N
N

N

HAL

open science

FPGA Implementation of a Recently Published
Signature Scheme

Jean-Luc Beuchat, Nicolas Sendrier, Arnaud Tisserand, Gilles Villard

» To cite this version:

Jean-Luc Beuchat, Nicolas Sendrier, Arnaud Tisserand, Gilles Villard. FPGA Implementation of a
Recently Published Signature Scheme. [Research Report] RR-5158, LIP RR-2004-14, INRIA, LIP.

2004. inria-00077045

HAL Id: inria-00077045
https://inria.hal.science/inria-00077045
Submitted on 29 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00077045
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5158--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

FPGA Implementation of a Recently Published
Signature Scheme

Jean-Luc Beuchat — Nicolas Sendrier — Arnaud Tisserand — Gilles Villard

N° 5158
March 2004

THEME 2

apport
derecherche







Zd I N R I A

RHONE-ALPES

FPGA Implementation of a Recently Published
Signature Scheme

Jean-Luc Beuchat , Nicolas Sendrier , Arnaud Tisserand , Gilles Villard

Théme 2 — Génie logiciel
et calcul symbolique
Projet Arénaire

Rapport de recherche n° 5158 — March 2004 — 11 pages

Abstract: An algorithm producing cryptographic digital signatures less than 100 bits long
with a security level matching nowadays standards has been recently proposed by Cour-
tois, Finiasz, and Sendrier. This scheme is based on error correcting codes and consists in
generating a large number of instances of a decoding problem until one of them is solved
(about 9! = 362880 attempts are needed). A careful software implementation requires more
than one minute on a 2GHz Pentium 4 for signing. We propose a first hardware architecture
which allows to sign a document in 0.86 second on an XCV300E-7 FPGA, hence making the
algorithm practical.

Key-words: Cryptography, digital signature, code-based cryptosystems, FPGA implemen-
tation

This text is also available as a research report of the Laboratoire de I'Informatique du Paral-
lélisme http://wuw.ens-1lyon.fr/LIP.

Unité de recherche INRIA Rhone-Alpes

655, avenue de I’Europe, 38330 Montbonnot-St-Martin (France)
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52



Implantation sur FPGA d’un algorithme de signature
récemment publié

Résumé : Courtois, Finiasz et Sendrier ont récemment proposé un algorithme produisant
des signatures numériques de moins de 100 bits et satisfaisant les exigences de sécurité
actuelles. Basé sur les codes correcteurs d’erreurs, cet algorithme consiste a générer un grand
nombre d’instances d’un probléme de décodage, jusqu’a ce que l'une d’elles admette une
solution (environ 9! = 362880 essais sont nécessaires). Une implantation logicielle optimisée
nécessite plus d’une minute pour produire une signature & ’aide d’un Pentium 4 cadencé
a4 2 GHz. Nous proposons une premiére implantation matérielle permettant de signer un
document en 0.86 seconde sur un FPGA XCV300E-7.

Mots-clés : Cryptographie, signature numérique, cryptosystémes basés sur les codes cor-
recteurs, implantation sur FPGA



FPGA Implementation of a Recently Published
Signature Scheme

Jean-Luc Beuchat!, Nicolas Sendrier?, Arnaud Tisserand®?!, Gilles Villard*!

! Laboratoire de 'Informatique du Parallélisme
Ecole Normale Supérieure de Lyon, 46, Allée d’Ttalie, F—69364 Lyon Cedex 07
{first name.last name}@ens-lyon.fr
2 Projet Codes, INRIA Rocquencourt BP 105, F-78153 Le Chesnay Cedex
Nicolas.SendrierQinria.fr
3 INRIA - Institut National de Recherche en Informatique et Automatique
4 CNRS - Centre National de la Recherche Scientifique

1 Introduction

A cryptographic digital signature is a sequence of digits appended to any message which
allows anyone to make sure both of the content and of the origin of the message. A signature
scheme is proposed in [2], which allows the production of signatures less than 100 bits
long with a security level matching nowadays standards. For software implementations, the
relatively high signature time of the scheme could represent a main drawback. In this paper
we demonstrate the applicability of the approach with the design of a dedicated hardware
architecture. Indeed, a careful software implementation requires more than one minute on a
2GHz Pentium 4 to produce one signature. We are able to sign in about 0.86 second on an
XCV300E-7 FPGA. A disavantage of the signature scheme may concern its large public key,
which size is about one Mbyte. This may not be crucial with available low prices memories.

