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Abstract
We analyze a communication network with several types of calls.
For a wide class of conservative service disciplines, we give ergodicity
criteria. Exponentially fast convergence to steady state is also proved.

Résumé
Nous analysons un réseau de télécommunications avec plusieurs
types d’appels. Pour une classe asez large de disciplines conservatives,
nous donnons des critéres d’ergodicité et prouvons, en passant, la con-
vergence exponentielle vers I'état stationnaire.
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1 Introduction.

We shall study ergodic properties of a communication network with several
types of calls when the service time depends on a type of the call. Usually
ergodic conditions for communication networks are deduced from explicit for-
mulae for stationary probabilities. For example, in case of Jackson network
sufficient ergodicity conditions follow from the product form stationary prob-
abilities. But in many cases equilibrium state probabilities have no product
form. Moreover, formulae for stationary probabilities are often impossible
to use effectively for obtaining ergodic conditions. For example, a general
random walk in Z2 represents a communication network with two servers.
But it is known {1], that its stationary probabilities can be expressed only in
terms of elliptic integrals.

Explicit expressions for stationary probabilities are impossible to obtain
for communication networks with several types of calls when the service time
of a call depends on its type. To study ergodicity we shall use Lyapounov
function method, which was applied to communication networks in [3 - 6].
In this paper we prove ergodicity criteria for some communication networks
which have no explicit formulae. More exactly, we consider a network which
is an example of Kelly network [2]. It consists of two nodes. Suppose that
there are two types of calls. The calls of type k arrive at the node k in
the Poisson stream of rate Ay . The calls of the first type follow the route
{1,2},ie. after completing service in the node 1 the calls of this type enter
the node 2. The calls of the second type follow the route {2, 1 }. A call of
type k at node 2z requires an amount of service time exponentially distributed
with parameter y;(k).

We analyse ergodic properties of the above network for a wide class of
conservative service disciplines (see helow). It means that these disciplines
do not allow a server to be empty if the queue is non-empty. The conservative
service disciplines appear in communication networks in which it is difficult or
unprofitable to support some specific discipline. One of our aims is to prove
an ergodicity criterion uniformly over all conservative service disciplines. Let
us now introduce the loads

pi(1) = Ai/pa(1), pi(2) = A2/pa(2),

pal) = /\1/#2(1), p2(2) = Ao/ pa(2), (1~1)



p1 = pi(1) + ,1(2), p2 = p2(1) + p2(2),
where p;(k) is the load of type k at the i-th node and p; is the total load over
all call types at the :-th node.
It turns out, if the following inequalities are fulfilled

p1 < 1,02 <1,p1(2) + p2(1) < 1, (1.2)

then the communication network is ergodic under any conservative service
discipline. We also prove that the Markov chain which describes the network
has exponential convergence property. It means that the time ¢ transition
probabilities exponentially fast converge to the stationary probabilities as
t — oo ( Theorem 1 ).

If conditions (1.2) are not fulfilled, i.e. the left part of one of the inequal-
ities is strictly greater than 1, one can give an example of the conservative
service discipline with absolute priorities when the network is not ergodic
(Theorem 2). It was observed in [7] that the standard ergodicity conditions
p1 < 1,p2 < 1 are not sufficient in this case. But for this case an ergodicity
criterion was not obtained in [7].

We also consider other disciplines with absolute priorities and show that
the conditions p; < 1,p, < 1 are sufficient for ergodicity ( Theorem 3 ).

It was proved in [7] that the standard ergodicity conditions are sufficient
for the network with FCFS (first come — first serve) discipline at both nodes.

2 Main Definitions and Results.

Let us define a class of conservative service disciplines. We suppose that the
complete information about the queues in the network is available. For every
call in the network the following characteristics are assumed to be known: a
position in queue, a type, a total service time, a residual service time. The
state of the i-th node is represented by the vector

q= (n'jstj-.sjsj =1,... awi)a
where n;j is the type of the j-th call in the queue, ¢; is the residual service
time, s; is the total service time and z; is the queue size in the i-th node.

