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Abstract: The most general H,, control problem is solved by elementary state-space manip-
ulations. Here the characterization of feasible closed-loop gains 4 is in terms of Riccati inequalities
rather than equations. This allows treatment within a single framework of both regular and singular
continuous- or discrete-time H,, problems.

An interesting by-product of this approach is a convex state-space parametrization of all H-
suboptimal controllers, including reduced-order ones. Here the free parameters are pairs of positive
definite matrices solving the Riccati inequalities and satisfying some coupling constraint. Such
pairs form a convex set and given any of them, the controller reconstruction amounts to solving a
linear matrix inequality (LMI). Applications of these results to the improvement of classical H,
design techniques are discussed.

Une Solution Compléete du Probleme H par les
Inégalités de Riccati

Résumé: Une solution compléte du probleme de contréle H,, est obtenue par des manipula-
tions élémentaires basées sur les représentations d’état. Ici la faisabilité d’un gain en boucle fermée
~ est caractérisée en terme d’inéquations de Riccati au lieu des équations de Riccati habituelles.
Ceci permet un traitement unifié des cas continu et discret ainsi que des problemes H, singuliers.

On obtient de plus une paramétrisation convexe de tous les compensateurs H,, sous-optimaux,
y compris ceux d’ordre réduit. Les paramétres libres sont des pairs de matrices définies positives
solutions des inéquations de Riccati et satisfaisant une contrainte de couplage. L’ensemble de ces
pairs est convexe et étant donné un élément quelconque de cet ensemble, les paramétres du com-
pensateur se calculent par la résolution d’une inégalité matricielle linéaire. Quelques applications
de ces résultats a ’amélioration des techniques de synthese H,, sont discutées en fin du rapport. .




1 Introduction

DGKF’s state-space formulas [3] are widely accepted as an efficient and numerically sound way
of computing H,, controllers. Indeed, solving two algebraic Riccati equations (ARE) is all it
takes to test for existence of adequate controllers. In addition, explicit state-space formulas are
given for some particular solution called the “central controller.” Finally, all suitable controllers are
parametrized via a linear fractional transformation built around the central controller and involving
a free dynamical parameter Q(s) [3].

Unfortunately, DGKF’s solution also suffers from shortcomings which limit the scope and per-
formance of current state-space design techniques. First, it only applies to plants which satisfy
certain restrictive assumptions called “regularity” assumptions. Even though extensions to singular
problems have been proposed by [17, 15, 18], their numerical implementation is far less immediate.
Secondly, DGKF’s approach overemphasizes the “central” solution. Indeed, the @-parametrization
is impractical as a design tool since there is no obvious connection between the free parameter
Q(s) and the controller or closed-loop properties. As a result, the diversity in H., controllers is
hardly exploited and applications rely almost exclusively on the central controller despite certain
undesirable properties. For instance, its tendency to cancel the stable poles of the plant [16] which
leads to unacceptable designs for flexible structures. Finally, the order of the central controller
matches that of the augmented plant which may be relatively high. Reduced-order H. design
would therefore be desirable and the @-parametrization seems inadequate for this purpose.

An alternative to the J-parametrization is the concept of convex state-space parametrization of
H,, controllers introduced in [7]. This parametrization consists of replacing the usual H,, Riccati
equations by Riccati inequalities and of using the solution set of these inequalities to recover all
suboptimal H,, controllers, including reduced-order ones. Specifically, controllers are generated
from the set of pairs (X,Y) of symmetric matrices satisfying (with the assumptions of [3]):

ATX + XA+ X(v 2B,BT - B.BI)X +CTC, < 0
AY + YAT +Y(y72CTC, - CJC)Y + BiBT < 0
X >0, Y >0, p(XY)<AH2

As it turns, certain desirable objectives such as controller order reduction or damping of the
closed-loop modes have a clear interpretation in terms of X,Y (see Section 9). Unlike the Q-
parametrization, this formulation therefore allows practical design of better H,, controllers.

The present paper generalizes the results of [7] to singular continuous-time problems and to
regular or singular discrete-time problems. We are only concerned with infinite-horizon problems
for linear time-invariant systems. Our approach is conceptually straightforward and solely relies on
the following two facts: (1) via the Bounded Real Lemma, H-like constraints can be converted
into algebraic Riccati inequalities (ARI) and in fact into linear matrix inequalities (LMI); (2) the
controller parameters enter the LMI linearly; hence they can be eliminated to obtain solvability
conditions which depend only on the plant data and two extra parameters R and S. Insighted by
[7], Iwasaki & Skelton have independently obtained results similar to ours for the continuous-time
case [10]. Finally, there are analogies between our derivation technique and the manipulations in
[13] (see Lemma 3.1 below and its applications).

The paper is organized as follows. Section 2 gives a precise statement of the suboptimal H
control problem and recalls its state-space formulation. Section 3 contains an instrumental lemma
which allows the elimination of the controller parameters. Solvability conditions for the most
general suboptimal H_, problem are derived in Sections 4 and 5 in the continuous- and discrete-




time cases, respectively. In Section 6, these conditions are turned into LMI’s which define a convex
set of free parameters. The issue of constructing adequate controllers from these free parameters
is addressed in Section 7. Finally, Section 8 compares this approach to the classical ARE-based
results of [9] and applications to the refinement of current H,, design techniques are discussed in
Section 9.

The following notation will be used throughout the paper: on..(M) for the largest singular
value of a matrix M, and Ker M and Im M for the null space and range of the linear operator
associated with M.

2 Suboptimal H,, Problem

Consider a proper continuous- or discrete-time plant P which maps exogenous inputs w and control
inputs u to controlled outputs ¢ and measured outputs y. That is,

Qo) \ _ W(o)

( (o) ) = PO v(o)
where o stands for the Laplace variable s in the continuous-time case and for the Z-transform
variable z in the discrete-time case. Given some dynamic output feedback law u = K (o)y and with

the partitioning
_ [ Pu(a) Pu(o) _
Ple) = ( Pau(0)  Py(o) ) (o= 22), @1)

the closed-loop transfer function from disturbance w to controlled output ¢ is:
f(P, I() = P11 + Plg.[((l b Pg?]\”)—lpzl- (22)

The suboptimal H, control problem of parameter v consists of finding a controller K (o) such
that:

o the closed-loop system is internally stable,
e the H,, norm of (P, K') (the maximum gain from w to ¢) is strictly less than ~.