The signature scheme of [2] compares favourably with other existing approaches. To
match the present security requirements, classical techniques (RSA, DSA, Elliptic Curves)
produce digital signatures of length 320 to 1024 bits. Producing shorter signatures can be
of great interest for some applications, typically when either the transmission channel or
the physical data support has a limited capacity. For instance one might wish to transmit a
signature by voice on a phone, or print an authentifier on a banknote or a letter, store many
signatures on a small device like a smart card.

The signature algorithm we have implemented, briefly described in Section 2, is based
on a 9-error correcting Goppa code of length 216. This corresponds to the secure parameters
t =9, n = 2! and m = 16 in [2]. The algorithm operates on elements of the finite field
Fy16, and manipulates polynomials of one variable z whose coefficients are in Fy16. For the
representation of the elements and the arithmetic operations in Fyi6 we rely on the design
of [5], of which key points are recalled in Section 3.

Our main objective is to prove the feasibility and the interest of the signature scheme on
FPGA boards. Due to packaging reasons, we further impose a size constraint corresponding
to an XCV300E-7 FPGA. As we shall see in Section 4, this size constraint does not allow



2 J.-L. Beuchat , N. Sendrier , A. Tisserand , G. Villard

a straightforward implementation of the algorithm. In particular the two main steps —the
Berlekamp-Massey algorithm and a polynomial divisibility test— cannot be implemented
as separate blocks. Our solution is to show that both steps can share the same hardware
resources, and can be implemented by designing a specific processor.

2 The Signature Algorithm

The signature algorithm is based on a public key McEliece/Niederreiter cryptosystem. Its
underlying code is a 9-error correcting binary Goppa code of length n = 21, and dimension
n—tm = 216 —9 x 16 [2]. The code is defined using the 216 elements of Fy16, and the public
key is a tm x n = 144 x 2'¢ parity check matrix. The security of the signature scheme relies
on the difficulty of decoding. Indeed, for a document D, the signature is obtained from the
decryption (an n-bit word of weight 9) of a syndrome s (a 144-bit word) associated to D.
The computational signing task is to find a decodable syndrome to be used. For two hashing
functions h and h., one considers s = h(D) and s = h.(D,q), i > 0. The algorithm
essentially increments the index i until s(? is decodable. We have implemented the most
time consuming part of the process:
while s( is not decodable do
1: Computation a double syndrome S (a 288-bit word) from s = h.(s, i);
2: Berlekamp-Massey algorithm for a candidate error locator o(z) € Fye [2];
3: Divisibility test on o(z) that determines whether s is decodable;
11+ 1;
end while

The signature cost is essentially the cost of this while loop. About 9! = 362880 decoding
attempts are required on the average (with a very small standard deviation) [2]. We shall
detail the architecture design of the three steps of the loop in Section 4. As commonly
done for the syndrome elements and the error location, we manipulate polynomials
S(z) = 3217, Sizt and o(z) = Y0_, 0iz" over Fyis. Step 2 and step 3 are briefly detailed
below, the polynomial ¢ is computed using the Berlekamp-Massey algorithm for solving the
key equation S(z) = w(z)/o(2) mod z%. Then, the decodability of s() is checked through
a divisibility test, which determines whether ¢ has ¢ = 9 distinct roots in Fs16 that situate
the errors.

Berlekamp-Massey Algorithm. The Berlekamp-Massey algorithm efficiently solves the
key equation and compute o [1,3]. Searching for a polynomial of degree t = 9 exactly
and assuming that the discrepancies are non-zero, slightly simplify the implementation. We

INRIA



FPGA Implementation of a Recently Published Signature Scheme 3

compute (3= = ¢ using the following 2t-step iterative and division-free scheme:

70 (2) = 6o (z) — Az (z), (1)
, G-V(z)  ifii
) (2) = ot (2) 1fz %s even, @)
2pli=1(z) if i is odd,
50 — A(i) 1fz ?s even, 3)
8G-1 if § is odd,

where 0 < i < 2t, o=V (2) = pi=V(2) = 1, A® = Sy, and §¢~V = 1. At each step
i < 2t — 1, the new discrepancy AU+Y is computed as AG+TD = E?’:"(;(“H) JJ(-Z)S,-H_]-.
If AU+ is equal to zero (this happens only with small probability), the computation is
aborted, and we go for another decoding attempt. For simplifying the last step of the
signature scheme, we make the error locator polynomial ¢(#=1) monic. The operation is
o(z) = oV (2) /o and is implemented as one inversion and eight multiplications,
with the sole inversion of the body of the while loop.

