times. As a result, these two sequences
remain the same in case of deterministic case with all transition firing times equal to 1, i.e.
Xy=1forallte T.

However, in this deterministic case, the constrained operating mode is exactly the same as
the earliest operating mode. M; is the marking reached at instant i and T; the subset of
transitions T; initiated at instant i.

Moreover, it was proven in [4] that this earliest operating mode becomes K-periodic after
finite time which concludes the proof.

QED.
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Notice that the proof shows that the two sequences {M;, V i 2 0} and {Tj, V i 2 0} can be
obtained by means of the simulation of a deterministic timed event graph.

These two sequences being obtained, we are now in a position to derive an upper bound.
As a matter of fact, the constrained operating mode becomes a renewal process when the K-
periodicity of the sequences {M;, V i 20} and {Tj, V i 2 0} is reached, i.e. i 2 ij. The renewal
intervals correspond to tj,- ti. In each renewal interval, each transition is fired exactly K
times. As a result, the average cycle time of the constrained operating mode is equal to E[t;,}
- ;] / K which is an upper bound of n (Mp). The exact value of this bound is given by the
following proposition.

Proposition 3 :

1 ig+J-1
n(Mg)<s— E|MaxX; |=7
(o) 3 B Macxi| e
=10
Proof : )
Let @ be the average cycle time of the constrained operating mode. It is obvious that
K(Mo) <T,

Since 7 = Eltj,j - tj)]/K and since
ti+1 —ti = MaxX;

teT;
we have:
ig+J-1 ip+]-1
tig) ~tig= X (ti1—t)= D, MaxX
i=ig i=ig €T

Combining the above equations,
1 oz 1 i02]-1
T=—E Y MaxX|[== Y E[Maxxt]
K i=ig teT; K i=ig teTj
QED.

3.3.Comparison with existing bounds
Under the assumption of recycled transitions, it was proven in [2, 3] that:

Efu(y)] o
™(Mo) 2 ma"{’?:ﬁ‘ My(y) " teT. mt} -k

(M) < th =7
teT
The following property shows that our bounds are better than ©'and r'..
Property:
n<m'andzx2>T1
Proof:
a. From Jensen's inequality

r
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T = max{ E[ max Ry (= I+ Mgy
= yel' Mp(y) e

2 max -max E u['Y \ {t ) (Y)}] * mt"('y) m

B yel' I My (v) e
[ E [p(y)]
hmax {—————MO(’Y) ,mt*(y)}]

= max<{ max Elu(y)l , NAX Myx(y)
yelI' Mq(Y) * yer

=max
vel'

= M. maxE[p(Y)], t
vyeI' Mg(Y) * teT
=z
b. First,
11011 110411 1 1011
T=— E[Maxxt]s— S OE YX == Y | DEX]
K 5, LteT K S |en K 5, ety

From the K-periodicity,

n< Y E[X]="7
teT
QED.

4. CYCLE TIME REACHABILITY
The purpose of this section is to establish the reachability of a given cycle time when
enough tokens are available for each place. More precisely, we show that the cycle time

»
tends to the greatest average firing times C* (ie. C = I\t’grx m¢), when the number of tokens

tends to infinity.

For this purpose, we first introduce a so-called N-POM operating mode which temporally
blocks the firing of some transitions. We then establish bounds of the cycle time when
using N-POM. We show that C* can be approached as closely as we want to when the
number of tokens increases. Since the cycle time when using N-POM is obviously greater
than the one obtained with the same initial marking when using EOM, the reachability of
C* by using EOM is also established. We also establish necessary and sufficient condition of
the reachability of C*.



4.1. N-POM operation mode
Consider an initial marking which assigns N tokens to each place, i.e. Mg (p) =N,V pe P.
We define a so-called N-periodic operation mode, denoted by N-POM, as follows:

(i) Each transition t € T is fired N times under an earliest operation mode. In other words,
the N tokens of each place are used for firing their output transition as soon as possible. Let

N N
9?&) the sum of the N first firing times of transition t for t € T. Let 6 ] =Ntuo_l§ 91 (®.
€

Transitions which complete N firings before instant 91 (assuming that firings start at
. 1 s N . . . o s N
instant 0) are frozen until instant 6 ; (i.e. further firings are not allowed until instant 6 ] ).

