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Abstract

We consider the problem of planning motions of a simple legged
robot called the spider robot. The robot is modelled as a point
where all its legs are attached, and the footholds where the robot
can securely place its feet consist of a set of n points in the plane. We
show that the space F of admissible and stable placements of such
robots has size ©(n?) and can be constructed in O(n?logn) time
and O(n?) space. Once F has been constructed, we can efficiently
solve several problems related to motion planning.

Keywords: Spider robot, Legged robot, Motion planning

Résumé

Nous considérons le probléme de la planification de trajectoires pour
un robot a pattes simple que nous appelons le robot araignée. Le
robot est modélisé par un point ou toutes les pattes sont accrochées,
et les points d’appui ot le robot peut poser ses pattes en toute sécu-
rité consistent en un ensemble de n points du plan. Nous montrons
que l’espace F des placements admissibles et stables pour un tel
robot a une taille ©(n?) et peut étre construit en temps O(n?logn)
en utilisant O(n?) mémoire. F étant construit, on peut résoudre
efficacement certains problémes de planification de trajectoires.

Mots-clés : Robot araignée, robot a pattes, planification de trajec-
toires.



Figure 1: The spider robot problem

1 Introduction

Although legged robots already exist, until now researchers have been more
interested in their dynamics and their control (see general references[RR90,
RR84]) than in motion planning problems : the literature on the topic is almost
nonexistent and we are aware of only a very few papers that consider the problem
of planning the mouvement of the legs of a legged robot moving amidst obstacles
and dangerous areas|[HNKU84, HK91].

The robot we consider here is a simple legged robot, called a spider robot.
The body is a single point; a number of segments (the legs), whose lengths may
vary within bounds, are attached to the body (see Figure 1). This model has
been inspired by the Ambler,[BHKT89] a legged robot developped at Carnegie
Mellon University.

The constraints on the robot motion are of two types; first, the robot feet
have to rest on reachable footholds (feasibility constraint) and, second, each
position of the robot must be stable (stability constraint). In this paper, the
footholds are points in the plane and we show that the space of valid configura-
tions, that is the set of all the positions of the robot body for which there exists
a feasible and stable placement of its feet, has size ©(n?) where n is the number
of predefined footholds. Next we give an algorithm that computes this subset
of the plane in time O(].A|logn) and O(|.A|) space. |A| is the size of a certain
arrangement of n circles, which in the worst-case is Q(n?), but in most realistic
situations will be O(n). This set of stable configurations can readily be used to
decide whether or not there exists a feasible and stable path between two given
placements. It can also be used in combination with 4 to compute a sequence
of stable placements for the feet along that path.

The paper is organized as follows: in the next section, we introduce the



necessary definitions for the robot and we make precise the problems to be
solved. In Section 3, we study the space of feasible and stable configurations
and give a tight bound on its complexity. Section 4 presents the algorithm that
computes the space of stable configurations. Applications of the present work
to solve several motion planning problems and some concluding remarks are
mentionned in the last two sections.

2 Definitions

The body of a spider robot is a single point and will be denoted G; each
foot of the robot can reach the points of the plane inside the disk of radius R
centered at G: this disk is called the range of action of the robot. If ¢ is a point
in the plane; D(g¢) denotes the closed disk of radius R centered at q.

The footholds where the robot feet can stay safely consist of a set M of n
points (the sites) of the Euclidean plane.

As the problem we consider is essentially planar, all figures, except Figure
1, will be drawn in the plane and we will assume that G is also a point of the
plane (we identify G and its vertical projection onto the plane).

2.1 Configurations and Placements

We call configuration of the robot a position of its body G. For a given config-
uration, we call placement of the robot a set of pairings between the robot feet
and some points of M. A placement is defined by Z, the set of resting legs and
by p; € M, 1 € T, the position of the feet. We will say that a placement is an
l-leg placement if |Z| = 1.

For a given configuration, a placement is said [-feasible if there is a set of
indices Z such that

VieI,d(G,p;) <R and |Z]>1 (1)

where d(A, B) is the Euclidean distance between two points of the plane. Equa-
tion (1) says that there must be at least [ sites in the range of action of the
robot.