Divisibility /Decodability Test. Step 3 of the signature scheme consists in checking if the
error locator polynomial o splits completely into linear factors, i.e. if o has 9 distinct roots

in Fy6. Since Fermat’s little theorem states that 22" — z = HaeF216 (z — a), the polynomial

o splits over Fyio iff 22°° modo(z) = z [2].
Assume that the four polynomials defined by ¢;(2) = 2**modo(z), 5 < i < 8, are
precomputed, and let p be a polynomial of degree 8. Then,

8 8 4
p(z)’ modo(z) = <Z p?z”) modo(z) = Y piei(2) + Y pi 2. (4)
1=0 =5 i=0

Consequently, 22" mod o(z) can be evaluated in 12 steps by repeated squaring, starting with
¢s(z) = 22" mod (z). For the precomputation of the ;’s, notice that for a polynomial p(z)
of degree 8, since o(z) is monic, we have:

zp(z) modo(z) = pso(z) + 2p(2)- (5)

Therefore, the four polynomials ;(z) can be iteratively computed according to (5), starting

from p(z) = 28.

3 Composite Arithmetic in the Finite Field Faie
The efficiency of the signature algorithm relies heavily on the efficiency of the underlying

arithmetic in the field Fyi6. The operation count is dominated by the number of additions
and multiplications. We have followed the composite field approach of [5], whose performance

RR n°® 5158



4 J.-L. Beuchat , N. Sendrier , A. Tisserand , G. Villard

is superior, in our case, to other techniques like standard base arithmetic operators. The field
Fom , m = 16, is built recursively from Fy./» (using a field extension of degree 2). An element
a € Fym is represented by an m-bit array [a;,ao] of two elements in Fym,/2 [4,5].

For the architecture in Section 4 we shall use multiply-and-add operators. With above
representation, the operation also is defined recursively. For a,b and ¢ in Fam , d = [d1,dg] =
a X b+ cis given by:

di = (ao + a1)(bo + b1) + aobg + c1,
do = apby + a1biwp /2 + co

where wy, /2 is a constant in Fam . For this work we have stopped the recursion at the level
of Fys or Fy2, and implemented 1-input or 2-input operators using look-up tables with four
address bits. We have proceeded in a similar way for the inverter, we refer to the algorithm
of [5, §2.2.2] and references therein.

These choices lead to a Multiply-and-Add operator using 98 slices and to an inverter
using 109 slices (including an internal pipeline stage). Both operators have a critical path of
about 10ns. For a general comparison, note that a 16 bits to 32 bits integer multiplier would
require about 140 slices.

4 Hardware Implementation

We now detail our architecture for the three steps of the signature while loop. We show that
parallel structures for the Berlekamp-Massey and for the decodability stages can be based
on similar resources. From (1) and (4) we identify the key operation p(z) < a x q(2) + r(2)
where p,q and r are three polynomials of degree 9 over Fy16, and where a is an element of
Fy16. Designing a specific processor for the latter polynomial operator (which actually can
be seen as a vector Axpy), leads to an efficient implementation of the whole while loop that
respect our board size constraint.

4.1 Computation of a Double Syndrome

Figure 1 describes the operator computing a double syndrome from the 144-bit hashed
document s and the counter i. The seed of the 25-stage linear feedback shift register (LFSR)
is set to ¢ during an initialization step. Then, at each clock cycle, the circuit performs the
XOR of s; and the jth bit of the pseudo-random sequence generated by the LFSR to obtain

s;i). The jth row of the 144 x 288 matrix V (stored in 18 Block Select RAM memories) is

then multiplied by sgi), which gives the 18 coefficients of a new double syndrome (in the
16 x 18 flip-flops):

143 143 143

17
S = Z 3§'Z)'UO,]' + Z sg.z)vl’j Z+...+ Z Sgl)’l}zsm‘ 217 = Z Sizt,
7=0 j=0 j=0 i=0

where S; € Fy16. The double syndrome block and its control unit require 204 slices, that is
to say 6.7% of the available resources of an XCV300E FPGA.