. . . N
As a consequence, the marking of the event graph is also M, at instant 0 1

N : N N, . :
(ii) We restart the same process from instant 6 , on-Let 6, the time needed to reach again
. . N N . .
the marking Myp. The process restarts from instant 6 1 19, and the third step takes a time

N
93 , and so on.

Since some transitions are temporarily frozen when using the N-POM, the related mean
cycle time is greater than or equal to the one obtained when using the EOM, assuming that
the initial marking is the same in both cases. As a consequence, if the strongly connected
event graph reaches a mean cycle time smaller than C when the N-POM is applied, it also
reaches a mean cycle time smaller than C when the EOM is applied.

In the following, we focus our attention on the N-POM and derive some properties
related to the EOM from this study.

Since {X¢(k)},_,,Vte T, are mutually independent sequences of i.i.d. random variables,
N-POM is a renewal process. The renewal epochs are 0, 911\1, 0{‘] +oN ,-... During each period,
each transition t € T is fired exactly N times.

From the definition of N-POM, the renewal intervals Of fork =1, 2,3, ... are defined as
follows:

N
oN = ]‘%grx z‘ixt((k —1)N +i) (3)

The following properties are easily derived from the ones of X, t ET:

2]

Qe

L
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a. The mean value and the standard deviation of the random variables OE exist,

N
b.el,e

N Z

, 91:, ... are mutually independent and identically distributed,

L L
c. lim [ZO? / L] = lim [E[z:(')%I / LD = E[Gll\I] with probability 1.
k=1 k=1

Lo+ Lo+eo

A consequence of these properties is that the mean cycle time of the system exists when
N-POM is applied. This cycle time is denoted by Cn and:

Cn=Hel'|/N )

4.2. Bounds of the average cycle time when applying N-POM
In this section, we propose bounds of the average cycle time of the N-POM, i.e. Cn. These
bounds show that Cn; can be as close as we want it to be from C* if N is large enough, but
finite.
Proposition 3:
Under the previous hypotheses:
C’sCysC +[2/NY3| T o, )
teT
The standard deviations o¢ being finite for any t € T, the right hand side of (5) tends to C*
as N tends to infinity. For all C > C*, it is possible to find N so that the mean cycle time of
the stochastic timed event graph is less than C. The value N can be obtained by solving the

equation (C*-C) + [2 / y1/3] )) 6t = 0 which leads to y*=[2 )" c,/ (C*'Co) PandN = [y*]
teT te T
where [¢] denotes the smallest integer greater than or equal to y*.

Proof:

a. We first prove that C* < Cn.

Since {Xy(k), Vk} for t € T are mutually independent sequences of i.i.d., from Jensen's
inequality:

N N
E[6] |=E Max Y X, (i) |>MaxE 3 X, (i) |=N.Max m
[ 1 ] [ teT le t( ):| teTx L:Z] t(l):l teTx t
which yields that :
Cn=E6]|/N2Max m =C"
N [ 1 ] teT t
b. We now prove the following inequality:

CnsC +Y E[g(xt(i)-mt) /N]

teT i=1
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From the definition of 9?] and C*,

N : N
E[6] |<E[Max 3 (X,()-m¢ +C") [=N.C" +E Max ¥ (X, (i) -m¢)
teT .55 teT .5

o

which leads to:

. N
oM ]sN.C'+ Y E[E(Xt(i)—mt)

teT |li=1
and:
N * ™
Cn=E[6]]/N<C+ Y B3 (X, (i)-my|/N ®)
teT Lli=1
which completes the proof of part b.
c. In the following, we prove that:
Cn <C +[2/N1/3]20't
teT
Let us set:
N
wi =3 (X¢())—m)/ (N.oy)
i=1
Relation (6) can be rewritten as :
teT
Since the random variables X (1), X{(2), ..., X((N) are i.i.d., we have: .
: N
2 . 2 2
Bl(we)?]= S E[0xe0) - me)?] (N a1)? =1/ ®
i=1
Furthermore, for any € € [0, 1]: ’
£— 1- oo
E[w]= _[0 wi P(dwy)+ L_ wi P(dwy) + L_wt P(dwy) | ©)
But:
8_
[w,P(dw)<eP(O<w, <e) (10)
0
1-
J'Wt P(th) < P(S < Wi < l) < P(Wt 2 8) (11)
e_ A
L_Wt P(dwt)SJ'O (wt) P(th)=E[(Wt) ] (12