A configuration is said to be [-feasible if there is an [-feasible placement for
this configuration. In Figure 2, configuration 1 is 3-feasible and configuration 2
is 4-feasible (the position of G is given by the black square).

Lastly, for a given configuration, a placement is said to be stable if the
following condition holds:

G e CH({pi,1 €T}), (2)

where CH(S) denotes the convex hull of S. As above, a robot configuration is
stable if there is a stable placement for the configuration (only configuration 1
is stable in Figure 2).



Figure 2: Two configurations

2.2 Paths and Motions

We call [-path of the spider robot, a continuous trajectory C of [-feasible con-
figurations; that is, for each position of G along C there must be a l-feasible
placement. A [-motion consists of a [-path C of G together with a sequence of
possible placements.

A stable path or motion is a path or a motion in which every position of the
robot body satisfies the stability condition 2.

It should be added that along an l-motion there could be configurations
where the robot has to change its placement: that is, without changing the
position of its body, it has to change the resting places of its legs. This is
possible if the robot has an [ 4+ 1th leg; with this additional leg, it can change
its resting sites while always keeping [ legs on the ground.

3 Feasible and Stable Configurations

3.1 Relaxing One Constraint

In this section, we show that the problem can be easily solved if only one con-
straint, the feasibility or the stability constraint, is considered.

Clearly, if we relax the feasibility constraint, the set of stable configurations
is the convex hull of the sites, which can be computed in O(nlogn) time.[PS85]

On the other hand, if we relax the stability constraint, the set of [-feasible
(not necessarily stable) configurations can be deduced from the order ! Voronoi
diagram. Indeed, for a given configuration G of the robot, there exists an [-
feasible placement as soon as the placement defined by setting ! feet on the [
nearest footholds is [-feasible.

More precisely, we compute the superposition of the order | and order I — 1
Voronoi diagram. For any point of a given cell V; of this diagram, the [ nearest
footholds are the same, say p;,, iy, ..., p;, and the furthest among these ones
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Figure 3: Stability region defined by S = {p1, pa, ps}

is a unique site p;;. Thus W; = V; N D(p;,) is the portion of V; consisting of
l-feasible configurations (all footholds can be reached as soon as p;, is reachable
since it remains the furthest foothold inside V;). The union W of the W; for all
the cells V; of the diagram is the whole set of [-feasible configurations. The sizes
of the order [—1 and ! Voronoi diagrams, as well as the size of their superposition
are O(nl) and they can be computed in O(nlogn + ni?) time.[Lee82, AGSS87]
Constructing W can be done within the same time bound.

Unfortunatly, the Voronoi diagram does not solve the problem of the stability
of the robot. It may happen that the nearest footholds placement is not stable
while there exists another placement which is both feasible and stable.

The rest of the section and of the paper will be concerned with both con-
straints.

3.2 Preliminary Results

The set {D(p),p € M} defines an arrangement A of circles.

The number of edges of A will be called the size of A and will be denoted
by |A4|. By slightly adapting standard techniques for line segments, A can be
computed in O(|.A|logn) time.[PS85]

For any S C M, |S| > 3, we call stability region defined by S the following
subset of the Euclidean plane:

R(S) = CH(S) N () D(p))- (3)

peS

Figure 3 shows the stability region defined by a subset of three sites.



Definition 1 F denotes the union of the stability regions associated with all
the subsets of M of cardinality 3:

F= U Rm. (4)
TcM

IT|=3
F is the set of stable 3-feasible configurations.
Lemma 2 For any S C M, with |S| > 3, we have
R(S)C F. ()
Proof. As is well known,

CH(S)= |J CH(D).

s
Thus
R(S) = (TCHTl_SCH(T)) ”(,QS D(p))
= UH R(T) N ( QTD@)
C _AU _ R(T)gfpe \
) res Tiries

The lemma shows that the complete information about stable regions is
contained in F. In particular, if there is no stable 3-leg placement, there is no
stable l-leg placement with [ > 3.