Solutions of this problem (if any) will be called y-suboptimal controllers.
As usual in state-space approaches to H,, control, introduce some minimal realization of the
plant P:

P(o) = ( g: 322 ) + ( g; )(01— A" (By, B,) (0 =s,2) (2.3)
where the partitioning is conformable to (2.1). The problem dimensions are summarized by:
AeR™™ Dy €RPY™; Dy € RPP*™,
Throughout the paper, the only assumptions on the plant parameters are:
(A1) (A, B,,(,) is stabilizable and detectable,

(A2) D22 = 0.



The first assumption is necessary and sufficient to allow stabilization of the plant by dynamic output
feedback. As of (A2), it incurs no loss of generality while considerably simplifying calculations {9].
None of the customary “regularity” assumptions on the rank of D,; and D,, and on the invariant
zeros of Py,(s) and Py (s) [3] is needed in this approach.

Assuming (A2) and given any proper real-rational controller K (o) of realization

K(0) = Dk + Cx(oI — Ax)™'Bk; Ay € R¥** (0 =s,2), (2.4)

a (not necessarily minimal) realization of the closed-loop transfer function from w to z is obtained
as:

F(G,K)(0)=Dy+ Cy(ol - AC,)"BC, (2.5)
where
A = <A+BQDKCQ BZC,{), B - (BI+BQDKD21),
“ BxC, Ak )’ “ BxDxn )’
Ce = (Ci+ Dy2DgC,, D12Ck); D, = Dy, + D,;DgD,. (2.6)

Gathering all controller parameters into the single variable

0 := (g: g';) (2.7)

and introducing the shorthands:

A 0 B
Ay = (0 0k>; Bo=(0‘>; Co=(01,0);

— 0 B? . _ 0 Ik . _ . _ 0
B = (I,c 0)’ C_(02 0)’ D12 = (0, Dy2); D2l_<D21>’ (2.8)

the dependence on K of A, B.,,C.., D., takes the affine form:
A=A +BOC;, Bu=By+BODy; Cu=Co+D120C; D= Dy+ D1,0D;y. (2.9)

Note that all parameters in (2.8) involve only plant data and that A.,, B., Cece, D¢ depend linearly
on the controller data ©. This fact is instrumental to the solution derived in Section 4.

3 Useful Results

The following Lemma plays a central role in our approach.

Lemma 3.1 Given a symmetric matriz ¥ € R™*™ and two matrices P,Q of column dimension
m, consider the problem of finding some matriz © of compatible dimensions such that

¥+ PTOTQ +QTOP <. (3.1)

With Wp,Wq denoting any matrices whose columns form bases of the null spaces of P and Q,
respectively, this problem has a solution if and only if

{W,WWP < 0

3.2
WIv W, < 0. (3:2)



Proof: Necessity of (3.2) is clear; for instance, from P Wp = 0 it follows that (3.1) reduces
to WEUWp < 0 when pre- and post-multiplied by W1 and Wp, respectively. For details on the
sufficiency part, see Appendix A. An analogous result can also be found in {13].
n
The proofs of our main theorems will also make extensive use of the following standard result
on Schur complements and negative definite 2 x 2 block matrices.

Lemma 3.2 The block matriz ( M) is negative definite if and only if

P
MT Q
< 0

{P—MQ“MT < 0 (3.3)

In the sequel, P — MQ~'MT will be referred to as the Schur complement of Q.

4 Solvability of Continuous-Time Problems

We first recall the Bounded Real Lemma for continuous-time systems. This lemma helps turning
the H,., suboptimal constraints into an LML

Lemma 4.1 Consider a continuous-time transfer function T(s) of (not necessarily minimal) real-
ization T(s) = D + C(sI — A)~'B. The following statements are equivalent:

(i) |1D + C(sl — A)'Bll. < v and A is stable in the continuous-time sense
(Re (A:(4)) < 0);

(ii) there exists a symmetric positive definite solution X to the LMI:
ATX + XA XB ~7y7'CT

BTX I 4'D" | <o. (4.1)
v 1C ¥y~ 'D -1

Proof: See, e.g., citeSch90Ric, p. 82.

Note that the LMI (4.1) is equivalent to
Umax(D) < Y
ATX + XA+ 7473 CTC+(XB+~73CTD)I -~+72DTD)"Y(BTX +y72DTC)< 0

where we recognize the more familiar algebraic Riccati inequality associated with the Bounded Real
Lemma.

Combining the Bounded Real Lemma 4.1 and Lemma 3.1, we obtain the following necessary
and sufficient conditions for the existence of y-suboptimal controllers of order k.

Theorem 4.2 Consider a proper plant P(s) of minimal realization (2.3) and assume (A1)-(A2).
With the notation (2.8), define

p = (BT’ O(k-f-m;)xmn DTQ)! Q = (Cv D?la 0(k+p2)xp,) (42)




and let Wp and Wg be two matrices whose columns span Ker P and Ker Q, respectively.
Then the set of y-suboptimal controllers of order k is non empty if and only if there ezists some
(n+ k) x (n + k) positive definite matriz X, such that:

Widx Wp <0; Wi¥x, Wo<0 (4.3)
where
Acht + XclAO 5 XclBO 7_10(;1‘
‘y ] :: .. E e P
Xet BT X,, P —I 47DT,
77'Co A ZTE |
Ao (7TPXD+ (X AT T By (vTXGH CF
@ ! := . e E ... TEEEEY ) 4.4
Xece 7_1Bg : _7 ‘)’_1D’1rl ( )
Co(772X3Y) . 77 'Dy -1

Proof: From the Bounded Real Lemma, K(s) = Dg + Cr(s] — Ax) !Bk is a kth-order -
suboptimal controller if and only if the LMI

AT X+ XeeAee XoBo 77'CHL
Bl X -1  y7'DI, | <0 (4.5)
7_lccl "/_1ch I

holds for some X, > 0 in R{*+¥)x(»+k)  Thijs LMI depends linearly on the controller parameters
as seen when A, B, C., D, are replaced by their expressions (2.9). The inequality (4.5) then
reads:

‘I’,\‘d + QT o7 P,\’Cl + 'p)’l('d 0Q<0 (4.6)
Ax Bg

where © = (CK D

) , Ux., and Q are defined above, and

,P,\’d = (BT_X'C[, 0, Dng) (4?)