The difference s; — t; is the received service time, i.e. an amount of service
time which the j-th call has been received. The collection

§=(g,1=12) (2.1)
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gives the complete description of the queues in the network. The disciplines
under study will depend on these data. We suppose that only one call can
be served at every moment and the call being served is in the first position
(7 = 1). After arrival at a server a call can remain in the server for some
period which we shall call the call sojourn time. If the call has not been
served for this period then it leaves the server but remains in the queue. It is
supposed that losses of calls are impossible. Call sojourn times are assumed
to be exponentially distributed random variables. These random variables
are independent of call service times and received service times.. If call sojourn
time is infinite then parameters of respective exponential distributions are
assumed to be 0.

Consider moments when a call arrives at some queue, leaves some node or
the sojourn time of a current call runs out. We shall call such moments the
events. Describe possible changes in nodes when the events. are occured. If a
new call arrives then the queue size increases by 1. If a call sojourn time runs
out then queue size is not changed. If a call leaves a queue then the queue
size decreases by 1. Besides that, rearrangements of calls in the queues can
take place with conservation of residual service times, total service times and
types. These rearrangements are arbitrary functions of ¢, where § is defined
by (2.1). Observe that an interruption of a call service can take place when
the events are occured. The above class of disciplines we shall denote by D,
but a discipline in the i-th node - by D). Then the collection

D=(DM D eDxD

defines the service discipline in the whole network.

Let us note that disciplines with absolute priorities are included in the
above class. We define now all possible disciplines with absolute priorities
for the network under study:

D, (p) — when calls of the first type have absolute priority in both nodes;

Dy(p) - when calls of the second type have absolute priority in both
nodes;

D3(p) - when calls of the first type have absolute priority in the first node
and calls of the second type have absolute priority in the second node;

D4(p) - when calls of the first type have absolute priority in the second
node and calls of the second type have absolute priority in the first node;

Let us fix some discipline D € D x D. We have supposed that all service
times have exponential distribution and calls arrive in the Poisson stream.
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Then the network is represented by a continuous time Markov chain 7, with
the state space A; x Az, where A; is the set of vectors a; = {n;,...,n,, },
and n; is the type of the j-th call in the i-th queue, z; is the queue size in
the :-th node.

Let us consider all possible transitions in the network: an arrival of a
call of the first (the second) type at the first (the second) node, a departure
of a call of the first (the second) type from the network, a departure of a
call of the first (the second) type from the first (the second) node and its
arrival at the second (the first) node. For example, let a call of the first
type leave the first node and arrive at the second node. Then the length of
the vector a; decreases by 1 and a rearrangment of calls in the first queue
is occured in accordance with a given service discipline. The length of the
vector ay increases by 1 and a new vector a3 is defined in accordance with
a given service discipline. For example, if we use LIFO (last in - first out)
discipline then a new call will be placed in the first position. Besides that,
rearrangements of calls are possible when the sojourn time of a current call
in a server runs out but these transitions do not change queue sizes.

The chain 7, is defined by transition rates A,3, where a, B € A, x A;. Let
us define a discrete time Markov chain 7, with the transition probabilities

paﬁ=w’\0ﬁ> Q#ﬁ,paa =1- Zpaﬂ’
a#f

where a constant w satisfies the condition
-1
w < main (2,3: /\ag) .

The continuous chain 7, is ergodic iff the discrete chain 7, is ergodic and their
stationary distributions coincide. Let 7(8), 8 € A; x Az, be the stationary
distribution and || 3 || be the total number of calls in the network being in the
state 8. Let us denote by ]3‘% the time ¢ transition probabilities for Markov
chain 7.

Now we formulate the main results.

Theorem 1 If
pr <1, p2 <1, py(2) + pa(1) < 1,



then the network is ergodic for any discipline D € D x D. Moreover, the
following estimates are fulfilled:
1) the exponential estimate for the stationary probabilities:

m(B) < Cexp(—1|l B1l) (2.2)

for some constants C, v > 0 not depending on 3;
2) exponential convergence to the stationary probabilities: there ezists a
constant ¢ > 0 such that for all a,f € A, x Ac andt >0

[7(8) - Pzl < Ci(a)exp(—ot) (2:3)
for some constant Cy(«) depending only on a.

Theorem 2 If
p1<1,p2 <1, pi(2) +p2(1) > 1,

or p; > 1 for some 1 = 1,2, then the network with the service discipline
Dy(p) is transient.