This is the reason why we shall focus our attention on set F and take [ = 3
in the sequel. However, this is not crucial and our analysis could be extended in
a straightforward way to the analysis and the construction of the set of stable
I-feasible configurations (I > 3).

Fi= U ®r@. (6)

In particular, Lemma 2 can be generalized and we can prove that for any

S C M, with |S| > {, we have R(S) C Fi.



Figure 4: An example of free space of a spider robot

The boundary of F, denoted by §(F), consists of a disjoint union of cy-
cles whose edges are arcs of circles C; = 6(D(p;)) and straight-line segments
belonging to lines passing through two sites (see Figure 4).

We shall classify the vertices of §(F) on the basis of their internal angle
(convez if the internal angle is less than m, concave otherwise) and on the basis
of their incident edges (SS for segment-segment, C'C' for circular arc-circular-
arc, and SC for segment-circular arc).

It follows from Equation (3) that, for any point  of the interior of a cell T' of
A, the set M N D(z) of sites inside D(x) is invariant. This set will be denoted
St and R(Sr) will be denoted R(T'). We denote A; the set of cells T of A such
that |Sp| > [.

Lemma 3 Let I' be a cell of A3. We have

FAT =R(I)NT.



Proof. From Lemma 2, we have
R()NT C FnNT.

Conversely, assume that z € F N ['. Then, by definition, there exist three
sites p1, p2, and ps, such that

€ R({p1,p2,ps})NT

As the disks D(p;) (i = 1,2, 3) cannot intersect the boundary of T' transversally,

R({p1,p2,p3}) CR(),

which proves the lemma. O.

Corollary 4 Fach SS vertex of §(F) is a site p € M.

Proof. Let u be an SS vertex of §(F), intersection of two straight-line
edges. If u belongs to region I' of A, then, by Lemma 3, u is a vertex of R(T)
and by Equation (3), u must be a vertex of CH(Sr) that is a site in ' C M.
We can also remark that every SS vertex is convex. 0O.

Corollary 5 The vertices of 6(F) either are sites or belong to the boundary of
a cell of the arrangement A.

Proof. We already know that SS vertices are sites. On the other end, if
a vertex is not an SS vertex, then it is defined by at least one arc of circle and
thus belongs to the boundary of a cell of 4. 0O.

3.3 Complexity of §(F)

Lemma 6 Any edge of the arrangement A contains at most four SC wvertices.

Proof. Let circular arc C' be an edge of A contained in m > 3 disks and
let ¢ be the center of the circle containing C. There is a unique maximal subset

S C M with ¢ € S and |S| = m such that

cc () D). (7)

p€S
Let P = CH(S). If we define S’ = S — {¢} and P’ = CH(S’), Equation 7
implies that
cc () D (8)
peSs’

and thus, if m > 3,
CNnP CcR(S)CF. (9)
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Figure 5: Mixed vertices on C

Let p; and ps be the two points of P’ belonging to the two lines passing through
q and tangent to P’. Then, if T is the triangle ¢, p1, p2, we have

CNT CR({g, p1,p2}) (10)

From Equations 9 and 10, we deduce that an SC vertex on C' is either an
intersection between C' and P’ or an intersection between C' and 7' (specifically,
an intersection between C' and either of the supporting segments joining ¢ to
P).

We consider first the case of an intersection between C and P’. Let L be the
polygonal chain consisting of all the common edges of P and P’ (p; and py being
its two end points). We claim that, if |S’| > 3, none of the intersections of L
and C can be an SC' vertex of §(F). Indeed, let u be one of those intersections
and consider a point r on C' sufficiently close to u :

o if r ¢ P, (r1 in Figure 5) it cannot correspond to a stable placement of
the robot since the only sites of M which are in D(r) are contained in S
and r is external to the convex hull of S, thus r ¢ F;

e if r € P, (2 in Figure 5) then r is a stable configuration and there exists a
placement that does not involve ¢ since P’ has at least three vertices. Thus
7 is in the interior of F and C' cannot be an edge of F in the neighborhood
of u.