Invoking Lemma 3.1, we can now eliminate © and derive existence conditions involving only X,
and the plant parameters. Specifically, let Wr, —and Wg denote matrices whose columns span
Ker Px_, and Ker @, respectively. Then (4.6) holds for some O if and only if

Wi, Vx Wp, <0 Wiex Wo < 0. (4.8)

Hence the set of kth-order y-suboptimal controllers is nonempty if and only if (4.8) holds for some
X > 0 in RUHHEIX(4E),
To complete the proof, we just need to rewrite the first inequality in (4.8) as

Xee 00
HIdyx Wp < 0where Hp is any basis of Ker P. To this end, observe that Py_, = P( 0 1 0)
0 0 I



with P as in (4.2). Given any basis Wp of Ker P, it follows that

y1X7' 00
prcl = ( 0 I 0 Wp

0 0 I

forms a basis of Ker Px_,. Hence W7 ‘\I!xchpxd < 0 is equivalent to

YIX0 000 y71X;0 0 0
W,Z{ 0 I 0] ¥y, 0 I 0 Wp = Widx Wp <0.

0 0 I 0 0 I

]

The characterization of Theorem 4.2 is awkward because both X, and its inverse are involved
and the role of each specific plant parameter is somewhat blurred. Fortunately, the conditions
(4.3) can be reduced to a pair of Riccati inequalities of lower dimensions which exactly parallel the
usual H,, Riccati equations. To derive this simpler characterization, it suffices to partition X,, and
v72X ' conformably to A.,, calculate explicit bases Wp and Wy of Ker P and Ker Q, and carry
out the block matrix multiplications. Formulas and calculations are simpler when introducing the

following shorthands:

A:= A- ByD}YCy; B, := By — B,D},D\y; B, := B,D¥;
C'l = (I — DlgD.lt_,)Cl; D“ = (I — D12D.1+2)D113 (49)

and

A:= A- B, D},Cy; C,:=C,—-D,D}Cy; C,:= D}Co;
B, := B,(I - D},Ds); Dy, := Dy,(I - D, D,)). (4.10)

Note that this approach is valid for both regular and singular H,, problems.

Theorem 4.3 (y-suboptimal controllers for continuous-time plants)

Consider a proper continuous-time plant P(s) of order n and minimal realization (2.3) and assume
(A1)-(A2). Let Wy, and W, denote bases of the null spaces of (I— DY, D,2) BT and (I— D, D3,)C,
respectively. With the notation (4.9)-(4.10), the suboptimal H,, problem of parameter v is solvable
if and only if

(Z) 7 > max (Umax(Dll)aamax(Dll))y

(it) there exist pairs of symmetric matrices (R, S) in R"*" such that

N T - -1 -
wrT, {AR+R;1T—BQB§+< C,R ) ( I —Dln/v) ( CiR )}W12 <0 (4.11)

7B ) \-Dfi/v v~ 8]
T ) ;1 i AT A BlTS ! I "DxTx/'Y - BlTS
W') - a2 L2 > ~ = % .
TSATS + SA-CTC, + (7_,01) (—011/7 : ) (7_1C1> Wa <0 (4.12)
R > 0; S >0 Amin(RS) > y72 (4.13)




Moreover, the set of y-suboptimal controllers of order k is non empty if and only if (ii) holds for
some R,S which further satisfy the rank constraint:

Rank (y~2I — RS) < k. (4.14)

Prior to a formal proof of this result, we give some insight into its meaning and implications.
First, if Dy, and DI have full column rank, the projections I — D},D,, and I — D, D}, are
identically zero and W, and W,; can be taken as the identity matrix. The constraints (4.11)-
(4.12) then reduce to a pair of algebraic Riccati inequalities. Solutions R, S to these ARI's are
further constrained by the positivity and coupling conditions (4.13). With the notation X := R~!
and Y := §!, and the simplifying assumptions of [3]:

D,, =0; DTQ(D12»01)=(1,0); D21(Dg‘1,B’1r) ’—'(170),
(4.11)-(4.13) reduce to

ATX + XA+ X(v*ByBT - B,BI)YX +CTC, < 0 (4.15)
AY +YAT +Y(y7CTC, - CTC,)Y + BiBT < 0 (4.16)
X >0 Y > 05 p(XY) < y? (4.17)

In the left-hand sides of (4.15)-(4.16) we recognize the usual H,, Riccati expressions. The con-
straints (4.17) are also similar to those arising in [3]. Further details on the connection with the
classical results in terms of Riccati equations can be found in Section 8.

When the H,, problem is singular, the ARI constraints are relaxed in some directions via
projections on the ranges of (I — D},D,3)BT and (I — D4, D},)C,, respectively. Since DGFK'’s
results are not applicable to singular problems, the characterization of Theorem 4.3 coupled with
convex optimization techniques is a computationally appealing substitute (see Section 6). Note that
[17] also solves singular H,, problems by means of Riccati inequalities. Yet, the characterization
of [17] contains additional rank and stability constraints which destroy convexity and hence are
detrimental to numerical tractability. For more details on singular vs. regular problems, see [8].

Finally, another novelty in Theorem 4.3 is the rank condition (4.14) for existence of reduced-
order H, controllers. If & > n (full order or higher), this condition is trivially satisfied and
(4.11)-(4.13) are necessary and sufficient for the existence of y-suboptimal controllers of order k.
This confirms the well-known fact that whenever a suboptimal H., problem is solvable, we can
find adequate controllers of order equal to the plant order n. Yet, y-suboptimal controllers are
not necessarily of order n. In fact, there will exist reduced-order controllers (k < n) whenever
(4.11)-(4.13) hold for some pair (R, S) which further satisfies Rank (y~2I — RS) = I. Note that
Amin{ RS) = v7? for such pairs, or equivalently in terms of X := R~! and Y := §~!, p(XY) =
v2. Hence equality in Ay (RS) > 72 corresponds to pairs (R, S) generating reduced-order H,
controllers. This is consistent with the order reduction experienced in optimal central controllers
when p( X, Y. ) = 77 at the optimum.

