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Abstract

We consider linearly elastic shells whose middle surfaces have the most general geome-
tries, and we provide complete proofs of the cllipticity of the strain energies found in two
commonly used two-dimensional models : Koiter’s model and Naghdi’s model.

THEOREMES D’EXISTENCE POUR DES
THEORIES BIDIMENSIONNELLES LINEATRES
DE COQUES

Résumé

Nous considérons des coques élastiques linéaires dont les surfaces moyennes ont les formes
les plus générales possibles, et nous donnons les démonstrations completes de ellipticité des
énergies de déformation des deux modeles les plus couramment utilisés : le modele de Koiter
et le modele de Naghdi.

! This work is part of the Project “Junctions in Elastic Multi-Structures” of the Program
“S.CI.LE.N.C.E.” of the Commission of the European Communities
(Contract n° SC1 #0473 — C(EDB)).
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INTRODUCTION

Establishing existence theorems for two-dimensional linear shell theories poses considerable
more difficulties than for plates, the added difficulties stemming from the “geometry” of
the middle surface of the shell under consideration. In each case, the key step of the proof
consists in establishing the ellipticity of the associated bilinear form, also called the strain
energy, over an appropriate functional space ; then the existence and uniqueness of the so-
lution follow from the Lax-Milgram lemma.

In addition to its mathematical interest per se, such an existence result in the linear
case is an indispensable tool for establishing existence theorems for two-dimensional nonlin-
ear shell theories via the implicit function theorem, and error estimates for the numerical
approximation of the solution, usually by finite elements (cf. Bernadou & Boisserie {1982],
Ciarlet [1978]).

In this paper, we consider shells whose middle surfaces have the most general “geome-
tries” and we provide complete proofs of the ellipticity of the strain energies associated with
two commonly used models in linear two-dimensional shell theories : Koiter’s model, and
Naghdi’s model. We do not discuss here the validity of these models, nor their relative
merits ; we simply indicate in each instance according to which guidelines the model under
consideration can be derived.

After a brief review in Sect. 1 of those notions of differential geometry that will be subse-
quently needed, we first consider in Sect. 2 Koiter’s model, named after Koiter {1966,1970].
The ellipticity of its associated strain energy was first established in Bernadou & Ciarlet
[1976], by means of a proof that was substantially “technical”. We use here a different,

and simpler approach, first announced in Ciarlet & Miara {1991] (see also Ciarlet & Miara
(1992a)]).

The main novelty consists in using a crucial lemma of J.L. Lions, which allows for consid-
erable simplification and “transparency” ; in particular, the proof is now more reminiscent,
apart from all the technicalities due to the “geometry” of the middle surface of the shell, of
the proof of Korn’s inequality given in Duvaut & Lions [1972] (and which also relies on the
same lemma of J.L. Lions). Note however that we retain one essential step from the former
proof of Bernadou & Ciarlet [1976], namely the rigid displacement lemma (cf. Lemma 2.5).

To our knowledge, the first instance where the same lemma of J.L. Lions was used in
connection with a “genuine” shell theory (i.e., neither in three-dimensional elasticity nor
in two-dimensional plate theory) was for establishing a generalized Korn’s inequality that
plays a key role in the proof that the three-dimensional solution of a specific class of shallow
shell problems converges to the solution of a two-dimensional problem (cf. Ciarlet & Miara
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[1992b]) as the thickness of the shell approaches zero.

While Koiter's model belongs to the family of Kirchhoff-Love theories, thus named after
Kirchhoff [1876] and Love [1934], different mathematical models for shells that rely on the
theory of Cosserat surfaces (cf. Cosserat & Cosserat [1909]) have been proposed by Naghdi
[1963,1972]. We then show in Sect. 3 that a similar use of the lemma of J.L. Lions, together
with another rigid displacement lemma, due to Coutris [1978], again yields the proof of the
ellipticity of the corresponding strain energy (this approach was also announced ir} Ciarlet

& Miara [1991]).

Various other strain energies have been proposed for modeling linearly elastic shells,
and their ellipticity has been accordingly studied by various authors. In this respect, we
notably mention Rougée [1969] for cylindrical shells, Gordeziani [1974] for the shell model
proposed by Vekua [1965], Shoikhet [1974] for the shell model proposed by Novozhilov [1970],
Bernadou & Lalanne [1985] for the shallow shell model proposed by Koiter [1966, egs. (11.43)
and (11.44)], Ciarlet & Miara [1992b] for the linearized Marguerre-von Karman shallow shell
model.

A very interesting “limit analysis” of Koiter’s model when the thickness approaches zero
has been recently given by Sanchez-Palencia [19892,1989b]. It in turn serves as a basis for
a new approach for the derivation of two-dimensional shell models from three-dimensional
elasticity (cf. Sanchez-Palencia {1990]), which significantly complements the pioneering work
of Destuynder [1980,1985] ; see also Ciarlet [1992a,1992b)].

Two essentially different limit models are then found, according to the geometry of
the middle surface of the shell and the imposed boundary conditions : either a bending-
dominated model, or a membrane-dominated model. While the proof of the ellipticity of
the bending-dominated model is a simple corollary of that of Koiter’s model, proving the
ellipticity of the membrane-dominated model poses considerable difficulties ; in this direc-
tion, see Geymonat & Sanchez-Palencia [1991] in the “uniformly elliptic” case, and Piila &
Pitkaranta [1992] in the “parabolic” case.

It is worth noticing that, by contrast, no such restrictions on the geometry of the middle
surface (we only assume that the mapping that defines it is smooth enough) or on the
boundary conditions (we only assume that they are imposed on a set of strictly positive
length) need be imposed in the two models that we are considering here.

1 GEOMETRY OF THE MIDDLE SURFACE OF THE SHELL

Among the many references about the differential geometry of surfaces, those of Valiron
[1950], Green & Zerna [1968], Naghdi {1972] and Bernadou & Boisserie [1982], are particu-
larly appropriate for our purposes.

