N
N

N

HAL

open science

Schema change propagation in object-oriented databases
G.T. Nguyen, D. Rieu

» To cite this version:

G.T. Nguyen, D. Rieu. Schema change propagation in object-oriented databases. [Research Report]

RR-1045, INRIA. 1989. inria-00077184

HAL 1d: inria-00077184
https://inria.hal.science/inria-00077184
Submitted on 29 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00077184
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 1045

Programme 4

| SCHEMA CHANGE PROPAGATION |
1IN OBJECT-ORIENTED DATABASES |

Gia Toan NGUYEN
Dominique RIEU

GROUPE DE RECHERCHE
GRENOBLE

Juin 1989

R

SCHEMA CHANGE PROPAGATION IN OBJECT-QRIENTED
DATABASES

NGUYEN G.T! & D. RIEUZ

1INRIA & 2IMAG
Laboratoire de Génie Informatique
BP53 X
38041 GRENOBLE Cedex
France

nguyen@imag.imag.fr

Abstract

This paper gives an overview of current research efforts directed towards evolving data
definitions in object-oriented database systems. The emphasis is on their ability to support two
complementary aspects : supporting evolving schemas, and propagating the changes on the object
instances. :

Several projects are analyzed : Cadb, Encore, GemStone, Orion, and Sherpa. Current results
indicate that if most of them provide schema evolution facilities, they seldom support automatic
propagation mechanisms.

A proposal is described that enables Sherpa to fully support the propagation of changes and the
dynamic classification of the instances whose class definitions are modified. This approach is an
extension of techniques used in artificial intelligence for knowledge representation. It extends
previous classification mechanisms with a dynamic capability which adequately supports evolving
class definitions.

Key-words : classes, objects, evolving schemas, classification, modifications, propagation.

PROPAGATION DES MODIFICATIONS DE.SCHEMA DANS LES
BASES D'OBJETS

Résumé

On fait une synthése des recherches en mati¢re de définitions évolutives dans les systtmes de
gestion de bases d'objets. L'accent est mis sur leur aptitude & mettre en oeuvre deux aspects
complémentaires : des schémas évolutifs et 1a propagation de leur modification sur les instances.
Plusieurs projets sont étudiés : Cadb, Encore, GemStone, Orion et Sherpa. 11 apparait que si la
plupart d'entre eux permettent de modifier les schémas, peu nombreux sont ceux qui permettent
de propager ces modifications aux données automatiquement.

On présente une méthode qui permet de réaliser ceci dans Sherpa pour reclasser automatiquement
les objets dont les définitions ont changé. C'est une extension de méthodes utilisées en
Intelligence Artificielle pour la représentation des connaissances. Elle étend les mécanismes de
classification automatique existant par une approche dynamique qui permet de gérer de maniére
appropriée des définitions de classes évolutives.

Mots-clés : classes, objets, schéma évolutif, classification, modifications, propagation.

1. INTRODUCTION

Several projects are currently underway for the development of object-oriented database systems,
e.g GemStone, O2 and Orion [4, 5, 23]. They are intended to support software engineering,
office automation and CAD/CAM applications. As such, they provide facilities to define, store
and retrieve shared and persistent composite objects [19]. Most of them support changes in the
object definitions i.e., evolving database schemas [11, 13, 21, 22]. However, very few have the
ability to propagate the changes on the corresponding instances. This paper proposes an original
contribution to this issue. The fundamental assumptions here are : the existence of an
object-oriented paradigm for defining and manipulating the data, its implementation and usage in
an engineering design environment, and as a consequence, provision for the data definitions (i.e.
the database schema or the object class definitions in more specific terms) to interactively evolve
during the application lifetime, to cope with the evolution of the data and programs.

Section 2 presents an overview of various interesting functionalities for object-oriented database
systems. Several object-oriented systems are analyzed with respect to these functionalities in
Section 3. The emphasis is on schema evolution. The ability to handle the changes and propagate
them on the object instances is detailed. It results that no system provides a full support for object
evolution resulting from changes in the class definitions and the class relationships. A proposal is
made in Section 4 to control the modifications performed on the schemas and take automatically
into account their impact on the object instances. Section 5 is a conclusion.

2. SCHEMA EVOLUTION IN OBJECT SYSTEMS

In the following, the reader is supposed to be familiar with the object-oriented paradigm and
‘terminology [14, 15, 16].

An object is defined by a structure and an interface. Objects are grouped into classes which are
collections of instances corresponding to similar structures and interfaces. Classes are related in
the inheritance lattice by the super-class/ sub-class relationship. A database schema is a set of
class definitions connected by the super-class/ sub-class relationship. It is represented by a class
lattice.

Composite object are defined using references to sets of instances of other classes.