Proof of Theorem 4.3: From Theorem 4.2, the set of y-suboptimal controllers of order & is
non empty if and only if (4.3) holds for some X, > 0 in R{®+¥)*(n+¥) To express (4.3) in terms of
the plant parameters, introduce the block partitions:

. S N . R M
X = (NT . ); 17X = (MT . ) (1.18)




where R, S € R™*" and M, N € R™**. Consider the first constraint 1} &_, Wp < 0 of (4.3), for
instance. With the notation (4.18), ®x_, defined by (4.4) reads:

AR+ RAT AM ' ~47'B, RCT

MTAT 0 : 0 MTCT
Px., = .. cee (4.19)
y~'BT 0 : -1 y~1DT,
CiR CiM : ~7'Dy -1
Meanwhile, from
0 I, 0 0
P=1BT 0 \0/ DT,
it follows that bases of the Ker P are of the form:
W, 0
0 0
7 —
Wp = 0 I (4.20)
W, 0

where (32) denotes any basis of the null space of (B] , D7,). Observing that the second row in

the block expression (4.20) is identically zero, the condition WT & x_, Wp < 0 reduces to:
W, 0\" [ AR+ RAT ~'B, RCT W, 0
0 ]ml 7—13'11‘ -1 7—1D'1Tl 0 Im, < 0.
II/'4 0 ClR 7_1.D]1 —I W4 0

By a Schur complement argument with respect to the (2,2) block, this is also equivalent to:
W,\" [{ AR+ RAT RCT . B - W,
<W,> {( CiR —1 )t p, )BT DR (I/V,) <0

{ AR+ RAT +4-*B,BT RCT + ~-%B, DT,
1 ! [ 1 1~ /
M‘e ( Ci\R+ 7—2D1131r -1+ 7_2D11D,1Fl Nr <0

that is,

(4.21)

where the columns of Mg span the null space of (BT , DT,).
To derive the ARI (4.11), it now suffices to calculate Az explicitly. To this end, introduce a
basis W, of the null space of (I — Df,D,,)BT and an orthonormal basis Uy, of (Im Dy5)*; that is,

T
a matrix Uy, such that [D,,, Uy»] is invertible and (5‘72) U, = (?) Elementary linear algebra
then shows that Mg can be taken as: .

_( Wy, 0 .
Ng = (_ngw U12> . (4.22)




Carrying out the matrix products in (4.21), observing that B,U,; = 0, and using the notation (4.9)
to simplify the resulting expression, we obtain:

(Wsz (/iR+ RAT + y~2B, BT - 3233) Wi, WE(RCT +y72B,DT)) Um) <0
UL (CiR+~72D,,BT) UL(=I+~7%D,D{,) Uy,

Now, U,, can be eliminated upon remarking that U,,UT, = I — D,,Df,. With the notation (4.9),
it follows that

(wg (AR + RAT + =B, BT - B,B]) W\, WE(RCT + 4728, D7, ) <0
(CyR ++72Dy, BT)W,, ~I++72D,, DT,

which is equivalent to (4.11) by another Schur complement argument.

Similarly, the condition WJ ¥x , Wg < 0 is equivalent to § satisfying (4.12). Hence X,
satisfies (4.3) if and only if R, S satisfy (4.11)-(4.12). Moreover, X, € R{"*k)x("+%) and X, > 0 is
equivalent to R, S satisfying (4.13) and (4.14) (see, e.g., [13, 7]).

Summing up, if X, > 0 of dimension n+Fk solves (4.3) then (4.11)-(4.14) hold for the symmetric
matrices R, S given by (4.18). Conversely, if the system (4.11)-(4.14) admits a solution (R, S), then
Xce > 0of dimension n+k can be reconstructed from R, S to satisfy (4.18) [13]. From (4.11)-(4.12),
this X ., must further solve (4.3): the proof is complete.

]

5 Solvability of Discrete-Time Problems

The machinery developed in the previous section for continuous-time problems is easily transposed
to the discrete-time context and leads to qualitatively similar results as shown next. We begin by
recalling the Bounded Real J.emma for discrete-time systems.

Lemma 5.1 Consider a discrete-time transfer function T(z) of (not necessarily minimal) realiza-
tion T(z) = D+ C(zI — A)"'B. The following statements are equivalent:

(i) |ID + C(sI — A)"'B|| < 1 and A is stable in the discrete-time sense (|\;(A)| < 1);

.. . TAT' TB
(”) Tinle;lrf;ible Tmaz ( CT! D ) <1

(iii) there exists X = XT > 0 such that

ATXA-X ATXB cT
( BTXA B'XB -1 DT) <0 (5.1)

C D -1

(iv) there cxists X = XT > 0 such that

-X* A B 0
AT X o0 CT
BT 0 -I DT

0 ¢ D -I

<0 (5.2)




Proof: See, e.g., [4].

u
Applying this lemma to the realization (2.6), the controller
I\',(Z)= DK+CK(ZI—AK)_1BK N AK GR"X"
is y-suboptimal if and only if the LMI
X2 A Be. 0
AZ‘I —Xd 0 ‘7-1C5
B, 0 B < 0. (5.3)
0 7-1Cc£ 7_1Dct -1
. Ax Bk . : .
With 0 := and the decompositions (2.9), this reads:
Crk Dg
Uy, +QT0TP+PTOQ <0 (5.4)
where
—’)’_:')Xc;l ')‘_IAO ’)‘_IBO 0
-17T . _ : -1T
Wy, = | A K 0 TG (5.5)
y-'BT 0 : -1 S
0 E ’)’_ICO : ’)'_lDll -T
P = v"”(BT,o,o,DTg)=v“/2<0 [ 00:00 ) (5.6)
BT 0 : 0 0 : 0 DT
Q = 77*(0.C, Dy, 0) = 7““(0 0= 0 10 0) (5.7)
0 0 : CQ 0 Dgl 0
From Lemma 3.1, (5.4) is feasible in © if and only if
Wl Ux, Wp <0; WS ¥x, Wo <0 (5.8)

where Wp and Wy denote bases of Ker P and Ker Q.
As in the continuous-time case, focus on the first constraint and observe that, conformably to

(5.6), Wp is of the form:




With this Wy and the partitioning (4.18) of X, and X', WI¥x ,Wp < 0 reduces to:

( -R Sy 0: 7"181 0
WwT oo o wT ...T W, 0 0
. . =1 4T ., . “1~T 11! ... ...
L T A Cxe g i OC‘ 0 In4e O
0 ‘Iuyx: 0 O o 7 6 0 .. L. |<o
. . 0 0 Im.
0 : 0 : 17711 0 7-13']]' 0 0 -1 7_1D’1[‘1 W4 0 0