INRIA



FPGA Implementation of a Recently Published Signature Scheme 5

Counter i

jth bit of the
/ hashed message

Load/Shift

m
S

DATA_IN[15:0]
ADDRA[7:0]
WEA[17]

RAMB4_S16_S16 h RAMB4_S16_S16
— wEA — WEA ﬁD—‘>
CLKA T Vi CLKA T VIilZ72
"+ ADDRA[7:0] | | Vil | ADDRA[7:0] | | Vil
DIA[15:0] . DIA[I50] .

144 Iine; of ] O ] O
the matrix V DOB[15:0] DOB[15:0]
CLKB 16 S t— CLKB 16 S
1| ADDRB[7:0] 0 | ADDRB[7:0] H>D‘> 2t-1
=

VIi][15] VI[i][287]

1

CLK
ADDRB[7:0]

18 Block SelectRAM memories (288 columns of the matrix V)

Fig. 1. Computation of the double syndrome S.

4.2 Specific Processor for Error Locating and Decodability Testing

Let us first look at the resources asked by the Berlekamp-Massey algorithm with input S
and output o. The computation (1) of ¢(¥ may be rewritten as follows:

t
ple) = =ADp7D(2) = =37 AD Y, (6)
=0
t
o0(2) = 50000 (2) + 2p(2) = 3 (6670l 4y ) #, (7)
j=0

where p € Fy16[2]. Thus ¢(? can be evaluated in two clock cycles by means of ¢+ 1 multiply-
and-add units. The computation of the new discrepancy A1) requires up to ¢+ 1 products

ag-i) Si+1—; and a multi-operand addition. Finally, o is obtained by multiplying the coeffi-

cients of the polynomial o(2¢=1) by the inverse of a§2t_1).

This is summarized in Table 1 which provides an estimate of the corresponding circuit
area on an XCV300E FPGA.

RR n°® 5158



6 J.-L. Beuchat , N. Sendrier , A. Tisserand , G. Villard

Table 1. Hardware resources required for the Berlekamp-Massey algorithm.

| Components |Area (% of available slices)|

Ten Multiply-and-add operators 980 slices (~ 32.0%)

An inverter to compute 1/a0>* " 109 slices (~ 3.5%)

A multi-operand adder to compute AGTD 32 slices (~ 1.0%)

Four 160-bit registers to store (" (z), p(2), up to ten 320 slices (~ 10.4%)

coefficients of the double syndrome, and the polynomial

p(2)

Two 16-bit registers for 6V and A® 16 slices (~ 0.5%)
Total: 1457 slices (~ 47.4%)

A brief study of the divisibility test indicates that its hardware implementation involves
t multiply-and-add units and a few registers (see Table 2 for details). Indeed, from (5), the
four polynomials @;, 5 < i < 8, are obtained using ¢t multiply-an-add operations in Fyis. The
computation (4) is then realized in five steps:

4
p(z) < Y piz%, qo =p?, q1 = P}, ¢» = p?, and g3 = p};

i=0
for j =ZO to 3 do
p(2) + qipj45(2) + p(2);

end for
Table 2. Hardware resources required for the divisibility test.

| Components |Area (% of available slices)]

Nine Multiply-and-add operators 882 slices (~ 28.7%)

Five 144-bit registers to store intermediate results and 360 slices (~ 11.7%)

the polynomials ¢s5(2), ¢s(2), p7(2), and @s(2)

Four 16-bit registers for pZ, pz, p?, and pa 32 slices (~ 1.0%)
Total: 1274 slices (~ 41.4%)

According to our area estimates (Tables 1 and 2), an XCV300E FPGA does not contain
enough slices for implementing a double syndrome block, a Berlekamp-Massey block, a
divisibility test block, and their respective control units. However, the above analysis shows
that the Berlekamp-Massey algorithm and the divisibility test can share the same hardware
resources. Our solution is the design of a specific processor for programming these algorithms
(Figure 2). It consists of ten multiply-and-add operators, a multi-operand adder, an inverter,

INRIA



FPGA Implementation of a Recently Published Signature Scheme 7

six 160-bit registers, and four 16-bit registers (Table 3). We have seen the arithmetic units
in Section 3, and we only describe the main features of the registers:

— If inputs A and B of the multiply-and-add block are equal to p(z), then the SQR unit
provides a routing mechanism for storing the polynomial E?:o p?2% of degree 8 in Ry.