Finally, taking into account inequalities (10), (11) and (12), equality (9) leads to:
E[w] <eP (0 <wi<g) + P (wy2¢€) + E[(wp?] »
=e-eP (w2g) + P (wy2¢€) + El(wp?] .
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= e+ (1-€) P (wy2 ) + E[(wp)?]
According to Chebyshev's inequality, we obtain:
E[wd <e+(1-€) El(wp?] / €2 + El(wp?]
Using the result (8):
Elw<e+(1-€) /(Ned)+1/N
<e+1/(N¢g?)
Setting e =1 / N1/3, we obtain:
E[wgd <2 /N1/3
Combining with relation (7),

CnsSCo+[2/N1/3] Y o,
teT

Q.ED.

4.3. Reachability of C*

The previous results show that any cycle time C > C* can be reached by putting enough
tokens in each place. The remainder of this section is devoted to the reachability condition
of the minimal cycle time C*.

Proposition 4 :

C* is reachable iff there exists t* € T such that

teT (13)

Furthermore,
(a) If this condition holds, CN =C*, VN > 1
(b) If it does not hold, = (Mg) > C* for all My

As can be noticed, this proposition claims that C* is reachable iff there exists a transition
whose firing time is always the greatest one.
Proof:
(i) Assume that the condition (13) holds. It follows that
C* = E[Xp]
From the definition of Cy,

E[Cl] = E[Ttlgl?c X, ] =EXn]=C"

Since Cn < Cq for all N > 1, the property (a) is proven.

(if) Assume that the condition (13) does not hold. We prove in the following that for any
initial marking My, the cycle time = (Mg) > C*.
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Let t1 be the transition with the greatest average transition firing time, i.e. M1 = l\t/ﬁjlrx mg,
€

Since condition (13) does not hold, there exists t2 € T such that
P[X¢2 > X} >0
which implies that there exist A > 0 and € > 0 such that
P[X¢2 2 X +A]=¢ (14)
Since the event graph is strongly connected, there exist a directed path from t1 to t2 and
another path from t2 to t1. Let N1 (N2) be the total number of tokens initially contained the
path from t1 to t2 (from t2 to t1). As in the proof of Proposition 1, it can be shown that

Sﬂ(n) 2 Stz(n - NZ) + th(n - NZ) (15)
Si2(n) 2S4(n—ND + th(n - Nl) (16)
n+k-1
Setn+k)-S¢m)= Y X(i) VteT,n>0,k>0 17
i=n

Without loss of generality, assume that N1 = 0 and N2 = N. Let us consider k consecutive

firings of transitions t1. From relation (17),
n+k-1

San+k)-Su@= 3 Xu() | 18)

i=n
From relation (15),
Stl(n + k) 2 Stz(n +k —N) + th(n +k - N)
Combining with relation (16), we obtain
Spi(n+k) =S;(n) 2 X4(n) + Xgo(n+ k—N)+Sip(n+k —N) -S4 (n)
Combining again with relation (17) for t = 2,
n+k-N
Sum+k)=Sy(n) = Xp(n)+ Y Xia(i) (19
i=n .
From relations (18) and (19),
n+k-1 n+k-N
St(n+k)=Sy(m) = Xyy(n)+Maxs Y Xyy(i), Y, Xe2(i)
i=n+1 i=n
and :

Su(n+k)-Sy(n)2 Y Xu(i)+Max10, Y (Xe2(i)—Xp(i+1))- Y Xu(i)

i=n i=n+k-N+2

n+k-1 { n+k-N n+k-1 } :
i=n

By taking expectation,

n+k-N n+k-1
E[St](n + k) - Stl(n)] 2 kmtl +E MaX{O, 2 (th(l) - th(l + 1)) - thl(l)}]

i=n i=n+k-N+2

By Jensen's inequality,

n+k-N '
E[Stl(n + k) - Stl(n)] 2 kmtl +E Max{O, Z(th (1) - th(i + l)) - (N - 2)mt1 }:I

1=n
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Since my; = C* and since the random variables th(i) for all i are i.i.d.,

n+k-N
E[Sy1(n + k) - Sy (n)] 2 kC™ + E[Max{o, Y (X2 (1) = X (1)) - (N~ 2)C‘H (20)