In what follows, Grecek indices and exponents always belong to the set {1,2}, while Latin
indices and exponents (unless they are used to index a sequence) always belong to the set
{1,2,3} ; the summation convention is also systematically used ; finally we assume that an
origin and an orthonormal basis (e;) are given once and for all in the Euclidean space, which



will be accordingly identified with R°.

Let w denote a two-dimensional bounded open connected set ; we assume that its bound-
ary 7 is Lipschitz-continuous in the sense of Negas [1967]. Let (z!,z?) denote a generic point
. - 2
in the set @, and let 0, = 32, Oup = 5257

We shall consider a shell, whose middle surface S is the image of the set @ through a
mapping ¢ = ¢'e; : ©® — R> ; we assume once and for all that the mapping ¢ is injective,
of class C3, and that the two vectors

(1-1) Ao = Oap = (aa‘Pi)ei

are linearly independent at each point (z',z?) € @. This being the case, the two vectors
a,(z',z?), which are tangent to the coordinate curves passing through the point ¢(z!, z?)
(the coordinates curves are the images through ¢ of the portions of the lines “z* = constant”
that are contained in the set @), span the tangent plane to the surface S = ¢(@) at the
point o(z',z?) (cf. Figure 1.1) : they form the covariant basis of the tangent plane at that
point.

€

Figure 1.1 : At each point of the middle surface S = (@) of the shell, the vectors
ay = Oap, o = 1,2, form the covariant basis of the tangent plane, the vectors a®
defined by a®.asg = 63 form the contravariant basis of the tangent plane and the
vector a® = a3 = ﬁi—:ﬁ is normal to the tangent plane. The vectors a;, ¢ = 1,2, 3,
form the covariant basis, and the vectors a' form the contravariant basis, at the
same point.

Remarks : (1) The assumption that ¢ is of class C* is needed to insure that the functions
0,b} appearing in (2.7) are continuous on @.

(2) The tangent plane to S at ¢(z!,2?) is in fact the affine plane that passes
through o(z!,z?) and that is parallel to the two vectors a,(z!,z?), i.e., it is a translated
plane. To avoid cumbersome statements, we shall not however make explicit mention, here



or subsequently, of such translations. [ |

Let u.v denote the Euclidean inner product of two vectors u € R® and v € R?, let |.|
denote the associated Euclidean norm, and let u x v denote the vector product of u and v.
At each point (z!,z?) € @, we define the vector

X
12) p gt BLXA
|a1 X a2|

The vectors a, defined in (1.1) and the vector a; thus define a basis at the point (2!, z?),
which is called the covariant basis at that point (cf. Figure 1.1).

We also define at each point ¢(z!,2?) two vectors a® of the tangent plane by the relations

(13) a“.aﬁ = 53,

where 63, and 6} in (1.4) below, denote the Kronecker symbol. The vectors a” defined in (1.3)
form the contravariant basis of the tangent plane and the vectors a* defined in (1.2)-(1.3)
form the contravariant basis, at the point considered. Note that they satisfy

(1.4) a'.a; = 6,

(1.5)  a, x ag = gopa’, a” xa’ =¢°
where (a is defined in (1.8)) :

(1.6 C=va( L o) =2 (5 0):

The first fundamental form, or metric tensor, (aqsp) of the surface S is defined by

a3, a3 xag=c¢eg,a’, a’>xa’=clq,

(1.7) Uoj = Upe = Ag.3g = Oap' gy’

(it is used for evaluating length of curves on S). Note that by assumption, the determinant

(1.8) a = det(a,g)

1s > 0 in @ ; hence there exists a constant ag such that

(1.9) a(z!,z?) > ag > 0 for all (2!, %) € @.

The area element dS along S is then given by

(1.10) dS = Jadz'dz?.
We also let
(1.11) a®? = a%.aP,

so that the matrix (a*#) is the inverse of the matrix (a4s) defined in (1.7).
The second fundamental form (byg) of the surface S is defined by
(1.12) bag = bga = a;;.@aag = —ao,.aaag

3



(it is used for measuring the curvature of the surface). We also let

(1.13) W = a?b,,.
The third fundamental form (c,g) of the surface S is defined by

(114) Caf = CBRa = bgbpg = bapbg.

The Christoffel symbols I', 5 of the surface, which are defined by
(1.15) IV =I5, = a”.0pa,,
are used for computing covariant derivatives : For instance, let

naacx = no‘aa

be a surface vector field ; then the functions

(1.16) Mot = Ila = Liplios 1%|s = 0™ + Lopn?,

are the covariant derivatives of the vector field. Likewise, let T,s and T°° denote the
covariant and contravariant components of a surface tensor field ; then the functions

(117)  Taplp = Tas — 03, Top — T5,T0e,  T°°|, = 9,7°° +T2,T°% + T8 T,

are the covariant derivatives of the tensor field. Note that, in particular

(118) 5aﬁ|p = 07
where (°P) is the tensor defined in (1.6).

If T, s are the covariant components of a symmetric surface tensor, its mixed components
T? = aP?T,, are unambiguously defined, and their covariant derivatives are given by

(1.19) T8, =0,T? + T2 17 —1° TP

po* o apto

The covariant derivatives of the mixed tensor (4°) defined in (1.13) satisfy in addition the
following symmetry relations

(1.20) v, = 2.,

which themselves follow from the Mainardi-Codazzi identities

(1.21) baglp = bapis-

Let next

it = n'a;
be a vector field defined along the surface S ; then its partial derivatives are given by (recall

that az = a®, and note that 73 = 5°) :

da(mia’) = (Npja — bapns)a® + (Oans + bing)a’
(1.22)
= (n°s = ¥ns)ag + (8an® + bapn®)as.
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Relations (1.22) themsclves follow from the formulas of Gauss :

(1.23) Opas = I'lza, 4+ bapas, Jpa® = —T'5,a” + bjas,

and Weingarten :

(1.24) 80,33 = —bgap.
Note that

(1.25) (T o)l = (T*g)no + T*(np1),  (T4m,)ls = (TZ16)n, + T5(M18),

i.e., covariant derivatives are computed in these cases according to the same rule as if they
were “usual” derivatives (we assume here that (7,z) is a symmetric tensor, so that we can
-use (1.19)).