— The APPEND unit updates the double syndrome sequence involved in the computation
of the discrepancy as follows: R < (zR; + S;) mod 2%.

— For reducing the size of the multiplexer selecting the A input of the multiply-and-add
block, Rs, R3, R4, and Rs form a FIFO. The feedback mechanism allows to copy Ry
or R, and to shift R, (multiplication by z). For instance this allows to update p((z)
according to (2). A more detailed example is given in Appendix A.

0 1/ 0 1 10 01 00
J]A[Q:O] JZB[Q:O] ch[gzo]
‘ A[9]B[9]+C[9] ... A[O]B[O]+C[O]‘

Fig. 2. Application-specific processor for error locating and decodability testing.

If we apply loop unrolling, no conditional instructions are needed in Berlekamp-Massey
algorithm and the divisibility test. Furthermore, each instruction simply consists of the 28
control bits described on Figure 2. This allows the design of a small control unit which incre-
ments the program counter, checks if A(i+1) = 0, and returns 22"~ mod o(z). The Berlekamp-
Massey algorithm and the divisibility test respectively require 74 and 72 instructions (see
Appendix A for more details). Our specific processor, including the program ROM, requires
2209 slices (72% of the slices available in an XCV300E FPGA) and allows to implement the
signature scheme on our target FPGA.

RR n°® 5158



8 J.-L. Beuchat , N. Sendrier , A. Tisserand , G. Villard

Table 3. Register assignment for the Berlekamp-Massey and the divisibility test.

| | Berlekamp-Massey | Divisibility test |
Ro Intermediate results
Ry Double syndrome sequence Copy of Ry (for squaring)

R; to Rs o (z) and p@(2) o(z), then p5(2), pe(2), pr(z), and ¢s(z)
R 5@ %
R7 AD Pé
Rs - p7
Ry - Pg

5 Results and Analysis

A VHDL description of the signature scheme has synthesized by XST 5.2.03i and placed-
and-routed for an XCV300E-7 FPGA. 2593 slices (88% of the available resources) and 18
Block SelectRAM memories implement this first prototype which runs at f = 62 MHz.

The computation of the first double syndrome involves 145 clock cycles (an initialization
step and 144 computation steps). The Berlekamp-Massey algorithm and the divisibility test
require 148 additional clock cycles (146 instructions and 2 clock cycles devoted to control
tasks), a new double syndrome is evaluated in parallel. Hence the signature time is about
(on the average with a very small standard deviation):

1
Tsignature = 7 (145 + 148 - 9!) =~ 0.86 second,

whereas a software implementation requires more than one minute to achieve the same task
on a 2GHz Pentium 4 processor.

Though our circuit outperforms software implementations, future studies should improve
its efficiency. In particular, the arithmetic operators of the specific processor are not fully
exploited. Among the 146 instructions executed, there are 17 multi-operand additions (~
11.6% of the total number of instructions), a single inversion (~ 0.7%), and 122 multiply-and-
add operations (~ 83%). Furthermore, the tenth multiply-and-add unit is only involved in
the very last steps of the Berlekamp-Massey algorithm. Further theoretical and architectural
studies should therefore allow to shorten the signature time.

References

1. E.R. Berlekamp. Algebraic Coding Theory. Second Edition, Aegean Park Press, Laguna Hills,
California, 1984.

2. N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital signature
scheme. In C. Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, number 2248 in
Lecture Notes in Computer Science, pages 157—-174. Springer, 2001.

INRIA



FPGA Implementation of a Recently Published Signature Scheme 9

3. J.L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory, IT-
15:122-127, 1969.

4. C. Paar. A new architecture for a parallel finite field multiplier with low complexity based on
composite fields. IEEE Transactions on Computers, 45(7):856-861, July 1996.

5. C. Paar and M. Rosner. Comparison of arithmetic architectures for Reed-Solomon decoders in
reconfigurable hardware. In 5th IEEE Symposium on FPGA-based Custom Computing Machines
(FFCM’97), Napa Valley, CA, April 1997.