Remark. The case when

p1 <1, p2 <1, ;(2) + p2(1) =1

is a special one requiring additional analysis.
For the disciplines Dy(p), D2(p), D3(p) we have another situation.

Theorem 3 The network with the disciplines D,(p), D2(p), D3(p) is ergodic
if
P <1, p2<l

and the estimates (2.2), (2.3) are fulfilled.

Remark. For the disciplines D;(p), D,(p) the first part of this result (ergod-
icity) has been proved in a more general case [10].



3 Proof of Theorem 1.

Further we shall use the following functions of 7,,. Let £, (k) be the number
of calls of type k in the i-th node at time n and k,; be the type of the call
being served at time n. Define the random sequences

671 = (é.n,i(k), Z’k = 132) € Z-‘:-a

kn=(kKni,t=1,2)€ {1,2} x {1,2},
and put
€ni = €ni(1) + €n.i(2).
Note, that ,; is the length of the i-th queue at time n. Let z,(k) be the

values of random variables &, ;(k) and z; be the values of random varibles
€ni. Define the vector

z = (zi(k), 1, k=1,2) € Zi

and the orthogonal basis

such that

T = Z Z.’L‘,’(k)e,‘(k).
kot

We shall construct a Laypounov function G(z) depending only on a vector
z such that for some ¢ > 0 and m € Z,

E(G(én) | &1 =2) < G(z) — ¢ (3.1)

for all z € Z{ \ B, where B is a finite set. Then ergodicity will follow
from Foster criterion [8]. Moreover, following [3] we give two constructions
of Laypounov functions.

First construction. Let us first define linear functions of z:

o = 2d)
Ara(x) (L)’
T1(2) + x2(2)
Al‘g(.’lf) = —W—, (32)



z2(1) + (1)

pa(l) 7

z2(2)

N2(2)'

If the network is in the state = then the server at the i:-th node needs at an

average the time A, x(z) for servicing all calls of type k . Define also the
linear functions:

Ag'l(.’L‘) =

A2,2(I) =

Ai(z) = Aix(z) + Ai2z). (3.3)
and
_ (A =p(2)A1a(2) + (1 + 6:)m(1)Ar2(x)
Gilz) = p1(1)
(1= pa(1))Ag2(2) 4 (1 4 62)p2(2) Az 1 (2)
Ga(r) = (2 y (3.4)

where é; > 0, ¢ = 1,2, are small parameters which are chosen in the special
manner.
To construct a Lyapounov function we need the following lemmas.

Lemma 3.1 If p; < 1, p; < 1 then there exist parameters €, §,, 6, > 0 such
that

E(Gi(énﬂ) - Gi(fn) | ni > 0) < —e (3.5)

Proof. Let : = 1 and a call of the first type be in progress at a given
moment, i.e. K,3 = 1. Then the one-step mean increment of the function

G(&n) is
E(G1(&nt1) = Gi(£n) | £ni > 0) =

=(1=p1(2)p(1) = (1 = ,(2)) + (1 + 61)p1(1)p1(2) =
=p—1+6p(1)n(2) <0

for sufficiently small ;. If a call of the second type is in progress at a given
moment, i.e.k,; = 2, then

E(Gl(&wl) - Gl (fn) | fn,i > 0) =

=(1-p1(2))p1(1) = (1 + 62)p1(1)) + (1 + 82)p1(1)p1(2) =
= =81p1(1) + 61,1 (1)p1(2) < O



for all §; > 0.
In the case : = 2 analogous inequalities are fulfilled. O
Define now the two-dimensional faces

A = {za(k) = 0, z1(k) > 0},
A = {z,(k) =0, z4(k) > 0}. (3.6)
Ifz € ASQ) the second node is empty; if z € A(zz) the first node is empty.