K 0 57_101 037-10“ I )

Carrying out block multiplications and forming the Schur complement of the block —X,,, this is
equivalent to X, > 0 and

w, 0\" -R ~7'B, 0 A0 AT 0 CT W, 0
0 I, B -1 of )+ oo )erixa (GG ) ] 0 i) <o
Ws O 0 ’)’—ID“ - Ci 0 Ws 0

Further simplification of the bracketed expression and computation of the Schur complement of the
(2.2) block then yield:

<w1 )T (ARAT - R++7%B,BT ARCT +~-2B, DT, ) (wl) <0 (5.10)
‘/V4 Cl RAT + ‘)’_QD“B;T -1 + 7—2D“D'1T1 + CIRC? W4 ’ )

W
9 W74
U,+. It then suffices to eliminate U, as in the proof of Theorem 4.3 to finally obtain:

Now ) can be replaced by the explicit expression (4.22) with identical definitions of W;, and

Wi, (ARAT ~ R+77?B BT ~ BoBT ) Wi W, (ARCT 44728, D7) 0
, . . o <
(C"JRAT +7_’D118T) Wia —[-{--):'~D“[)Tl +C1RCiI‘

Summing up, we can state the following counterpart of Theorem 4.3 for discrete-time systems.

Theorem 5.2 (y-suboptimal controllers for discrete-time plants)

Consider a proper discrete-time plant P(z) of order n and minimal realization (2.3) and assume
(A1)-(A2). Let W,, and W,, denote bases of the null spaces of (I— D{,D,,) BT and (I— D, D¥,)Cs,,
respectively. With the notation (4.9)-(4.10), the suboptimal H,, problem of parameter v is solvable
if and only if

(1) v > max (Uma.r:(Dll)’omar(DH))v

(ii) there exist pairs of symmetric matrices (R,S) in R"*" such that

CiRCT + 47D, DT, < I BTSB, +v7*DT.D,, < I (5.11)
- - T “ - - ~ -
A - C\RAT\ (I-C,RCT -Dy,/y\ ' {C RAT
yT T _R_ B,BT 11ts ( 1 1 11 ) e/ .
iw{ARA R — B,B! +(7“BT) DT/ I . Wi, <0
(5.12)




~ T - ~ - - -
T 7 A BTSA I-BTSB —DT/'y)" BTSA .
")I' TS, - D - Z‘/o 1 g ! 11 1= W, 1
W_I{A SA-§ C-(‘_+<7_ICI) ( s I Ve, 2n <0 (5.13)

R>0; S>0; Amin(RS) > 72 (5.14)

Moreover, the set of v-suboptimal controllers of order k is non empty if and only if (ii) holds for
some R, S which further satisfy the rank constraint:

Rank (y~%1 - RS) < k. (5.15)

Clearly the continuous- and discrete-time characterizations are similar in nature. Discrete-time
Riccati expressions replace continuous-time ones, and the only qualitative difference lies in the
additional constraints (5.11) on R and S. Even this difference becomes immaterial when (5.12)-
(5.13) are written as LMI’s in R and S (see Section 6).

6 LMI Formulation and Convexity Properties

The solvability conditions obtained in Theorems 4.3 and 5.2 involve Riccati inequalities instead
of equations. At first this could seem a drawback since ARI’s cannot be solved by the standard
numerical techniques for Riccati equations [11]. Fortunately, these ARI’s as well as the positivity
and coupling constraints turn out to depend convexly on the unknown variables R, S. In fact, they
can be rewritten as matrix inequalities linear in R and S. Hence this characterization is not only
numerically tractable, but also falls within the scope of efficient convex optimization algorithms
such as [1, 12].

The convex LMI reformulation is a by-product of the proofs of Theorems 4.3 and 5.2. For
continuous-time systems for instance, we have shown that WI®yx Wy < 0 was equivalent to
the LMI (41.21). In addition, the positivity and coupling constraints (4.17) are equivalent to
( R~

S ) > 0. Hence the LMI reformulation of Theorem 4.3 is as follows.

The continuous-time suboptimal H,., problem of parameter v is solvable if and only if

AR+ RAT +v72B,BT RCT + 472D, DY,

AT 18y 1 1y
N ( C\R +“/QQDHBT -—I-{-‘y‘zD“D'lrl Nr < 0 (6.1)

AT S + SA+ 'Y_QC;I‘Cl .S'Bl + '}’_2C;TD11
Vi ( BTS +97*DLB,  ~1++2DDy, )M <0 (6.2)

R 7‘11>
>

(7_11 s > 0 (6.3)

where Np and N5 denote bases of the null spaces of (BY, DT,) and (Cy, Ds,), respec-
tively. In addition, there exists v-suboptimal controllers of order k < n (reduced order)

if and only if (6.1)-(6.3) hold for some R,S which further satisfy:

Rank (%1 — RS) < k. (6.4)
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Note that Mz and Ns should be chosen orthonormal for numerical stability. Such bases are easily

computed via SVD’s of (gz ) and (C,, D4;). The following counterpart is obtained for discrete-
12

time systems based on (5.10).

The discrete-time suboptimal H,, problem of parameter v is solvable if and only if

AT (AIZAT -~ R+v72B, BT ARCT + 2B, DT}
R ClRAT_*_,),—?D“B'lT —I+7_2D11D’1Tl +ClRC’lr
ATSA - S+ +472CTC, ATSB, + v DT, B,
N ( BTSAy~*DT,B,  —-I+7*DT,D,, + BTSB, ) Ns < 0 (66)

R 47U
(7—11‘ .S' ) Z 0 (67)

)NR < 0  (6.5)

where Nr and Ns denote bases of the null spaces of (BT, DT,) and (C,, Da,), respec-
tively. In addition, there exists y-suboptimal controllers of order k < n (reduced order)
if and only if (6.5)-(6.7) hold for some R,S which further satisfy:

Rank (y™%I — RS) < k.

The 2 x 2 block matrices in (6.1)-(6.2) and (6.5)-(6.6) depend only on the open-loop plant pa-
rameters A, B,,C,, D|,. Meanwhile, the control interconnection parameters By, C, D)4, D, specify
the projections Mz and ANs.