1=n
Let us define the following event :
A={Xp()-Xu(i)2A Vn<i<n+k-N}
From relation (14),
P(A) = g(k-N+1) (21)

From relation (20),
. n+k-N .
E[Sq(n+k)-Sqm)]2kC +E[ Y (Xea i)~ Xy (6))~ (N -2)C A]P(A)

i=n

From the definition of A and relation (21),

E[Su(n +k) =Sy @] 2kC” + (k- N+ 1)a- (N -2)C")et-N+)
Setting k = (N-1).(1+ C*/A), we obtain

E[Su(n+Kk)~ Sy (m)] 2 kC” + C eMN-1C"/a
Finally, by letting n — o, we obtain

kn(Mg)2kC + C"eN-1)C/a
which implies that & (Mg) > C*.

QED.

5. MARKING OPTIMIZATION

In section 4, we proved that it is always possible to reach a mean cycle time smaller than C
with a finite number of tokens, provided C > C*. A prespecified cycle time C > C* being
given, the marking optimization aims at finding an initial marking My which minimizes
the value of the p-invariant criterion and leads to an average cycle time less than C.

In the following, we first present a heuristic algorithm for solving the marking
optimization problem. Subsection 5.2. is devoted to the evaluation of isolated mean cycle
times of all elementary circuits which are needed in applying the heuristic algorithm and
subsection 5.3. is a numerical example.

5.1. A heuristic solution to the marking optimization problem

The heuristic algorithm presented hereafter leads to a near-optimal solution to the
problem. Its first phase consists in computing the optimal solution to the deterministic
problem obtained by assigning to each transition the mean value of the related random
variable. We use the algorithm presented in [9] to solve this problem. The second phase of

the algorithm is a step-by-step process. At each step of the process, we first evaluate the
mean isolated cycle time (or mean cycle time for short) of each elementary circuit n(My, v)
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for all y e I'. We select the elementary circuit having the greatest mean cycle time. P being
the set of places of this elementary circuit having the smallest coefficients in the p-invariant,
we select as many elementary circuits as possible having a great mean cycle time and whose
intersection with P is not empty, and we add one token in a place belonging to this
intersection. The process stops when the average cycle time of the strongly connected event
graph is less than C.

ALGORITHM

First phase: Computation of an initial solution

1. Compute the optimal solution My to the problem when using the mean value of the
related random variable as the firing time of each transition.

The optimal solution is the one which leads to C for the deterministic problem. We use
the algorithms presented in [9] to solve this problem. The optimal solution My is specified
as the number of tokens in each place at the initial state.

2. Using the initial random variables to generate the firing times, simulate the system in
order to obtain the mean cycle time n(My).

3. If n(Mp) < C, stop the computation.

Second phase: Increase adequately the set of tokens

4. Let yp € T be the elementary circuit having the greatest mean cycle time and P the set of
places belonging to Y and having the smallest coefficients in the p-invariant, y; € I - {yp} the
elementary circuit having the greatest mean cycle time and at least one place in common
with P, yp €T - {yp U 71} the elementary circuit having the greatest cycle time and at least one
place in common with P N Y1, and so on until we reach Yqsuch that? ny;ny,n.n Yq-1 N Yq
=0@.

The goal of this step is to define one or more places belonging to as many elementary
circuits having a great cycle time as possible and having a small coefficient in the criterion.

5. Add one token to a place P belonging to P N y; N YN ... N ¥g.1. Let M be the new
solution.

6. Simulate the system in order to obtain the mean cycle time n(My) related to M.

7. If r(Mp) < C, My is the near-optimal (or optimal) solution ; otherwise, go to 4.

5.2. Evaluation of mean cycle times of elementary circuits

The mean cycle times of the elementary circuits m(My, ¥) have been used in the previous
heuristic algorithm. Of course, they can be obtained by simulation. However, as the number
of elementary circuits is usually very large, the simulation becomes computationally
burdensome. In the following, we derive approximate evaluation of these cycle times from
the simulation of the timed event graph as described in step 6 of the heuristic algorithm.

-
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To this end, we first derive an exactly expression (i.e. equation (23)) of the average cycle
time of the timed event graph and then derive an approximate expression for the mean
isolated cycle time of an elementary circuit (i.e. equation (24)).

