State-space H infini control : a complete solution via convex Riccati inequalities

Abstract : The most general H control problem is solved by elementary state-space manipulations. Here the characterization of feasible closed-loop gains g is in terms of Riccati inequalities rather than equations. This allows treatment within a single framework of both regular and singular continuous - or discrete - time H problems. An interesting by-product of this approach is a convex state-space parametrization of all H suboptimal controllers, including reduced-order ones. Here the free parameters are pairs of positive definite matrices solving the Riccati inequalities and satisfying some coupling constraint. Such pairs form a convex set and given any of them, the controller reconstruction amounts to solving a linear matrix inequality (LMI). Applications of these results to the improvement of classical H design techniques are discussed.
Type de document :
[Research Report] RR-1794, INRIA. 1992
Liste complète des métadonnées
Contributeur : Rapport de Recherche Inria <>
Soumis le : lundi 29 mai 2006 - 11:56:30
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : vendredi 13 mai 2011 - 22:39:19



  • HAL Id : inria-00077034, version 1



Pascal Gahinet, Pierre Apkarian. State-space H infini control : a complete solution via convex Riccati inequalities. [Research Report] RR-1794, INRIA. 1992. 〈inria-00077034〉



Consultations de la notice


Téléchargements de fichiers