The constraints for solvability of the suboptimal H,, problem are linear in R, .S and therefore
define a convex set of pairs (R, S). Hence efficient convex optimization algorithms such as [1, 12]
can be used to test whether this set is nonempty and to generate particular members. Applications
to the improvement of classical H,, designs are discussed in Section 9. By contrast, the reduced-
order problem is nonconvex due to the additional rank constraint (6.4). Devising appropriate
optimization techniques for this problem constitutes a challenge for future research.

7 Controller Reconstruction and Related Computational Issues

The theorems of Sections 4 and 5 are existence theorems which do not address the computation of
the controller itself. This issue is now discussed in detail. Suppose we are given some solution (R, 5)
of, for instance, the set of constraints {6.1)-(6.4). To recover adequate controllers from this data,
the first step consists of reconstructing a positive definite matrix X, € R(®+&x(n+k) compatible
with (4.18). For simplicity, consider the case k& < n (controllers of order no larger than the plant
order) and compute two full-column-rank matrices M, N € R*** such that

MNT =~ - RS. (7.1)
An adequate X, is then obtained as the unique solution of the linear equation:
S 71\ _ . (I AR )
<]VT 0 ) —-Xct(o ‘)'AIT i (72)

By definition of R.S and by Theorem 4.3, this X, satisfies (4.3). Looking at the proof of Theorem
4.2, it follows that the Bounded Real Lemma inequality (4.5) or equivalently the LMI (4.6) hold
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Ax Bg
Cxk Dk
controller of order k. Conversely, to any such controller we can associate a pair (R, S) satisfying
(6.1)-(6.4) via the Bounded Real Lemma. Hence there is an exhaustive correspondence between the
set of 4-suboptimal controller of order k and the convex set of pairs (R, S) satisfying (6.1)-(6.4).
The case k > n is analogous except for additional degrees of freedom in the reconstruction of X,.

From a numerical point of view, there are at least two ways of computing solutions O of (4.6)
for a given X ... The first approach consists of linear algebra manipulations and leads to an explicit
description of the solution set. Specifically, look at the proof of Lemma 3.1 and particularly at
condition (A.6). Defining

for some controller data 6 = ( ) . In fact, any solution O of (4.6) yields a y-suboptimal

Mgz i= =Won + YT U0, > 0; Agzi= Vs + VU5 > 0, (7.3)
and using the usual Schur complement argument, ©,, is thereby constrained by
~Aaa + (011 + A32)TAZ (011 + As2) < 0.
With the notation (:)“ = Aa‘;,l/'“)O“A;.,l/2 and A := A§31/2A32A{21/2, this also reads
(05, + ]\)T(én + A) <I

and thus ©;, must be of the form ~A + U where U is any matrix of compatible dimensions such
that 0,m.:(U) < 1.
Summing up, the solution set of (4.6) is obtained by selecting the ©;;’s in (A.2) as follows:

e O, = —Ago + AMPUAL? with U arbitrary subject to opmes (U) < 1;
o O;; and O,,: arbitrary;

¢ O, =X+ T where T+ TT =0 and

T

1 L2 L 2%
Y < 5 —\P44 + ‘I’gq + 951 H_l ‘I"_m + O".{l . (74)
Uiy + O Uiy + 0,2

Note that this approach involves a preliminary congruence transformation which might be ill-
conditioned.

The second approach simply consists of solving the LMI (4.6) by standard convex optimiza-
tion algorithms. Though more costly, it is potentially more stable numerically, and has also the
advantage of allowing for extra constraints on the controller parameters. For instance, particular
structures can be imposed to (Ag, Bx,Cxk) in order to decouple certain input/output pairs.

8 Comparison with Classical Results

The classical H,, state-space formulas of {9, 3] are only applicable to plants which satisfy the
following restrictive assumptions:

(A3) D), has full column rank and D, has full row rank,

(A4) Pi»(s) and Foy(s) have no invariant zero on the imaginary axis.
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Under these assumptions, {9, 3] provide a characterization of feasible 9’s in terms of the stabilizing
solutions of two H, Riccati equations which parallel our Riccati inequalities. To better understand
why these stabilizing ARE solutions play a special role, we find the following monotonicity result
useful.

Lemma 8.1 Consider a plant P(s) satisfying (A1)-(A4) and suppose the ARI
& Y( 1 -bu\T( ¢
ATX + XA- XB.BTX ! oo T 1 :
¥ A (7“BTX -Dhy/y I y5rx) <O (1)
has a solution Xo = XT € R"*". Then:

(1) The Hamiltonian matriz

_ .*i —BQB;{‘ 0 7—131 I "‘Dn/'}’ -1 Cl 0 )
m=(o L)+ (Ler Mo ) (ongy 1) (@ ) e

has no eigenvalue on the imaginary azis.

(1) If moreover Xy > 0, the ARE

- T N -1 -

C I -Dy/7v C,
ATX+XA- XB.BTX + A . 1 . =0 8.3
22 v 1BT X -DT/y I v 1BTX (8.3)

has a stabilizing solution X, satisfying

0< X, < Xo. (8.4)

Proof: See Appendix B.
: ]
This lemma shows that if the set of positive definite solutions of the ARI (8.1) is nonempty,
then the corresponding ARE has a nonnegative stabilizing solution which is minimal in this set.
This result together with Theorem 4.3 explains the special role played by the stabilizing solutions
X and Y, of the ARE’s (8.3) and

~ -1 - -1 ~

. - s BT I -DT /vy BT
e 7AT _ Y Z‘ LY 1 . 11 1 =0. B
AY + YA CTCLY + (7_101},> (_D”M F oy 0 (8.5)

Specifically, solvability of the y-suboptimal H_, problem implies the existence of symmetric matrices
Ry and S, satisfying (4.11)-(4.13). Observing that Wy, = I and W,; = I under the assumption
(A3), it follows that X, := Ry* and Y, := S5’ solve the ARI counterparts of (8.3) and (8.5) and
further satisfy:

_X’() > 0, /() > 0, p(.X()Yo) < 72. (86)

Invoking Lemma 8.1, the ARE’s (8.3) and (8.5) must then have stabilizing solutions X, and Y,
such that:
0 S -X'oo < X(), 0 S },oo < )fo. (87)

Remarking that (8.6)-(8.7) imply p( X Ya) < 77, we exactly obtain the necessary conditions of [3].
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Conversely, suppose the ARE’s (8.3) and (8.5) have stabilizing solutions satisfying
Xo 2 0; Y, > 0; p(}(ooyoo) < 72'

By standard results on the continuity of ARE stabilizing solutions under perturbation [2], the ARE

” T “ -1 ”
. C ¢ I -Du/y o
T — o T .l ” 11 ” = R
ATX + XA .XB_BQX+(7_IBITX) (—DTI/*r ! ) (7_153)‘,)“1 0 (8.8)

retains a stabilizing solution X, for € > 0 small enough. Remarking that solutions of (8.8) cannot
be singular, we must have X, > 0 by continuity. Hence X, is a solution of the ARI (8.1) such that
X < X,. Solutions of the Y-ARI are similarly constructed and by continuity, p(XeYe) < 7>
implies p(X.Y,) < ¥? for ¢ small enough. A solution of the system (4.11)-(4.13) is then obtained as

(X7 ',Y, 1) and from Theorem 4.3 we can conclude that the y-suboptimal H,, problem is solvable.