Let us first consider an elementary circuit y over the period [0, r]. We use the following
notations :

Wp(r) : accumulated waiting time of tokens in place p during [0, r]

s¢(r) : accumulated service time of transition t during [0, r]

ny(r) : total firing initiation number of transition t during [0, r]

n(r) : maximal firing initiation number over the ones of all transitions in y

Since a token is either waiting in a place or is being used for the firing of a transition, the
following relation holds :

2 Wp(r)+ Yse(r)=M(y)r

pPeY tey (22)

Consider the following steady state performance index :
Wp = lim Wpr) /n o(r)
where p° is the output transition of place p. wp is the average waiting time of tokens in p
between two firing of transition p°.
Since the event graph is strongly connected,

lim_ _ngr)/n() =1

From the ergodicity,
lim___r/n(r) =n(Mp and im__ _sy(r) / nr) = m,
Relation (22) can be rewritten as follows :

¥ Wp(r) npe(r) N Z s(r) ne(r) _ M(y)L

pey Np°(D) n(r) eyt n(0 n(r)
By letting r — oo, we obtam
2 wp+ th =M(7) 2(M)
PEY tey
thus:
D Wp+ Y my
n(Mj) = BEL =1 (23)

M(y)

In general, the RHS term of relation (23) is greater than the mean isolated cycle time of y
since it takes into account the the waiting time of tokens in y for tokens arrived from
outside in case of synchronization. The ideal of approximation is to remove this waiting
time.

For this purpose, we evaluate the accumulated waiting time of tokens in place p during
the firing of its output transition in [0, r]. We denote by Vp(r) this waiting time. The
following steady state performance index is then defined:
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Vp = limr_) w Vp(r) / npo(r)
Finally, the approximation is derived from equation (23) by replacing wy, by vp:
dvp+ tht o
a(Mp,7)~EEL =¥
Mor) =5t

5.3. A numerical example
We illustrate the heuristic algorithm by the following example. The strongly connected
event graph is presented in figure 1.

Fig. 1: A strongly connected event graph

The random variables Xj, X2, X3, X4, X5, X¢ are assigned to the transitions t1, tz, t3, t4, t5
and te respectively. Their distributions are the following:

| .
X1: f1 (%) = ¢1/10if x € [0, 10]
11 69 iO otherwise

Xa: f2 (x) = { (1 /BT (@) . x* exp (x/P)if x 20
0 otherwise

a=2and B =5
X3: f3 (x) is the same as fp, but witha =3 and =1
X4 =5 (Constant)

Xs: f5 (x) = {10 exp (-10x)if x>0
0 otherwise

X6:P{Xe=3}=1/2andP(Xg=1)=1/2

We choose to minimize the following p-invariant criterion:
f (Mp) =3 x1 + X2 + X3 + X4 + X5 + Xg + X7 + X8 + 2 X9 + X10
where x; = Mo(p;) fori=1,2, ..., 10.

“©r
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We can see that C* = 10 and we choose C = 10.1. The optimal solution of the deterministic

problem consists in putting one token in each of the places p2, p3, ps, ps, p9, and p1o. For this
solution, the mean cycle time of the stochastic problem is 12.39 and the p-invariant is equal
to7.

The following steps are given in table 1.

Table 1: Steps of the second stage

Steps Put one more token in Mean cycle time Value of the p-invariant
1 P10 10.76 8
2 p7 10.63 9
3 ps 10.52 10
4 P2 10.12 11
5 p3 10.09 12

Finally the optimal marking Mg which leads to an average cycle time less than 10.1 and to
a value of the p-invariant which is as small as possible is My =(0,2,2,1,1,0,1,1, 1, T,

6. CONCLUSION

Three different issues: the performnce bounds, the cycle time reachability and the
marking optimization, have been addressed. We first propose an upper bound and a lower
bound for the average cycle time which have been proven tighter than the existing bounds.

The most important result is that it is always possible to reach a mean cycle time as close
as possible to the greatest mean firing time using a finite marking, assuming that a
transition cannot be fired by more that one token at any time. This result holds for any
distribution of the transition firing times. We also establish the necessary and sufficient
condition for the reachability of the greatest mean firing time.

An efficient heuristic algorithm has been proposed to reach a given cycle time at a low
cost (i.e. with a low value of the p-invariant criterion).
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