Let us now consider the polygonal chain of P’, called Ly in Figure 5. Its
intersections with C' can actually be SC' vertices but simple considerations of
convexity show that there are at most two such vertices. As for the supporting



segments gp; and gps, each can contribute at most one SC' vertex, there is at
most four SC' vertices of §(F) on C.

In the case where |S'| = 2 then C'NT # () and its portions belong to §(F).
This intersection is composed of one or two circular arcs and gives two or four
SC' vertices.

In each case, we can conclude that C contains at most four SC' vertices. 0.

Now that we have bounded the number of mixed vertices lying on each arc
of A, we can state the following theorem where |A| denotes the size of A.

Theorem 7 The geometric complezity of 6(F) is O(|A]).

Proof. The vertices of §(F) are sites (O(n)), or vertices of A (O(]A])),
or SC' vertices (O(|A|) from Lemma 6). Since, §(F)contains as many edges as
vertices, the same bound O(].A|) holds for the number of edges of §(F).

This bound is tight as is shown by the following example. 0O.

3.4 Worst-case Size Example

In the worst case, the complexity of A is Q(n?). We exhibit in this section an
example of a configuration set F of size Q(n?).

Put % sites at the vertices of a regular polygon P’ and 3 other sites py, . . . iy 2
at the vertices of a larger regular polygon P with the same center as the first
one. (Figure 6a. It is possible to choose the diameters of the polygons such that

o the size of the portion of F called F;, contained in D(p;) is Q(n)
fori=1,...

n
2

bl

e the F; are disjoint.

This last condition is ensured by the following construction (refer to Figure
6b. If 2¢ is the diameter of P’ and p; is at a distance 2R — ¢ from the center O
of P', F1 has a diameter smaller than 2¢ and crosses the circle C' of center O
and radius R. F; does not intersect Fy if the disk D(p2) is digjoint from F;.
This is possible by placing ps at a distance O(e) from p;, as shown in Figure
6b. By repeating this construction, we obtain a set of stable configurations of
size Q(n?).

In this example, F has Q(n) connected components, each of size Q(n) but
it is easy to slightly deform the figure so as to connect all the F; and obtain
a connected component of F of size Q(n?). Thus, in the worst-case, a single
component of F may have size Q(n?).

This example can also be adapted to reach the bound O(|.4]) of Theorem 7
for |A| = o(n?). For example by choosing |P| = O(1 + l":i) and |P'| = O(n).

However, these worst case examples will not be encountered in most practical
situations and much better bounds are to be expected. In order to illustrate
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Figure 6: Construction of O(n?) configuration space

this point, let k& be the maximum number of disks of {D(p),p € M} that can
cover a point of the plane. k& will be called the density of the footholds. Clearly
k is not larger than n and in case of sparse footholds, it is a constant that does
not depend on n. It can be shown that |A] = O(kn) [Sha9l]. Thus, in case
of sparse footholds, the sizes of 4 and F are linearly related to the number of

footholds.

4 Computation of 6(F)

Our algorithm is based on Lemma 3.

First, we construct the arrangement .4 of the circles slightly adapting a
standard O(].A|logn) time algorithm.[PS85]

We then have to intersect each cell with its stability hull i.e. the convex
hull of the centers of the disks covering the cell. Note that we do not need to
recompute the entire hull for every cell since the sets of covering disks of two
adjacent cells differ only by one element. To exploit this property, we have to
use a convex hull algorithm that can handle insertions and deletions. As in fact

10
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Figure 7: Construction of F

everything is fixed and known from the beginning, we will use the algorithm for
offline maintenance of convex hulls of Hershberger and Suri.[HS91]

Suppose we are in a cell A; of the arrangement and that we know, from the
convex hull maintenance algorithm, the stability hull P; of A;. Let Ay be a cell
adjacent to A, so that their common arc C' turns its concavity towards A, (see
Figure 7) and let ¢ be the center of the circle containing C'. The stability hull
P; of Az, which is CH(P;U{q}), is computed in O(logn) time using the convex
hull maintenance algorithm which also provides the following informations:

e the polygonal chain Ls whose edges are edges of P; and not of Ps,
e the two suporting lines s; and s; from ¢ to P;.