Since the covariant derivatives 143 are themselves the components of surface tensors,
their covariant derivatives

(1.26) Molas *= (Mpla)la

can themselves be computed according to formulas (1.17). The functions 7,5, as defined
in (1.26) are called the second covariant derivatives of the vector field n,a®. Note in this
respect that the second covariant derivatives 7,3 and 1,3, do not commute in general ;
instead, one has

(1.27) MplaB — Mplfa = bpﬁbgna - bpabgna-

Likewise, since the functions

(1.28) Male = 0°]a = Jan3

are the components of a surface tensor, their covariant derivatives are given by
(1.29) 316 = (M31a) s = apmis — Toppna = N3y

2 EXISTENCE THEORY FOR KOITER’S MODEL

Let the surface S = ¢(@) be defined, and let the notation be the same, as in Sect. 1. A
shell, with middle surface S, and with thickness 2¢ > 0, is an elastic body whose reference
configuration is the closure of the set :

Q= {(p(a',2%) + 2a5(a",2%) € R (@), 2°) €w. 2% <€)
In order to be in a physically realistic situation, we assume of course that the mapping
& : (@ x [—¢,€]) = R® defined by H(a?,2%,2%) = p(a',2?) + 2%as(z!, 2?) for (2',2%,2%) €
(@ x [—¢, €]) is injective. Since the mapping ¢ : @ — R is smooth and injective by assump-
tion, this is the case if ¢ > 0 is small enough (cf. Ciarlet & Paumier [1986]).

For simplicity, we restrict our attention here to linearly elastic materials that are homo-
geneous and isotropic (and of course whose reference configuration is a natural state, so that

linearized elasticity is a meaningful approximation ; cf. e.g. Ciarlet [1988, sect. 6.2]), but it

T



should be noted that the extension to nonhomogeneous or to anisotropic materials poses no
difficulties other than technical.

We assume that the Lamé constants A and p of the material that constitutes the shell
satisfy

(2.1) A>0, >0,

these inequalities being suggested by physical evidence for actual elastic materials. The shell
1s subjected to applied body forces in its interior §2 and to applied surface forces on its upper
and lower faces

Iy = {(p(a',2%) + das(a),2%) € RY; (2',2%) €w, o° = e},

and it is clamped on a portion [y of its lateral surface, of the form :

IA‘O = {(‘P(‘rl"rz) + xaaS(xlaxz)) € Ra ) (zl,x'Z) € Yo, l$3| S 6}1

where 79 denotes a measurable subset of the boundary of w (this means that the unknown
displacement vector field is required to vanish on ['g). Finally, the shell may be also subjected
to surface forces along the remaining portion

[ = {(p(a!,2?) + 2a5(2*,2%) € R?; (2',28) €7, |28 < e}

where v; := v — 7o, of its lateral surface.

For each integer m > 0, we let H™(w) and |.||m. denote the usual Sobolev space and
norm ; in particular, if  is a real-valued function defined over w, we have

., 12 1/2
e = { P}, Molh = {2+ Sl

1/2
I llzw = {IIT/II?,W +3 ||aaanl|§‘w} ~

o3

We use boldface letters for denoting vector-valued fonctions and their associated function
spaces.

In his pioneering work on shells, John [1965,1971] has shown that, if the thickness is small
enough, the state of stress inside the shell is “approximately” planar, and that the stresses
parallel to the middle surface vary “approximately linearly” across the thickness. In Koiter’s
approach (cf. Koiter [1966,1970]), these approximations are taken as a priori assumptions
and combined with another a priori assumption, of a geometrical nature (cf. Koiter [1966,
pp. 15-16]) : any point that is situated on a normal to the middle surface remains, after
the deformation has taken place, on the normal to the deformed middle surface ; this is the
first part of the Kirchhoff-Love assumption, the second part asserting that, in addition, the
distance between such a point and the middle surface remains constant.

Taking these a priori assumptions into account, W.T. Koiter then shows that the dis-
placement field across the thickness of the shell can be completely determined from the sole



knowledge of the displacement field of the points of the middle surface S, and he identifies the
two-dimensional problem, i.e., posed over the two-dimensional set @, that this displacement

field should solve.

€

Figure 2.1 : In Koiter’s model, the three unknowns are the covariant components
G 1@ — R of the displacement {;a' of the points of the middle surface § = (@)
of the shell. The vectors a® form the contravariant basis of the tangent plane, and

1 2 .
a’ = ]%ri_:f[ ; cf. Figure 1.1.

More specifically, let (; : @ — R denote the three covariant components of the displace-
ment (;a' of the points of the middle surface S. This means that (;(z!, z?)a’(z!, 2?) is the
displacement of the point (!, z?) for all points (z!,2?) € @ ; cf. Figure 2.1. Then the
unknown

¢=(G)

solves the following variational problem, called Koiter’s shell model :

(2.2) (€ V(w)and B(¢,n) = L(n) for all n € V(w),

where the space V(w) is defined as (d, denotes the outer normal derivative operator along
v)

(2.3) V(w) = {n=((ns).13) € H'(«) x H*(w) ; 7 = d,n3 = 0 on 1},

where the symmetric bilinear form B is defined by :

24)  Bm=

w

3

with (cf. (1.11)-(1.15) for the definitions of the functions a®?, b,g, b2, cap, T4 and (1.16),
(1.19), (1.29) for the definitions of the covariant derivatives) :

{8aaﬁpa7pa(C)’70ﬁ(n) + 5— aaﬂpa Tpo(C)Taﬁ(n)} \/Edw’

(2.5) g = M

ofl  po ap, (o oo 3
= —qa "a + 2u(a®’a +a " a s ,



(

1
Yap(m) = 2 (Nags + MBja) — bapa
(2.6) <

i 1
= eap(n) — Fﬁgnp — bagna, with eqp(n) = 9 (Gang + 9pna),

\

[ Yas(M) = 13108 + 50 + Uon,08 + (D3]a)1, — Capns

(2'7} 4 = UopT3 — Piﬁaﬂh + bg(aanp - anﬂo) + bg(aﬁnp - FZgna)

+ (0abf + T72,65 — T3p05)m, — capns,

and where L is the linear form that takes into account the applied forces. The functions
Yop(n) and T,p5(7) are the covariant components of the linearized strain, and change of
curvature, tensors associated with an arbitrary displacement field i of the surface S. Note
that both tensors are symmetric, i.e.,

\

(2.8) Yo6(N) = Y6a(n) and Top(n) = YLpa(n),

the second equalities in (2.8) being in particular a consequence of the symmetry relations

(1.20). We refer to (1.8) and (1.10) for the meaning of \/a.