Lemma 3.2 If the condition (1.2) is fulfilled then there ezxist §; > 0,1 = 1,2,
such that the inequality (3.5) holds and for z € AP takes place

G2(z) < Gy(z),
but for z € A(22) does
GQ(II?) > G](JI)
Proof. Let z € A(lz). Then
(1 +62)z:(1)
pa(1)

_ (I =p(2))zi(1) | (14 6)z1(2)
Gile) = M TTTae

Gz(:l,) =

The inequality
l+62 < l—p1(2)
12(1) A1

is fulfilled as it is equivalent to the inequality

p1(2) + p2(1) + b2p2(1) < 1,

which holds for sufficiently small &;. The case z € AS? is considered in the
same way. O
Let us define the Lyapounov function

G(z) = max(G,(z), Ga(z)), (3.7)

where the functions G;(z), G2(z) are defined by (3.4).
Suppose that a point = € Z7 is sufficiently far from faces A(lz), A(;) le.
queue sizes z; are large in both nodes.
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Lemma 3.3 There ezist ¢, 7 > 0, m € Z, such that
E(Glén) | & = ) < G(a) — ¢
for all x satisfying the condition
mih(zl, Tz) > T

Proof. The proof of this lemma is analogous to the proof of lemma 5.3
from [3]. In accordance with (3.5) the random sequence

Gi(&1). Gi(&), .-, Gi(6n)
is a supermartingale. Moreover, it has the property
E(Gi(€n41) | Gi(&r)s- -+, Gi(&1)) < Gil&r) — o,
for some o > 0. By lemma 1.1 {8] the exponential estimate
P(Gi(ém) — Gi(&) < —eim) > 1 = Cie™™,

holds for some C;, é;, €¢; > 0. Hence, choosing sufficiently large r we get that
for all i simultaneously

P(Gi(ém) — Gi(&1) < —em) > 1 — Ce™*™,

for some constants C, é, ¢ > 0. The result of the lemma follows easily from
this estimate. O

Let now a point z be close by one of the two-dimensional faces AEZ). The
following lemma is true.

Lemma 3.4 There exist e, 7 > 0, m € Z, such that
E(G(m) | & =2) < G(z) — ¢
for all x satisfying the condition

max(z,, ) > .



Proof is analogous to the proof of lemma 3.3. O

It follows from lemmas 3.3 and 3.4 that G(z) is a Lyapounov function.

Second construction. This construction gives rise to a one-step Lyapounov
function, i.e. m =1 in formula (3.1). To do this let us define the vectors

do = 'LU(/\]C[(].) + A262(2)),

di(1) = wpi(1)(—ei(1) + e2(1)),
di(2) = —wpi(2)er(2),
dz(1) = —wp2(1)ez(1),
d2(2) = wp2(2)(—e2(2) + €1(2)).
It is easy to see that

2 2

=1 k=1

Let us introduce the vectors
M(ky, ky) = do + dy(k1) + da(k2),
Ml(kl) = (10 + dl(kl), (38)

My(k2) = do + d2(k2),

where ki, k; = 1,2.
The one-step mean jump vectors of £, are equal to:

M(ky, k;), if both nodes are busy,
E(ny1 — & |t =a) = M(k), if node 2 is empty,
M(k,), if node 1 is empty

where a € A; x A, and k; are the types of calls being in progress at a given
moment. Thus, the one-step mean jump vectors depend only on types of
calls which are served at a given moment and do not depend on a service
discipline.

Now we construct the first vector field in R% [6], which is multivalued
in this case. The set of vectors

N(z) = {M(k1, k), ki ky = 1,2 zy(ky),z2(k2) > 0}
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corresponds to the point r ¢ Aﬁ” U A(;) (i.e., both nodes are busy), the set
Ni(z) = {Mi(k),k =1,2: z,(k) > 0}

corresponds to the point z € A(12) (i.e, the second node is empty), the set
No(z) = {Ma(k),k =1,2: z2(k) > 0}

corresponds to the point z € Agz) (i.e., the first node is empty). Here the
vectors M (ky, kq), Mi(ky), Ma(k;) are defined by (3.8).

Consider level surfaces of the function G(z). These surfaces are piecewise
linear surfaces as by the construction G(z) is a piecewise linear function.
Consider the surface of level 1:

S={z: G(z)=1}.

Then § = §; U S;, where

S1={Gi(z) =1, Ga(z) £ 1},

S = {Ga(z) =1, Ga(e) < 1}.
Take the hyperplanes

P: Gi(z)=1, Po: G(z) =1
-and corresponding the half-spaces

Pt =Gi(z) <1, P} =G(z) < 1.