The situation shown in Figure 7 is similar to the one in Figure 5: as before the
SC vertices belonging to C' can only lie on L;, s; and sy. Here L; denotes L
if Ly is a line segment and Ly otherwise. The search on s; and sy can be done
in constant time; on the other hand, since C' and L; intersect at most twice,
by binary search, we can locate the intersections between C' and L; in time
O(logn).

Once we know, for a given cell, the SC' vertices lying on its boundary and
its stability hull, we can easily paste these informations to get the portion of
8(F) in the cell. Repeating this construction during the traversal of A gives the
entire §(F).

Theorem 8 The boundary of F can be computed in time O(|A|logn) and space
O(lA]) -

11
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Figure 8: The trapezoidal decomposition of F

Proof. TFor each cell of A we need O(logn) time to update the convex hull
and O(logn) to compute the SC vertices on each arc. The construction of F
from these items can then be done in time proportional to the size of F, which
is O(|A]). O.

Furthermore, F can be decomposed into trapezoids with no overcost : trape-
zoids are obtained by extending from each vertex of F a vertical line and keeping
the portion that is included in F and contains the vertex. See Figure 8 for the
trapezoidal decomposition of the example of Figure 4.

5 Applications

5.1 Placements

Question 1 : For a given configuration, does there exist a feasible and stable
placement ?

To answer the query, we have to decide whether or not G lies in F. The
problem reduces to locating G in the planar map F. As a location query in a
planar map of size m can be done in time O(logm) after a preprocessing that
requires O(mlogm) time and O(m) space,[PS85] we have

Theorem 9 There exists a data structure such that, for a given position of the
body G of the robot, we can decide if there exists a stable placement in time
O(logn). The data structure requires O(|F|) space and can be constructed in
O(|F|logn) additional time, once F has been computed.

Question 2 : For a given feasible and stable configuration G, find a placement.
We first determine the cell I' of A which contains G. Let Sr be the set of
sites whose disks cover T'; C H(Sr) their convex hull and # any point of Sp. We

12



determine the edge yz of C H(Sr) which is intersected by the ray issued from z
and passing through G. zyz is a feasible and stable placement.

In order to construct C'H(Sr), we use a data structure proposed by Her-
shberger and Suri[HS91] that allows to search in history. This data structure,
which is similar to the one used for constructing F, stores in an implicit way
all the CH(Sr) for the different cells I' of A. The data structure can be con-
structed in O(|A| logn) time and uses O(]A|logn) space. Constructing C'H (Sr)
and finding edge yz can then be done in O(logn) time.

Theorem 10 There exists a data structure such that, for a given feasible and
stable configuration of the robot, we can compute a stable placement in time
O(logn). The data structure requires O(|.A|logn) space and can be constructed
in O(|A|logn) time.

5.2 Paths

Question 3 : For two given stable configurations, does there exist a stable path
joining them ?

To answer the query, we have to decide whether or not the two configurations
belong to the same connected component of 7. Plainly, this can be done within
the same bounds as for Question 1.

If one wants to construct the path, it suffices to look for a path inside F,
which can be done in time O(|F|logn) and space O(|F]).

More precisely, we search a path in the adjacency graph of the trapezoidal
map of F using breadth first search. This yields a sequence of adjacent trape-
zoids of F, such that the first one contains S, the last one contains A and each
trapezoid of F appears at most once in the sequence.

Theorem 11 There exists a data structure such that, given two configurations
S and A, we can decide if there exits a stable path joining S and A in time
O(logn). The data structure requires O(|F|) space and can be constructed in
O(|F|logn) additional time, once F has been computed. Constructing such a
path can be done within the same bounds as the preprocessing.

It remains to find the sequence of placements along that path. This will be
considered in the next section. We will need the additional result

Proposition 12 Any stable path followed by the body of the robot intersects the
trapezoids of A O(k|A|) times, if k is the density of the footholds.