Remark : The linear form L takes the form

Lm)= [ pnvade + [ amdy+ [ m(@m+tno)dy, for all m € V(w)

Y1 1

where 4; = v — v, and where the vector fields p : w — R3, q:v; — R3 and (m®) : v; —» R?
are determined, through appropriate integration across the thickness of the shell, from the
knowledge of the given applied body forces in {2 and applied surface forceson 'y UT_UT;. B

Let

1/2
(2.9) Il () xH2(w) = {Z nall}. + IInallg,w}
x

denote the norm of an element 7 = ((14),73) € V(w), where V(w) is the closed subspace
of H!(w) x H?(w) defined in (2.3). We now establish that the bilinear form B is elliptic
over the space V(w) if assumption (2.10) holds. Note that, since this bilinear form is clearly
continuous with respect to the norm ||.|[H:(w)xH2(w), the existence and uniqueness of the
solution of the variational problem (2.2) asserted in the next theorem follow from the Lax-
Milgram lemma.

Theorem 2.1 : Assume that

(2.10) length vo > 0,
and let the space V(w) be defined as in (2.3). Then the bilinear form B of (2.4) is V(w)-

elliptic, in the sense that there exists a constant 8 such that

(2.11) B8 >0 and B(n,m) 2 ﬂ||n||%11(w)xm(w) for all m € V(w),

10



where the norm ||.||H1(w)xH2(w) 5 defined in (2.9).

Consequently, if the linear form L is continuous with respect to the norm ||.||H (w)x H2(w),
Koiter’s shell model (2.2) has one and only one solution.

For convenience, the proof of Theorem 2.1 is arranged as a series of seven lemmas (Lemma
2.1 to Lemma 2.7).

Lemma 2.1 : There exists a constant Cy such that

(2.12) Ci1 >0 and B(n,n) 2 C, {Z as (30 + D IITap(n)H%,w}
a,B a,B

for all m € HY(w) x H%(w) (the functions yap(n) and Y,p(n) are defined in (2.6) and (2.7)).
Proof : Let (T,p) denotes an arbitrary symmetric tensor. On the one hand,

(2.13) a®Pa? T,, Top = (a®Top)? > 0.
On the other, there exists a constant C > 0 such that

(2.14) a® (2!, 28)a” (21, 2) o Tap > CTopTap

at all points (z', %) € ©. To see this, we observe that the left-hand side of the last inequality
may be written as 8 ‘A6, with

a“a” 2allal'2 a12a12 Tll
A = At = 20.“0.12 2(al2a12 + a11a22) 2a12a22 , 8 = T12 .
al2a12 2a12a'22 a22a22

Since a'’a!! > 0,

det allall 2011012 _ {)allall >0
2a11a12 2(a12al2 + alla22) ~ a ’

and since det A = 2/a® > 0 (cf. (1.9)), we infer from a well-known characterization that the
symmetric matrix A is positive definite at all points (z,,z,) € @. Hence there exists such a
constant C.

Inequality (2.12) is then an immediate consequence of the specific form of the integrand
that appears in the bilinear form B(.,.), of the assumed positiveness of the Lamé constants

(cf. (2.1)), and of inequalities (2.13) and (2.14). ]

Remark : A proof of Lemma 2.1 was already given by Rougée {1969, Chapter 2]. |

Lemma 2.2 : Let the space E(w) be defined by

(2.15) E(w) = {n = ((1a),7s) € L*(w) x H'(w) ; Yas(n) € L*(w), Tap(n) € L*(w)},
where the functions v,p(n) and Y,5(n) are defined as in (2.6) and (2.7). Then

(2.16) E(w) = H'(w) x H¥(w).

11



Proof : In definition (2.15), the relations “y,5(n) € L}(w)” and “T,5(n) € L*}(w)” are
to be understood in the sense of distributions ; this means that a function 1 = ((n4),73) €

L?(w) x H'(w) belongs to the space E(w) if and only if there exist functions v,5(n) € L*(w)
and T,5(n) € L*(w) such that

1
(2.17) / 70[3(77)1/"15[1‘1332 = _/ {5 (180a% + 1a0p%) + Fgﬁnpd’ + baﬂ’]S‘/’} dxlda:2,

and

/ Y o(n)pdetde?® = — /w {Ban1305% + T250,mat + Wy (n,0a + Douna)

w

(2.18)
+ B5(1,08% + To5m0%) — (Bably + T2, b5 — D258 )00 + Caprath } da’ da”

for all functions ¥ € D(w). Note that the assumption ¢ € C3(©) is used here, to insure that
the functions 3,6 are continuous on @. It a fortiori implies that all other factors appearing
in eqs. (2.17)-(2.18) (such as [} 5, bag, etc.) are also continuous on &.

Let ) be an arbitrary element in the space E(w). The relations (cf. (2.6)) :

eaﬁ(n) = A/aﬂ(n) + FZﬁnp + baﬁ”S
then show that e,3(n) € L*(w). Therefore the identities (in the sense of distributions)

Oapnly = Oupp() + Jpeap(M) = Opeap(n)
show that the distributions 9,47, = 95(9.n,) belong to the space H™'(w). Since 5, € L*(w)
implies 9,17, € H™!(w), a lemma of J.L. Lions (mentioned for the first time in Magenes
& Stampacchia [1958], and found also in Duvaut & Lions [1972, p. 110}, and Borchers &
Sohr [1990] or Amrouche [1990], Amrouche & Girault [1990] for the extension to domains
with Lipschitz-continuous boundaries) shows that the distributions 8,7, are in fact in L?(w).
Therefore

Na € Hl(“")’

and it follows form the definition (2.7) of the functions Y,s(n) that the functions G,pm3
belongs to the space L?(w). Hence

T3 € Hz(w),
and thus the space E(w) is contained in the space H'(w) x H?(w). Since the space H'(w) x
H?*(w) is clearly in the space E(w), the conclusion follows. |

Lemma 2.3 : There exists a constant C, such that
(2.19) C2 > 0 and |[nl| > Cllnlls i) for all n € H'(w) x H3(w),

where

1/2
(2.20)  [nll == {Z 16i60 + 193110 + 2 1Fas(mlIg. + D ||Taﬁ(71)||§.w} :
o o3 o8



Hence ||.|| and ||.||H (w)xH2(w) @€ equivalent norms over the space HY(w) x HY(w) (the
other inequality clearly holds).