For regular H_, problems, the solvability tests of [3] are computationally more efficient since
solving ARE’s is of lesser complexity than solving LMI’s. For singular problems however, the
convex LMI characterization offers a numerically sound alternative where DGKF’s solution breaks
down and discontinuities render solvability assessment delicate [8]. Because of the convexity, our
solvability test is also competitive with that of [17]. Note that the solution of [17] can be seen
as an extension of {3] to the singular case since it also emphasizes extremal points and stabilizing
solutions, this time of nonstrict ARI’s.

Finally, DGKF’s approach revolves around the “central” solution and the @-parametrization
seems inadequate for improving on the central controller design. By contrast, our synthesis frame-
work can take into account other desirable properties for the controller or the closed-loop system
(see Section 9), and thus generate better-suited H,, controllers. It therefore constitutes a valuable
alternative to the ARE-based approach of [3].

9 Applications

In the sequel A, denotes the set of pairs (R, S) satisfying (6.1)-(6.3).

9.1 Preventing Pole/Zero Cancellations between the Plant and the Controller

The central controller has the undesirable property of cancelling all stable poles of the plant which
are (/i, B, )-uncontrollable or (C,, /i’)-unobserva,ble. That is, all stable invariant zeros of Py,(s) and
P,,(s). Such exact cancellations are frequently encountered in mixed-sensitivity problems and lead
to unacceptable designs in the presence of flexible modes [16]. Various remedies have been proposed
which generally consist of modifying the criterion to penalize cancellations {19, 16]. Yet, no general
remedy is available outside of the loop shaping context.

By contrast, the parametrization introduced above offers direct and numerically tractable means
of preventing cancellations of poorly damped modes. Indeed, if all controllers obtained from a given
(R, S) € A, involve cancellations, then (R, S) must satisfy one the following:

’\max(R) > 1; ’\max(s) > 1; (/\max(RR)l < 1; l’\max(RSN < 1. (91)

Here Rz and Rs denote the Riccati residuals, that is, the left-hand sides of (4.11)-(4.12). “Bad”
pairs (R, .S) therefore lie near the part of the boundary of A, associated with the Riccati inequalities.
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A qualitative justification of this claim can be found in [7]. Here the essential fact is that (R, S) pairs
come from solutions of the Bounded Real Lemma inequality for the closed-loop system, whence
their connection with closed-loop properties.

Steering clear of such pairs (R, S) can be done in a number of ways. For instance, we can seek
“good” pairs (R, S) by solving

min  Trace(R+ 5)
(R,S)EA,

while placing a steep barrier on the Riccati inequality constraints. This will drive Ap.(Rg) and
Amax(Rs) away from zero and the criterion will ensure that the norms of R and § remain small.
Another possible approach consists of finding the analytic center [1] of the intersection

A, 0 {(R,S) : Trace(R+ S) < constant }.

Here again steep barriers should be used for the Riccati inequality constraints. Note that in
both cases the resulting problem is convex and can be handled by standard convex optimization
algorithms.

9.2 Reduced-Order Design

Reduced-order H,, synthesis is a promising application of the parametrization introduced above.
Indeed, ¥-suboptimal controllers of order & < n have a simple characterization in this framework:
they correspond to pairs (R, §) of A, for which rank(y=2I — RS) = k. Such pairs lie on the part
of the boundary of A, attached to the constraint A,,;,(RS) > 5~? and they saturate this constraint
in n — k directions. Hence the reduced-order design problem has a clear formulation in terms of
the parameters (R, S): it consists of decreasing the rank of y=2I — RS as much as possible without
leaving A,.

For feasible v’s and with A (RS) < --- < A,_x(RS) denoting the n — k smallest eigenvalues of
RS, the synthesis of controllers of order £ < n amounts to minimizing for (R, S) € A, the criterion:

n—k

¥W(R,S)= Y A(RS).

There will exist suboptimal controllers of order & if and only if the global minimum of ¥(R, S) is
(n — k)y~2. This objective function ¥ is not convex but in fact concave. Hence global convergence
is not guaranteed. Nevertheless, the structural properties of the problem should help monitor
gradient descent methods so as to obtain significant order reductions upon convergence.

9.3 Reliable Computation of Optimal Central Controllers

When the H, optimal gain 7, is characterized by
p( ‘\.N),CQ) = 73})(’

the computation of the central controller i, is ill-conditioned near and at the optimum. This is due
to the cancellation(s) at infinity which occur in the pole/zero structure of K'.. Such cancellations
induce a feedthrough term in K. as well as some order reduction at 7.

These numerical difficulties can be eliminated altogether by allowing for a feedthrough term in
suboptimal A'.'s as well. This is easily done by extending the notion of central controller on the

—
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basis of the parametrization derived above. Finite instead of infinite pole/zero cancellations can
then be obtained at 7v,,, by appropriate choice of the feedthrough matrix. Only numerically stable
computations are involved in the process. More details on this approach can be found in [5].

10 Conclusions

We have presented a complete solution of the most general continuous- and discrete-time (subopti-
mal) H, problems. Our feasibility conditions parallel the usual ones except that Riccati inequalities
replace Riccati equations. This inequality formulation also provides a complete parametrization
of all H,-suboptimal controllers. Here the free parameters are the pairs (R, S) of positive def-
inite matrices solving the Riccati inequalities and satisfying some coupling constraint. Both the
computation of adequate parameters and the controller reconstruction lead to convex optimization
problems. Because of the connection between (R,S), the controller order, and the closed-loop
properties, this approach holds promises for the improvement of current H, design techniques.