Proof. Each trapezoid of A that is covered by k disks is decomposed into

O(k) subcells by the convex hull of the k centers of the disks and thus into O(k)
trapezoids of F. 0O.

Question 4 : For two given configurations belonging to the same connected
component of F, find the shortest stable path joining them ?

13



Figure 9: Crossing of a trapezoid

One may be interested in computing a shortest path for the body of the
robot. We observe that a shortest path C is a succession of straight line-
segments: indeed, the portions of C inside F are obviously line segments and,
since each curved edge of §(F) is inner convex, only straight edges of 6(F) can
appear as parts of C. As a consequence of this observation, we can compute a
shortest path inside F by means of any known algorithm for computing a short-
est path inside a polygonal region, for example the ones based on the visibility

graph. By the result of Welzl [Wel85] C can thus be computed in O(|F|?) time.

Theorem 13 There exists a data structure such that, given two configurations
S and A belonging to the same connected component of F, we can compute the
shortest stable path joining S and A in time O(|F|?).

Before we give the algorithm for the actual computation of the motion, we
show that a shortest path C C F, between two stable and feasible configurations
S and A4, is a stable path with the property that the path intersects only O(].A|)
trapezoids of \A. (this result is to be compared with Proposition 12).

Proposition 14 The intersection of a shortest path with any trapezoid of A
consists of at most three line segments.

Proof. Recall that each trapezoid of the trapezoidal decomposition of A
is limited above and below by an arc of circle and on the left and on the right
sides by vertical line segments (Figure 9).

We will show that given two points @ and b of C' belonging to the same
trapezoid T' of A the portion of a short path between a and b is the line segment
ab. This, in particular, holds when a is the point where C' enters for the first
time 7" and b is the point where C' exits 7" for the last time. The claim then
follows from the fact that the intersection of a segment and a trapezoid consists
of at most three segments (see Figure 9).

14



Let P be the convex hull of the centers of the disks covering 7" and let D be
the intersection of the disks covering T'. Since P and D are convex, ab C P and
abCT. Thusab C F. 0O.

5.8 Motions

Question 5 : Once a stable (possibly shortest) path C has been found, find a
corresponding motion.

The motion planning problem is solved by computing the sequence of leg
placements as the robot body G moves along C in the trapezoidal map of A. As
four legs are always sufficient to find a stable motion if one exists, we assume
in this paragraph that the robot has four legs.

We call critical placement a placement such that G cannot go further along
C with the same footholds. There are two types of critical placements. A critical
placement of Type 1 occurs when the stability condition does not hold any more
because G crosses an edge of the current stability polygon (i.e. the convex hull
of the footholds actually used by the robot). The second type occurs when one
of the resting legs cannot extend further because GG is on a circle whose center
is an actual foothold Type 2.

Let G be a critical configuration of C and let P be the convex hull of the
sites contained in the disk D(G). We show how to pass the two types of critical
placement.

The first type of critical placement is the simplest to deal with: we have
to put the free leg on a site ahead, in the direction of C and to lift a back leg
(i.e. a leg whose foot is not on the edge paps where G is : p; in Figure 10).
More precisely, we compute (in time O(logn)) the intersection of P and C and
from this point we find the first vertices of P in counterclockwise (p4 in Figure
10) and clockwise order (ps). We assume here that py and ps are distinct from
p2 and ps ; the other cases can be easily deduced from the discussion below.
While keeping GG at the same point, the free leg is put on ps, the leg on p; is
lifted and the robot body can then go on along C in the triangle py, ps, ps until a
new critical placement occurs. If the robot reaches the boundary of the triangle
P2, P3,Ps, it can make similar leg moves : now the free leg is moved to pa4, the
back leg in ps is lifted and the motion is continued in the triangle ps, pa, ps.
Otherwise the robot has reached a critical placement of type 2. In both cases
we claim that the robot has crossed a new trapezoid of A : when the robot has
got two legs on the end points of an edge paps of P, the stability polygon must
have changed which means that we have crossed an edge of A, since we know
the motion go ahead.