Proof : When equipped with the norm (2.20), the space E(w) becomes a Hilbert space
(to see this, consider a Cauchy sequence and for a fixed function ¥ € D(w), pass to the limit
in equations (2.17) and (2.18)). Since the identity mapping from the space H'(w) x H*(w)
into the space E(w) is continuous (this follows from the definitions (2.9) and (2.20) of the
norms ||.||H1 (w)xH2(w) and ||.||) and onto by Lemma 2.2, and since both spaces are complete,
the conclusion follows by the open mapping theorem. [ |

To complete the proof of Theorem 2.1, it remains to show that, when the boundary
conditions 7; = J,m3 = 0 on 7, are taken into account, inequality (2.19) (possibly with
another constant) remains valid if in its left-hand side, the norm ||n|| of (2.20) is replaced

by the semi-norm {Zaﬁ Nas(M3 0 + Tas |[T(,g(17)||§,w}l/2. In other words, we need to
show that this semi-norm is in fact a norm over the space V(w) of (2.3)). The proof of
this fact will require four additional lemmas (Lemmas 2.4 to 2.7) ; note that Lemmas 2.4 to
2.6 were essentially contained in Bernadou & Ciarlet [1976, Theorems 5.1.1 and 5.2.1]. The
presentation given here is slightly different, however.

Lemma 2.4 : With an arbitrary element 7 = (1;) in the space H'(w) x H*(w) (i.e., 7, €
HY(w) and n3 € H*(w)), we associate the functions (cf. (1.6) and (1.16) for the definitions
of €ap and g ) :

(221) () = (O + Wm,) € H'(w), d¥(m) = 5 ePmpia € LA(w).

o] —

Then the following relations hold (as equalities in the space H™'(w)) :

(2.22) dald (m)as] = ”[Yap(m) = 03 vop(m)a, + € [rap()],Jas,

(2.23) Ba[nia’ — (d(m)ai)] x @ = Yap(m)a’® — [Ba(d'(M)as)] x ¢,
where the functions vap(n) and Yo5(n) are defined as in (2.6)-(2.7) (c¢f. (1.17) for the
definition of v,5(1)|,), and ¢ s the mapping that defines the surface S = p(@).

Proof : We first mention that the particular forms (2.21) of the functions d*(n) can be
a priori justified (cf. the Remark that follows the proof of Lemma 2.5). For the sake of
conciseness we let

d = di(’?)’ TYaB = 701ﬁ(77)3 Taﬁ = Taﬁ(n)

throughout the proof, and we leave it to the reader to verify that, at each stage, all the
computations are valid in the distributional sense ; the assumption that ¢ : @ — R is of
class C3 is in particular needed for that purpose.

Using the definition of the functions d*, relations (1.18) and (1.29), and the definition of
the functions T,4, we obtain

(2'24) dpla = 5pﬂ(773laﬁ + bglano + bgnala) = Epﬁ(TaB - bgnolﬁ + cap?3),

and, using the definition of the function ¢ and formula (1.25), we verify that
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1 g
(2.25) bd® = 3 b2 (11310 — Mo1)-
Using the definition (1.14) of the third fundamental form and the definition of the func-
tions v,p, we next have
1
(2.26) bttols = boYon — 5 Ye(Mplo = Mois) + Capta,
and thus, (2.24), (2.25), and (2.26) yield

(2.27) d°|e = €2(Tap — bv0p) + B>
Using the definition of the function d® and relation (1.18), we obtain

(2.28) &, = ”WMML=Z%KWMh—MWML

N | —

and, using the definitions of the functions d* and £*# and relation (1.27), we have

1
baﬁdﬁ = % [61202m3 — b2001m3 + (b1a03 — baab)n,]
(2.29)
1
= % [blaazﬂs — b3 + (Ual?-)ll - (Ua|1)|2]-
The Mainardi-Codazzi identities (1.21) and the definition of the functions v, next yield
( 1

1 1
Pyaple = N [§ (Mag2) I

+5 ()l = (o s = by

1 1 1
+ % l:_ :_2. (710“)12 — 5 (7]1|0()|2 + (ba1|2)7]3 + bala2773]

(2.30)
\/— [(Mag2) 1 + (M210) 1 = (77a|1)|2 = (mja)l2]

1 )
+ 75 (6010213 — ba20113],

\

and thus, (2.28), (2.29), and (2.30) together imply that

21 Bl + bl oy =0
Since, by (1.22),

(2.32) Oa(d'a;) = (d°]a — B2d%)a, + (d%]4 + bapd®)as,
equality (2.22) follows form (2.27), (2.31) and (2.32).

Using relations (1.5) and (1.6) and the definitions of the functions d*, we next obtain

. 1
(2.33) [d'a;] x a, = 5 sc,,,es”ﬁr]maa" + (0o + bgnp)a3

4

But, using definition of the functions v,z, we can also write

14



(2.34) 5ap50ﬁ77ﬁloap = (Mpla — bpan3)a® — vpad” ;

2.33) and (2.34) that

| =

—_~

hence we conclude from

(235) (diai) X ag = (np\a - bporn.?»)ap + (80773 + bﬁnp)aa - 7paap’
on the one hand. The formula (1.22) shows that

(236) aor[niai] = (npla - bpani})ap + (n3|a + bgnp)as
on the other hand. Hence (2.35) and (2.36) imply that

(2.37) (d'a;) x ag = a(nia’) — Yapa®.