A TImplementation of the Berlekamp-Massey Algorithm

This Appendix describes the instructions which allow to implement the Berlekamp-Massey
algorithm on our specific processor (Table 4), and provides a coding example:

— Instruction Iy is responsible for the initialization step of the Berlekamp-Massey algo-
rithm.

— We define two instructions I; and I, to compute o) (2), p{9 (), and 6 when i is even.
I, implements Equations (2) and (6), and shifts the FIFO so that the A input of the
multiply-and-add block is ¢(*=1(z). Then, I, evaluates in parallel the ith step error
locator polynomial and ) (Equations (3) and (6)), shifts the FIFO, and updates the
double syndrome sequence. Instructions I3 and I, perform the same task when i is odd.

— Finally, instructions Is and Is compute the new discrepancy according to the algorithm
described in Section 4.2, and shift the FIFO so that Rs and R, respectively store p(?)(z)
and o()(z). This state of the FIFO allows to start the computation of the (i + 1)th step
error locator polynomial.

Table 5 illustrates the programming of the Berlekamp-Massey Algorithm. Instruction
Iy properly initializes the registers. Then, four instructions implement the ith step of the
algorithm. Note that it is useless to compute a new discrepancy when ¢ = 2t — 1 (see
Section 2). Consequently, the algorithm requires 1+ (2t — 1) -4+ 2 = 71 instructions. Three
clock cycles are then required to make ¢(z) monic (an inversion and a multiplication), which
gives the total of 74 clock cycles mentioned in Section 4.2.

RR n°® 5158



10

J.-L. Beuchat , N. Sendrier , A. Tisserand , G. Villard

Table 4. Operations involved in the Berlekamp-Massey Algorithm.

| | Mathematical description | Instruction | Comment
PV =1 Rs 1 Rs = pC V()
o V() =1 Ryi+1 Ry =0o"V(2)
IL|A® = 8, Ri,R7 + So Rr = A© and R; stores the current
double syndrome sequence
oD =1 Re + 1 Rg =41
p(z) < —ADpl=D(7) Ro «+ R7Rs
I |p9(z) « oV (2) R; < Ry Ry = p'(2) = a7V (2)
Rs +— Ry Rs = G(iil)(z)
a(i)(z) — 6(171)0(171)(z) + zp(2)|Ro, R2 < ReRs + zRo|R2 = a(i)(z)
R3s + R» R3 = p(i) (Z)
Il ) .
5@ L A Re <« Rx Re = §®
Ry1 < zR1 + Sit1 New syndrome sequence
p(z) < —ADpt=D(7) Ro < R7Rs
I3 p(i)(z) — zp(ifl)(z) Ry < 2Rs Ry = p(i)(z) = zp(ifl)(z)
Rs < R4 Rs = 0'(171)(,2)
0@ (z) + 6 ValD(2) + 2p(2)|Ro, R2 + RsRs + 2Ro|R2 = 0 (2)
Iy R3 < Ry R3 = p(i)(z)
Ry1 < zR1 + Sit1 New syndrome sequence
min(t,i+1) ] .
p(z) — Z G](Z)Si+1_jzj Ro + RoR:
j=0
I Ry < R3 Ry = p(i)(z)
R3 + R» R3 = a(i)(z)
min(t,i+1)
A(H_l) «— Z pj Ry ZRO Rr = A(H_l)
j=0
Ig Rs < R4 Rs = p(i)(z)
Ry« R3 Ry =@ (2)

INRIA



FPGA Implementation of a Recently Published Signature Scheme

11

Table 5. First steps of the Berlekamp-Massey algorithm.

L[ L | L [ L | Is [ I | Iy |
Ro]| — | A9pD() [6@(2)]0fVS0z +0iV8:1] - | ADpO() |
] S | 5215 |
Rol| — [p9() =09(2)]c(2) - - ek =200
Rs|| - - P9 (z) a9(z) - -
Rallo"D(z) - - P (2) a9(z) -
Rs[[p"V(z)] oY) - - P (z) a9(2)

Re §CD 5@

R, A | AD

RR n°® 5158



/<

Unité de recherche INRIA Rhone-Alpes
655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