It is easy to see that S is the surface of the two-face corner P N Py in R}
and S5;,S; are the faces of this corner.
It is convenient to reformulate lemmas 3.1 and 3.2 as follows.

Lemma 3.5 Any vector of sets N(z), Ni(x) with an initial point on P, lies
in P and any vector of sets N(z), No(z) with an initial point on Py lies in

P2+-

Lemma 3.6 The face S) does not intersect the coordinate face A(22) and the
face S, does not intersect the coordinate face A(IQ).
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Now we use smoothing to construct a smooth surface S(¢) which is an
approximation for the piecewise linear surface S.

Lemma 3.7 For any € > 0 there ezists a smooth convez hypersurface S(¢)
which satisfies the following conditions: for any x € S(¢) holds

o(z,5) <

for any z € S does
o(z,5(€)) <¢,

where o(z,y) is Euclidean metrics.

Proof. One can find a linear transformation such that the faces S;,S;
are orthogonal in a new basis. Therefore it is enough to consider the case
when the faces are orthogonal. We use cylindrical surface S(¢) to smooth
the surface S in some neighbourhood of the intersection Sp = S; N S;. Let
So(€) be the intersection of S(e) with this neighbourhood. Prolongating So(¢)
by linearity we get the smooth convex hypersurface S(¢) which satisfies the
conditions of the lemma.

Let us define the Lyapounov function

G(z) = a, where z € aS(¢),a > 1. (3.9)

The function G(z) is smooth by the construction.

By lemmas 3.5, 3.6 and 3.7 there exists o > 0 such that for any vector
v(z) of the set N(z), = ¢ A(l2) U A(22)’ or the set Ni(x), z € Asz), t=1,2 the
inequality

(VG(z),9(z)) < =0, 0> 0

is fulfilled uniformly over z € R}. )

Using the principle of almost linearity [9] we obtain that G(z) is a Lya-
pounov function with m = 1.

To prove the exponential estimates (2.2) and (2.3) we need some results
from [8]. Let us consider a Markov chain with a countable state space S and
with transition probabilities p;;. We suppose that the following conditions
are fulfilled: there exist a non-negative function f; on S and a positive integer
m such that

12



1). the series

Zexp(—bfg)

converges for any b > 0;
ii). there exists d > 0 such that p;; = 0 when |f; — f;| > d.
i11). there is € > 0 such that

ijpf;n) —fi< —e
J

for all : € S\ B, where B is a finite subset of S and pf;") are the m-step
transition probabilities.

If the above conditions are fulfilled then the following exponential esti-
mates take place:

1. The exponential estimate for the stationary probabilities:

mi < Cexp(—4fi)

for some constants C,é > 0.

2. Exponentially fast convergence to the stationary probabilities: there
exist constants Cy,0 > 0 such that

Y I p — 75 | < Crexp(—on)
7

for all : € § and for all n > o f;.

To prove the estimates (2.2), (2.3) it is sufficient to verify the conditions
1)-ii1). Condition iii) has already been verified. Condition ii) follows from
boundedness of jumps of ¢,. Condition i) holds as our Lyapounov function
is piecewise linear.

4 Proof of theorem 2.

In the case of disciplines with ahsolute priorities the communication network
under study is represented by a random walk in Z}. Ergodic properties of a
general random walk in Z} have been studied in [5]. The methods suggested
in this paper will be applied to analysis of our particular case. Now we
recall some definitions from [3]. Let us consider a discrete time homogeneous

13



Markov chain. The set of states is Z}. Let pg,';‘) be the n-step transition
probabilities,
M(z) = (M(2),..., My(z))

be the vector of mean jump from the point z in one step. For any A C
{1,...,4} the face B(A) of R} is given by

B(A)={(r1,...,ra): >0, 1€ A, 7, =0, i ¢ A}.

For short we shall write A instead of B(A).

A random walk which represents the network satisfies the following con-
ditions.

Boundedness of jumps:

Py =0, forfjz—y|l > 1,

where || z || = max; |z;].

Space homogeneity: for any A and for any « € AN Z4

+
Pry = Pr+a.y+a

forallz € ANZE, ye Z3.
We define the first vector field to be constant on any A:

My = M(z), z € A.