 Since a, = G (cf. (1.1)), we also have

(2.38) (d'a;) x ag = d|[(d'a;) x @] = [Oa(d'a;)) x ¢,

and equality (2.23) follows from (2.37) and (2.38). [ ]

We are now in a position to prove a key infinitesimal rigid displacement lemma, which
plays in linearly elastic shell theory the same réle as that played by the well known infinites-
imal rigid displacement lemma in three-dimensional linearized elasticity (cf. e.g. Ciarlet

[1988, p. 295.]).

Lemma 2.5 : Let 7 = (7;) be an element in the space H'(w) x H?*(w) that satisfies the
following relations :

(2.39) Yas(1) = Yap(n) =0,

as equalities in L*(w). Then there exist two vectors ¢ € R® and d € R® such that
(2.40) ni(z!,z?)a' (2!, 2%) = c + d x p(z',2?) for all (£!,2°) € ©.
Furthermore, the functions n; : @ — R are of class C?, and the constant vector d is given

by

1
(2.41) d = e*(pm3 + b, )aa + 5 € ngjats.

Proof : Since a distribution whose partial derivatives of the first order vanish on a
connected open set is a constant function (see Schwartz [1966, p. 60]), and since the relations
Yos(1) = 0 imply vap(n)|, = 0, we conclude from (2.22) that

| 1
d := d'(n)a; = e (s + W1,)20 + 5 € ng1a2s

is a constant vector, i.e., a vector of R® that does not depend on (z',z?) € ©. We next
conclude from (2.23) that

c:=na —dxe

is likewise a constant vector, and relation (2.40) is thus established. Finally, we infer from

(1.4) and (2.40) that

15



n; = c.a;+(d x p).a;;

hence each function 7; is indeed of class C2. | |

Remark : We are now in a position to explain how the specific expressions (2.21) were
chosen for the functions d*(n). Let a priori

ni(at, 2¥)a;(2',2%) = ¢ + d x (2, z?) for all (z',2%) € @,

where ¢ and d are two constant vectors in R>. Letting d = d'a;, one easily verifies that

NBla = baﬂnI} + eaﬁdsa M3 = _bgnp + Epﬁdp’

and then that v,5(n) = Tag(n) = 0. Using the relations eap = —€po and €*?¢,5 = —63, one
next obtains

€a077ﬂ|0 = Eoﬁbpa'lh + Saﬂﬁaﬂda = 2d3,
e (0pms + b1,) = €7Pe, pd” = d°,
i.e., precisely the defining relations (2.21). [
We are now able to take into account the imposed boundary conditions :

Lemma 2.6 : Let n = (n;) be an element in the space H(w) x H*(w) that satisfies relations
(2.39) and the boundary conditions

(2.42) n; = d,m3 =0 on vy C 7y, with length vo > 0.
Then = 0.

Proof : By Lemma 2.5, the relations 4,3(n) = To5(n) = 0 imply that there exist two
constant vectors ¢ and d such that

na =c+d xe.

The boundary conditions 7; = 0,73 = 0 on v imply that the constant vector d as given
in (2.41) reduces to

1
(2.43) d = 5 engea

along 7o, since dgns + bn, = 0 on 7, (observe that 5, is well defined along 7o since
np € C*(®) by Lemma 2.5). Let z and z, be two distinct points on vy, so that ¢(z) # ¢(z()
(the mapping ¢ : @ — R? is assumed to be injective). Since

c+d xep(z)=c+d xp(z)=0

(n;a* = 0 on v, by assumption), it follows that

d x [p(z) — ¢p(z0)] =0 for all x € ~,.
Therefore, if d # 0, there exists a line A parallel to d such that

16



(2.44) p(x) € A for all 2 € 7.

But if this were the case, the vector d should be both normal to the surface S = p(w)
(by (2.43)) and tangent to S (by (2.44)) at all points of 4o ; this is impossible.

Hence d = 0 ; then the boundary conditions 5; = 0 on = imply that ¢ = 0. |

Lemma 2.7 : Assume that length v9 > 0. Then the semi-norm |.| defined by

1/2
(2.45) Inl = {Z Ias(MIlS. + D IITaa(n)IIS,w}
o8 a8

is a norm over the space V(w) defined in (2.3), and there exists a constant Cs such that

(246) Cg > 0 and ‘7]] 2 C3||n||ﬂl(w)x1{2(w) fO'I' all n € V(w)
Hence the norm |.| is equivalent to the norm ||.||H:()xH2w) over the space V(w) (the

other inequality clearly holds).

Proof : That |.| is a norm over the space V(w) follows from Lemma 2.6. If inequality
(2.46) is false, there exists a sequence (n*) of elements in the space V(w) such that

(247) “nk|lH‘(w)xH7(u) =1 for all k,

(2.48) In*| — 0 as k — .

By (2.47) and the Rellich-Kondrasov theorem, there exists a subsequence (n?) that con-
verges in the space L?(w) x H'(w). Since (n’) — 0 as £ — oo by (2.48), we conclude that
(%) is a Cauchy sequence with respect to the norm ||.|| defined in (2.20). By Lemma 2.3,
this subsequence converges in the space V(w).

Let 1 be its limit. By (2.48), it satisfies |} = 0, and thus n = 0 by Lemma 2.6. But this
contradicts (2.47), and the proof is complete. m

The proof of Theorem 2.1 follows by combining inequalities (2.12) and (2.46), established
in Lemma 2.1 and Lemma 2.7 respectively.