Suppose now that the robot placement is such that one of its legs is at
maximal extension: G is on the circle C'(p1). Let P’ be the polygon obtained
from P by deleting the critical site p;.

Let the actual placement be p1, pa, p3, with G € C(p1). We check in O(logn)
time if there exists a vertex ps of P’ such that G is contained in the triangle
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Figure 10: Exit from a stability-limit placement

P2, P3, P4 (i.e. there exists a vertex of P’ in the cone defined by G and the two
lines s; and s3: Figure 11.a). If so, we put the free leg on p4 and lift the back
leg on p;. The motion then can go ahead until a new critical placement occurs.

Otherwise, call pq, ps the vertices of P’ lying on the line issued from p; and
tangent to P’ and let L; be the polygonal chain from p4 to ps whose edges are
edges of P’ but not of P (Figure 9.b); on the chain L; we can perform a double
binary search to find in O(logn) time two consecutive vertices p and ¢ such that
the triangle ps, p, ¢ contains G. It is clear, that p or ¢ is on the same side of the
line passing through ps and p; as ps. Assume that this point is p. Then, since
G € pspq but G € pspag, it is plain to observe that G must belong to triangle
pp1pP3-

The robot moves as follows: first the free leg is moved to p, the leg in p» is
put on ¢, and then the back leg (resting in p;) is lifted. The motion can then
go on until a new critical placement occurs.

We have shown how the robot can pass a critical placement along the path
C: the complexity of the total traversal is given by the next theorems

Theorem 15 A robot motion joining two given placements can be computed
in O(k|A|logn) = O(k?nlogn) time, if k is the density of the footholds. The
motion consists of O(k|A| = k%n) leg moves.

Theorem 16 A robot motion along a shortest path joining two given place-
ments can be computed in O(|F|* + |A|logn) time. The motion consists of
O(|A|) leg moves.

Proofs. For each critical placement we can find the new placement along
C in time O(logn) since each search on the polygons can be done by binary
search; in addition we have to compute dynamically the new convex hull at
each intersection between C and an arc of A, which can be done in O(logn)
time for each intersection using an offline dynamic algorithm.[HS91] Since, by
Proposition 12 (resp. 14) C crosses a given trapezoid of A only k (resp. a
bounded number of) times, the convex hull maintenance is invoked at most
O(k|A]) (resp. |.A|) times. Lastly we have to know how many critical placements
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(b)

Figure 11: Exit from a maximal extension placement

occur along C: leg maximum extension placements occur at most each time the
trajectory crosses an arc, that is O(k|.A|) (resp. |A|). If we are in a stability
limit placement, we have shown above that after at most two new placements
we have to cross an arc of A: thus the same bound applies to this case.

Our placement strategy gives an upper bound on the number of leg moves:
we have seen that for crossing each trapezoid we need at most two leg changes.
Thus in total the robot performs at most O(k|.A|) (resp. |A]) leg moves. O.

6 Concluding Remarks

Moreover, |F| is usually much smaller than |A|, even when A has quadratic
size. It would be interesting to have an algorithm that construct F in time
proportional to the actual size of F, preferably to the size of A.

A natural extension of the present work is to study other legged robots, for
instance robots whose legs are attached at different points of the (no longer
ponctual) body. For a given orientation of the robot, we can extend some of our
results. We associate to each leg a color and color the footholds that a given
leg can reach with the color of the leg (a foothold may have several colors).
The definition of the stability region (Equation 3) must be modified : the role
of the convex hull CH(S) is now played by the union of the triangles whose
vertices have distinct colors. It can be shown that such a union has linear size
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and can be computed in optimal O(n logn) time.[BDP91] It follows that F has
size O(n|A|) and can be computed in O(n|A|logn) time. We do not know if
these bounds are tight.

Further extensions under consideration will allow these robots to rotate, thus
adding a third degree of freedom.

It would also be interesting to consider a more general setting involving 3-D
space, obstacles and more complex footholds.
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