Let us define the induced chain. For any A we choose an arbitrary point
a € ANZ3 and draw a plane C* of dimension 4 — | A | which is perpendicular
to A and contains point a. We define the induced chain with the state space
CA and transition probabilities

APzy = DPzy + Zprz’ T,y € CA*
£y

where the summation is performed over all z € Z} such that the straight line
connecting z and y is perpendicular to C*.

We call the face A ergodic if the induced chain is ergodic. For an ergodic
induced chain let 7%(z) be the stationary probabilities. We introduce the
induced vector VA by setting

VA =0 7i¢A,

14



VA= Y aMz)Mi(z), i € A (4.1)

:
2€CA

For A = {1,...,4} we call A ergodic and put
VA=M(z), € ANZ].

Now we construct the second vector field for the random walk which
represents the network under study. Let us consider the three-dimensional
faces

Ags) = {z2(1) = 0,z:1(1) > 0,2,(2) > 0,z2(2) > 0},
AP = {21(2) = 0,21(1) > 0,25(1) > 0,z2(2) > 0}.
The two-dimensional face

A = {21(2) = 0,22(1) = 0,2,(1) > 0, (2) > 0}

is the intersection of faces A?’ and A(ga). The vectors of the first vector field
on faces Aﬁ‘”, Ag‘*’ are equal to

My = ME) = dy + dy(2) + dy(2) =

= (A2 — p2(2))e2(2) + Mes(1) + (12(2) — p1(2))er(2),

Mo = M = do + di(1) + da(1)

= (A1 = m(1))er(1) + Aze2(2) + (1 (1) — p2(1))e2(1).
Observe that the condition p;(2) + p2(1) > 1 implies

pi(l) > pa(l), p2(2) > pa(2).

The vectors Ml(a) and Més) lie on faces A(}a) and Aﬁf’), respectively. It means
that the union of faces Af" and ALY is the set of essential states of the random
walk. So it is sufficient to consider the random walk on these faces.

As faces Ags) and Aga) form the set of essential states these faces are
ergodic and the second vector field coincides with the first vector field:
Vi = Vi = M

A

15



Vo = v = MP.

A

Consider the two-dimensional faces Afz), t = 1,2, which are defined by
(3.6). The vectors of the first vector field on these faces are

Mya = M® = Aer(1) + Aea(2) — p1(2)er(2),

MA(22) = M2(2) = /\161(1) + /\262(2) - pz(l)eg(l)

Lemma 4.1 Faces A?), Agz) are ergodic and the vectors of the second vector
field on these faces are

Vio =V = hea(1) + (ha = m(2))ea (2),
Vi = VI = haea(2) + (A — p2(1))ea(1).

Proof. Consider the face A(22). For this face the induced chain is the
simplest one-dimensional random walk which jumps on 1 with probability cA,
and on -1 with probability cu;(1), where ¢ = (A; + p1(1))~". The stationary
probability that such random walk is not in state 0 is equal to

M
#1(1)

So in accordance with (4.1) we have

= pi(1).

V¥ = pu(1)Pryon Mg™ + (1 = pa(1))Pr e Mz,

Substituting the expressions for the vectors Més), éz) and taking their pro-

jections on the face A(22) we get
V7 = daea(2) + (M — pa(1)ea(1).

The vector 1/,(2) is computed in the same way.O

Remark that as only one component of each vector Mi(s) is negative there
are not other two-dimensional ergodic faces and there are not one-dimensional
faces.
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We define the second vector field V(z) to be constant on any ergodic face

A

V(z)=VA zeA.
Now we define the second vector field on non-ergodic faces. It can be multi-
valued. We say that A is an outgoing face for Ay, A; C A, if all coordinates
VA for i € A\ A, are positive. If £ € Ay, where A; is non-ergodic, then V()
takes all values V} for which A is an outgoing face. For example, two vectors

Vl(s), V2(3) correspond to the face A(,g). Further, the second vector field will
be denoted by V.

Lemma 4.2 If

p1<1,pp <1, and p1(2) + p2(1) > 1

we never reach 0 moving along any trajectory of field V.

Proof. Let us start at a point = € A(ls) U A(Qa). Moving along a trajectory
of field V we certainly reach one of the one-dimensional faces A(ll) or Agl),
where

Agl) = {z;(1) > 0, other coordinates = 0},

AV = {24(2) > 0. other coordinates = 0}.