Remark : In a related shell model considered and discussed in Sanders [1959], Budian-
sky & Sanders [1967] and Koiter [1966,1970], the change of curvature tensor Y,s(n)) of
(2.7) is replaced by the tensor (T} 5(n)), where

! 1 (4

op(1) := Yap(n) — o [65750(1) + 85700 (1)),

Since the equations 7,5(7) = Tas(n) = 0 are equivalent to the equations v,5(n) =
T,5(m) = 0, the present analysis can be applied verbatim to this model. |
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3 EXISTENCE THEORY FOR NAGHDI’'S MODEL

We consider as in Sect. 2 a shell with middle surface S, thickness 2¢ > 0, and Lamé
constants A, u satisfying inequalities (2.1).In Naghdi’s approach (cf. Naghdi [1963,1972)]),
constant shear deformations are allowed across the thickness of the shell, in the sense that
the displacement of a point with coordinate z3 along the normal vector a® is of the form
(;a' + zar,a®, where ¢; are as before the covariant components of the displacement of the
points of the middle surface S and r, are the (linearized) covariant components of the
rotarion of the unit normal vector a3. Hence the points situated on a line normal to S
again remain on a line after the deformation has taken place ; however, this line is no longer
normal to the deformed middle surface in general. In such a model, there are therefore five
unknowns : the three functions ; : @ — R as in Sect. 2 and, in addition, the two functions
ro i@ — R ; cf. Figure 3.1.

€

Figure 3.1 : In Naghdi’s model, the five unknowns are the three covariant compo-
nents (; : @ — R of the displacement (;a' of the points of the middle surface S of

the shell and the two covariant components z, : & — R of the rotation r,a® of the

unit normal vector a3.

Combining this geometrical assumption with the assumption of planar stress, P.M. Naghdi
then obtains the following two-dimensional problem : The unknown

(6,r) = ((¢i), (ra))

solves the following variational problem, called Naghdi’s shell model :

(3.1) (¢,r) € V(u,) and B((¢, 1), (n,8)) = L(n,s) for all (n,s) € {’(w),
where the space V(w) is defined as (here, H!(w) denotes [H*(w)]®) :

(3.2) V(w) = {(m8) = ((7:),(sa)) € H(w) ; 7i = 55 = 0 on 70},

where the symmetric bilinear form B is defined by

18



bl

BU(Cr) (m,9)) = [ {ea71,0(C)van(m)
(3.3)

3

3 a
+ 5 a0 (G, 1) Xan (1, 8) + 8ot 103( G, ¥ ysa(m, )} Vadeo

with (cf. (1.11)-(1.15) for the definitions of the functions a®?, byg, b3, cap, T4 and (1.16)
for the definition of covariant derivatives) :

4 p
3.4 a7 = 7 %BaP? 4 24(a*Pd”’ + a®?aPP),
(3.4) Ot 20 #( )
1
7aﬁ("7) = 5 (nalﬂ + Uﬂla) — bagns

(3.5) 2
= eap(N) = T2pn, — basna, with eas(n) = 3 (Ganp + Os7a),

1 1 1,
Xap(1:8) = 5 (Sals + 3p1a) = 5 ba(Ms15 = bosTz) = 5 bs(Nola = boaTla)

1 1
(3'6) ﬁ = eaﬁ(s) - FZﬁsp - 5 bg(aﬁnp - FZﬁna) ) bg(aana - Fgonp) + Capf3,

4

with e p5(s) = —;— (0asp + 0354 ),

1
(37) 7013(17’ S) = 5 (60773 + bgnp + sa)a

and where L is the linear form that takes into account the applied forces. The tensors (a®%)
and (7v,5(n)) are the same (cf. (2.5) and (2.6)) as those appearing in Koiter’s model. The
tensor (xap(7,s)) is the linearized change of curvature tensor associated with an arbitrary
displacement and rotation fields, of the middle surface S and of the normal vectors a3, re-
spectively. The tensor (v,3(7, s)) is the linearized transverse shear strain tensor.

Remark : The linear form L takes the form

/pn\/_dw+/ (q.m+ m%s,)dy
for all (n,s) € V(w), with 71 = 4 — 7o, where the vector fields p: w —» R?, q: 71 = R3,
and (m?) : 4, — R?, are derived from the given applied body and surface forces acting on

the shell, viewed as a three-dimensional body. [ |

Let

1/2
(38) ||(77, ll w = {Z ”771”1 w + z ”301”1 w}

denote the norm of an element (1,s) = ((7:),(sa)) € V(w), where V(w) is_the closed
subspace of H'(w) defined in (3.2). We now establish that the bilinear form B is elliptic
over the space V(w) if assumption (3.9) holds.
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Theorem 3.1 : Assume that

(3.9) length v9 > 0,
and let the space V(w) be defined as in (3.2). Then the bilinear form B of (3.3) is V(w)-

elliptic, in the sense that there exists a constant B such that

(3.10) B> 0 and B((n,s), (m.5)) 2 Bli(m, )l for all (m,5) € V(w),
where the norm |||, is defined as in (3.8).

Consequently, if the linear form L is continuous with respect to the norm |-l o, Naghdi’s
shell model (3.1) has one and only one solution. n

The proof follows the same pattern as that of Theorem 2.1, and is accordingly arranged
as a series of lemmas (Lemmas 3.1 to 3.6). Note however that the constants Cy, Ci, C3
found below are not necessarily the same as those found in the lemmas used for proving
Theorem 2.1 and that, likewise, the norms and semi-norms defined in (3.16) and (3.25) are
not the same as those defined in (2.20) and (2.45).

Lemma 3.1 : There exists a constant C, such that
Ci >0 and B((n’s)a (77,5)) 2
(3.11)

1/2
Xap(1,8) 130 + D 1vas(m, s)”g,w}

Cy {Z Yas (Mo + D
a8 a8

for dall (n,s) € HY(w).
Proof : There exists a constant C’ > 0 such that

(3.12 a®P (2}, 2%) 2425 > C'242, for all (z,) € R?
B8

at all points (z',2%) € w. The proof then follows by combining inequalities (2.13), (2.14),
(3.12). [ |

Lemma 3.2 : Let the space E(w) be defined by (here L?(w) = [L*(w)]?) :

{ E(w) = {(T],S) € Lz(w) ) 7aﬂ(n) € L2(w)’ Xaﬂ(n$s) € L2(w)’

703(77’ S) € L?(w)},
where the functions vap(n), Xap(M,5), Ya3(7,8) are defined as in (3.5), (3.6), (3.7). Then

(3.13)

(3.14) E(w) = H'(w).