Appendix A

Proof of Lemma 3.1:  Let Upg be a basis of Ker P N Ker  and introduce matrices Up, Ug such
that Wp := [Upg, Up) and Wy := [Upq, Uqg] are bases of Ker P and Ker @, respectively. Observing
that {Upg, Up, Ug] is then a basis of Ker P @ Ker Q, complete it into a basis T = [Upq, Up,Uq. V]
of R™. The matrix T is nonsingular and therefore (3.1) is equivalent to:

TTY T+ (PT)"07 (QT)+ (QT) O (PT) < 0. (A.1)

Block-partition PT, QT and TT¥T conformably to the partition [(Upg,Up,Uq, V] of T. By con-
struction, we have

PT:(OvO)PlsP2); QTZ(O’QIaonZ)
and [Py, P;] and [Q1, Q-] have full column rank. With the notation
PT _(®n O
(Fr)e@uan=(g" o) (A2)
and
¥, ¥, V3 ¥y,
VT, W,y Wy U
TTW T = 12 22 23 24 ,
Ui, Ui Vs Us
v, Vi, ¥, Vi
(A.1) reads:
L2F V2 Vi3 Vg
wT, Vo, Vo3 + O, Uy + O :
- : < 0. A3
vl, 9,40y, Va3 Vas + Oy, (A-3)

T, 91, +0y VI, +07, ¥,u+0,+07%

Here the O;;’s are arbitrary since O is arbitrary and [P, P,] and [@Q,, Q-] have full column rank.
Hence our problem reduces to finding conditions on the ¥;;’s which ensure feasibility of (A.3) for
some O,;’s.
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By a Schur complement argument, (A.3) is equivalent to

¥ Vio Vi3
= (wg Wy Vo + OE) <0 (A.4)
v, ¥+ 0y Va3
Vi, T Vs
Uiy + O + @:_1;2 - (‘1’24 + 0:_{1) m! (‘1124 + Og}) < 0. (A.5)
¥y + 052 Vay + 01

Given O,;, 0., and 0., we can always find @,, such that (A.5) is satisfied. Hence (3.1) is feasible
if and only if (A.4) is feasible for some O;.
Now, (A.4) is equivalent to

I 00 I —U5 0, -U;l0,
—oTwrt 1 o)l mfo I 0 <0.

-Vt 0 7 0 0 I
That is,
v, 0 0
( 0 V- 9Ly, o7, + AL ) <0 (A.6)
0 011 + Az, Wa3 — U0 ¥5
where
Agp = ¥ — WL Oy, (A.7)

Since ©,, is arbitrary, this is feasible if and only if

¥y < 0
Wiy — ‘I’Tg‘l’l—llwlz < 0
W3~ ¥L¥ %3 < 0

or equivalently, if and only if
¥y, ‘I’w) (‘1’11 ‘1’13)
1 <0; < 0.
(‘1’3} Vo, Ul ¥s

This last condition is exactly (3.2) upon recalling the definition of Wp, Wg, and the ¥,;’s.

Appendix B

Proof of Lemma 8.1:
(i): For simplicity, assume D,; = 0 and drop the hats on A, B), B,,... The ARI (8.1) then reads

ATX + XA+ X(y7*B,BT - B,BI)X +CTC, <0 (B.1)

and

H. = A 7—zBlBT — BgB’?r
"=\ cre, AT :
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The proof is by contradiction. Suppose H, (Z) = jw (Z) with (u,v) # (0,0). That is,
Au+ Fv = jwu (B.2)
~-CTClu-ATv = jwv {B.3)

where F := v~ 2B, BT — B,BT. Observing that solutions of (B.1) cannot be singular and defining
Ro:= X', (B.1) is equivalent to

R:= ARy + RoAT + R\CTC iRy + F < 0. (B.4)
From (B.2), we get v Fv = jw v¥u—v" Au and from (B.3): ATv = —~CTC u~jw v. Consequently,
vHRv = (vFA)Ryv + v¥ Ro(ATv) + ¥ Ry CTC, Rov + v Fov
= {-ufCTCy + jw o} Rov + v Ry {-CT Cyu ~ jw v} +
v Ry CTCy Rov + {jw v u — (v" A)u}

= - UHCITCI IZOU - UH RQC;rCIU + 'U”RoC?Cl Rov + ]w 'UHU + {UHC’{Cl — ]w 'UH} u

= (Rov—uw)"CTC, (Rov—1u) >0
which contradicts R < 0.

(i1): Since H, has no jw-axis eigenvalue, its stable invariant subspace ( ) is of dimension

Q

n. Assume that (C;.A) has no stable unobservable mode. By standard results on H, Riccati
equations (see, e.g., [6]), Q is then invertible and R, := PQ™! is an antistabilizing solution of:

AR+ RAT + RCTC,R+ F = 0. (B.5)
Subtracting (B.5) from (B.4), we obtain
A(Ro — Ro) + (Ro — Roo)AT + RyCTC Ry — RwCTC R, < 0
or equivalently,
(A+ RoC{C1)(Ro— Rc) + (Ro — R (A4 RoCTC1)T + (Ro — Roo)CTC1(Ro — Roo) < 0.
From A + R,CTC, antistable and Lyapunov’s theorem, we conclude that
Ry < Ry (B.6)

which together with our assumption Xy > 0 ensures that R, > 0. Consequently, P is invertible
and X, := QP~! = R_! is a stabilizing solution of the ARE (8.3). In addition, (B.6) and R, > 0
also give 0 < RZ! < Ry', thatis,

0< X < Xo. (B.7)

The proof is complete upon removing the assumption on {Cy, A). Continuity under small
perturbations of the data can be used to this end. Specifically, we can always perturb (C,, A) to
(c!, AY in such a way that the “no stable unobservable mode” assumption holds for ¢ > 0 small
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enough and that X, remains a solution of the perturbed ARI. Now, the stable invariant subspace

(P‘ ) of HS‘) depends continuously on ¢ and from the discussion above we have
€

0< XV =QP <X,

for € > 0. Consequently, as € — 0, X{ has a finite limit X, which is clearly a stabilizing solution
of (8.3) and satisfies
0< Xo < Xo.

Finally, the second inequality is easily strengthened upon replacing X, by (1 — €)X, in the previous
argument.
|
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