So one can suppose that a starting point lies on faces Aﬁ”, Agl) , for example,
z € A(zl). On this face the vector of the second field is Vz(a) which lies on the
three-dimensional face Af”. So we shall move along the vector V2(3) until we
reach the two-dimensional face Agf). Further, we shall move along the vector
\/2(2) on the face A(22) and reach a point y lieing on the one-dimensional face
Agl). It is easy to compute that

_ /\2.’17

#2(1)‘)‘1.

The second vector field on the face Agl) is equal to Vl(s) where VI(S) lies on the
three-dimensional face A(ls). Therefore, we shall move along the vector Vl(s)
until reach the two-dimensional face A!” and then moving along the vector
V‘(Q) on this face we reach a point  belonging to the face A(;). Thus, the
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cycle has been finished. We have again reached the face AQ" we have started.
It is easy to compute

oMy
#1(2) — Az
_ A dz
(#2(1) = A)(p1(2) = A2)
The inequality
A1dg

(1) = ) (@) =) !

is equivalent to the inequality

P1(2) 4+ p2(1) > 1

Therefore, we never reach 0 moving along trajectories of field V.0
To prove that the network is transient we take the Lyapounov function
F(z) to be equal to the reaching time of state 0 starting at z and moving
along trajectories of field V in reverse direction. It is clear that for some
6>0
F(z+V(z))— F(z) >4,

where V(z) is a vector of field V in the point z. Then from the theorem 2.1
[8] it follows that the random walk is transient.

5 Proof of Theorem 3.

We prove this theorem for the case of the service discipline D3(p).
Let us define the linear functions

/i, T) = ,t=1,2,
() o
o Az
Aus(@) = 2o22)
1
- Aso(z
Az,z(l’)— 2;12( ),
2



where the functions A, ,(z), Az2(z) are defined by (3.2), the function A;(z)
is defined by (3.3), pi is the total load in the ¢-th node and constants a; are
chosen in the special manner.

Let us define the Lyapounov function

H(f'?) = max(/il(x), Az(m), /‘11,1(1?), A22($))
We show that there exist ¢ > 0 and m € Z, such that
E(H(n) |61 =2) < H(z) — ¢ (5.1)

for all z € Z1 \ B, where B is a finite set.
The proof of this statement is based on the following lemmas.

Lemma 5.1 The one-step mean increments of the functions A;(€,), A11(&n),
Az2(€n) are
E(Ai(lns1) — Ai(&a) €ni > 0) = =1 + py,

E(Al,l(fnﬂ) - Al,l(gn) Ién.l(l) > 0) =-1+4+ pl(l)a
E(Az2(&n+1) — A22(6n) | €n2(2) > 0) = —1 + pa(2),

Proof : analogous to the proof of lemma 3.1. It is based on explicit
calculations.

Lemma 5.2 There erist constants a, and a, such that for z € AP
max(A;(z), Ay1(z)) < max(Ay(z), Az.(2)),
but for z € A
max(A,(z), A11(z)) > max(Ay(z), Az2(z)),
Proof: similar to the proof of lemma 3.2.
Lemma 5.3 There exist such e,7 >0 and m € Z, that
E(H(ém) & =2) < H(z) — ¢
for all = satisfying the condition

min(z,y,x9) > 7.
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Proof: it mimics the proof of lemma 3.3.
If z is close by one of the two-dimensional faces A?’, Agz) the following
result takes place.

Lemma 5.4 There exist ¢,7 > 0 and m € Z, such that
E(H(fm) |6 =2) < H(z) —€
for all z satisfying the condition
max(zy,z2) > 7.

Proof is analogous to the proof of lemma 3.3.

Remark. One can construct an one-step Lyapounov function, i.e. the
inequality (5.1) is fulfilled for m = 1, in the same way as it has been done in
theorem 1.

The exponential estimates of the form (2.2), (2.3) are deduced from exis-
tence of the Lyapounov function in finite steps in the same way as in theorem
1.

The disciplines Dy(p), D2(p) are considered by analogy with the above
case. Moreover, it is known a solution of this task for general networks with
the help of explicit formulae [10].
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