Proof : Let (7,s) be an arbitrary element in the space E(w) First, the definition of
Ya3(7, 8) implies that n3 € H'(w). The same argument, based on a lemma of J.L. Lions, as
in the proof of Lemma 2.2, then shows that n, € H'(w). Finally, the definition of x,s(7,s)
implies that e,s(s) € L*(w), and the same lemma of J.L. Lions shows that s, € H'(w). W



Lemma 3.3 : There exists a constant C, such that

(3.15)  C2 >0 and ||(m,s)ll 2 Call(m,8)lhe for all (m,8) = ((m), (s.)) € H(w),

where

ll(m,8)}] = {Z 7016, + 22 sallow + 2 Ias(mllo.w
i B a3
(3.16) .

1/2
| +zuxaam,s)umzlwoe,(n,s)llaw} |
o8 o

Hence ||.|| and ||.|1. are equivalent norms over the space H'(w) (the other inequality
clearly holds).

Proof : The proof is analogous to that of Lemma 2.3, and for this reason, is omitted. W

We now establish an infinitesimal rigid displacement lemma, which plays the same role
for Naghdi’s model as that played by Lemma 2.5 for Koiter’s model. This result was first
proved in Coutris [1978].

Lemma 3.4 : Let (17,s) = ((7:),(so)) be an element in the space H'(w) that satisfies

(317) ‘703(77) = .\/aﬁ(n!s) = 703(77,5) = O,

as equalities in L*(w). Then there exist two vectors ¢ € R? and d € R® such that

(3.18) ni(zt, zH)a (2!, 2}) = c +d x ¢!, 2?) for all (2}, 2?) € .

Furthermore, the functions n; : @ — R are of class C?, and the constant vector d is given
by

| 1
(3.19) d = —e¥sga, + 5 Pngea’.

Proof : From the relations y,3(7,s) = 0 and (1.19), (1.25), (1.29), (3.7), we infer that

(3.20) 273(1,8) 13 = M3108 + (85 ]8)0, + b2 (1,18) + Saip = 0,

or equivalently, that
Dapns — FZﬁap% + (9585)m, + Ffsabiﬂp - Fiabﬁﬂp
+ 05,05m, — V5T05m0 + Opsa — I'lps, =0,

which shows in particular that n3 € H%(w). Using (3.20) in definition (3.6), we next obtain

1 1 1,
~Xap(m,8) = _'2“ (Salﬁ + sﬂla) + ) bg(nplﬂ) + ’2' bp(?Ma) — Cap3
(3.21)

= M3lap + (bﬁ Iﬁ)np + bﬁ(npw) + bg(npla) — Cap?3



(we need here the symmetry relations (1.20)). But since x.g(7,s) = 0 by assumption, and
since the right-hand side of relation (3.21) is nothing but the definition (2.7) of the function
Y,5(n), we conclude that T,5((n) = 0.

Hence, by Lemma 2.5, there exist two constant vectors ¢ € R> and d € R? such that

relasion (3.18) holds, the functions n; : @ — R are of class C?, and the constant vector d is
given by (cf. (2.41))

1, X 1
(322) d = 5“‘3(8ﬁn3 + bZ‘I]p)ao, -+ 5 € ﬁnﬁ|0a3 = —¢ ﬂsﬁaa + 5 eaﬁnmaag
since vp3(n,s) = 0. Relations (1.5) and (3.22) therefore imply that

d x a3 = e*P¢, ,5pa” = sza”,

and thus the functions s, : @ — R are also of class C?, since

Se = (d x az).a,.

We next consider the effect of the imposed boundary conditions :

Lemma 3.5 : Let (1,s) = ((m:),(s4) be an element in the space H'(w) that satisfies rela-
tions (3.17) and the boundary conditions

(3.23) 7 = So =0 on yo C 7, with length v > 0.
Then (n,s) = (0,0).

Proof : By (3.22), the constant vector d satisfies

(3.24) d=

=75} v .
£ 3la@3 O 7

o —

(notice that 7, is well-defined on 7o since 73 € C*(&) by Lemma 3.4) since s, = 0 on
Yo- Since relation (3.24) coincides with relation (2.43), we may therefore continue the proof
exactly as that of Lemma 2.6, since only the relations n; = 0 on v, are then needed. |

Lemima 3.6 : Assume that length ~o > 0. Then the semi-norm |.| defined by

1/2
(3.25)  |(mys)| = {Z Ve (ME 0 + 2 IXas(m:8)5 . + D [1Vaa(m, S)IIS,W}
a,B

o8 a

ts a norm over the space V(w) defined in (3.2), and there exists a constant C3 such that

(3.26) Cs >0 and |(1,5)] > Call(m,8)lls.o for all (n,s) € V(w).

Hence the norm |.| is equivalent to the norm ||.|l., over the space V(w) (the other in-
equality clearly holds).



_ Proof: The proof is analogous to that of Lemma 2.7 : That |.| is a norm over the space
V(w) follows from Lemma 3.5. If inequality (3.26) is false, there exists a sequence ((n*,s*))
of elements in the space V(w) such that

(3.27) N(7*,5*)) |1 = 1 for all &,

(3.28) - I((n*,s*))| — 0 as k — oo.

By (3.27) and the Rellich-Kondrasov theorem, there exists a subsequence ((n¢,s‘)) that
converges in the space L?(w). Since ((n%,s*)) — 0 as £ — oo by (3.28), we conclude that
defined in ((n%,s?)) is a Cauchy sequence with respect to the norm ||.|| defined in (3.16). By
Lemma 3.3, this sequence converges in the space V(w).

Let (m,s) be its limit. By (3.28), it satisfies |(n,s)| = 0, and thus (7,s) = 0 by Lemma
3.5. But this contradicts (3.27), and the proof is complete. |

The proof of Theorem 3.2 follows by combining inequalities (3:11) and (3.26) established
in Lemma 3.1 and 3.6 respectively.

Remark : Other shell models that also include constant shear deformations differ from
Naghdi’s model only by some strictly positive factor appearing in front of the “shear strain

part” / a*Pv43(¢, 1)7p3(n, 8)V/adw in the bilinear form (3.3). The present analysis clearly

applies to such models. |
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