In Figure 1, STOL (short take-off and landing), MEDIUM range and AMPHIBIAN aircraft
classes inherit the instance variables from the class AIRCRAFT i.e., "type", "mtow" (maximum
take-off weight), "fuel” capacity and "range", in a class lattice. The STOL class groups those
aircraft with stol capability, giving their "take-off" and "landing" distances. The MEDIUM range
class describes the "safety” equipment for those particular aircraft with a specific "range” . The
AMPHIBIAN class gives the "floats" characteristics for those particular aircraft with floating
equipment [6]. The SAM-AIRCRAFT class groups the instances of the aircraft which are
simultaneously STOL, AMPHIBIAN and MEDIUM range. An additional instance variable
"certified" gives their particular certification date.

AIRCRAFT

type
mtow
fuel

range

anding

SAM-AIRCRAFT
certitied

sub-class of
Figure 1. Class lattice for aircraft.

2.1 Schema change operations

Schema change operations fall into three categories : changing class definitions i.e instance
variables or methods, modifying the class lattice by changing the relationships between classes,
and adding or deleting classes in the lattice. :

Changing class definitions includes : adding or deleting new instance variables and methods in a
class definition, and modifying existing instance variables and methods, e.g changing their name,
their domain or constraints. ‘
Creating new specialized classes from existing classes is a basic constructor of object-oriented
schemas. Defining the classes LONG and SHORT range by specialization of the class
AIRCRAFT provides the ability to characterize those aircraft with specific range constraints
(Figure 2) .

Changing class relationships may be used for the incremental definition of objects or to model a
new semantics : for example specific instances of MEDIUM range aircraft (e.g the above A300s)
are also instances of the class EXTENDED range (e.g A300-600R). This is modelled by
adding a specialization relationship between the corresponding classes in the lattice. Further,
EXTENDED range can be made a sub-class of the LONG range class by adding a new
- relationship, since they must bear similar capabilities and equipment. In the example, the result of
 these changes is that : the lattice reflects the fact that EXTENDED range aircraft are designed as
specific MEDIUM range aircraft, they must comply with the definition of the LONG range class.
Name conflicts may result from changes in the class relationships. When multiple inheritance is
supported, ordering the super-classes of a given class may avoid to some extent these conflicts.
Overriding allows also locally defined instance variables and methods in a class to redefine
inherited instance variables and methods. Further, if instance variables and methods are
transitively inherited from the superclasses of aclass, constraints and domain conflicts can

AIRCRAFT

angines
mtow

fuel
range
maxioad

sTOL MEDIUM } (SHORT) | AMPHIBIAN
}aar':gi;an safety (SHoRT) floats

EXTENDED
range

SAM-AIRCRAF
certitied

Figure 2. Changing class relationships.

* occur. For example, range constraints in the classes STOL, MEDIUM and AMPHIBIAN may
overlap. A subclass of SAM-AIRCRAFT should then inherit the most constrained domain for its
range instance variable.

2.2 Other relevant issues

Incremental specification of the design artifacts requires changing dynamically the class
definitions, hence the database schema. While composite objects are often made available, the
notion of dependent objects is seldom supported. Composite object definition and manipulation is
- a major issue in many applications today [3]. The notions of composite objects and dependent
objects are differenciated [7, 9, 12]. For example an aircraft is composed of a fuselage, wings,
- engines and a landing gear. It is indeed a semantic relationship between the instances involved.
This is shown in bold lines in all subsequent figures.
Object versions are also relevant to object-oriented database design.Generic instances may be
used to model the version derivation hierarchy for a given class (Figure 3). They may be used to
reference objects without specifying in advance the particular version needed. : '
Specific versions in the derivation hierarchy are called version instances. As shown in Figure 3,
CFEMS56 is a version instance of the generic instance "turbo-fan engine". '

3

UNDUCTED-FAN
ENGINE

TURBO-FAN
ENGINE

TURBOPROP
ENGINE

: ClaSS “ 9eneric
1 generic instance instance of
. » Version
<o version instance instance of

Figure 3. Derivation hierarchy for engine versions.

3. SYSTEMS SURVEY

If most object-oriented systems bear only slight variations in the basic concepts they implement,
the major differences are in their support for schema evolution. A limited survey of existing
prototypes is given in this section, with emphasis on the issues discussed in Section 2. This
includes Cadb, Encore, GemStone, Orion and Sherpa.

3.1 Schema change operations

Most systems provide a limited set of schema change facilities. Modifying the domain of an
instance variable is allowed in Orion by generalization only, and within the limits of the inherited
instance variables' domains. This avoids values of existing instance attributes to become illegal
with respect to an updated domain.,

In GemStone, modification of constraints on instance variables is limited to the specialization or
generalization of their domain [11]. Similar changes are allowed in Encore. They are handled in
the latter by creating systematically new versions of the classes.

Changes to the schema yield new versions of classes in Encore. For example, deleting a class in
the lattice provokes the creation of new versions of its sub-classes, which automatically inherit
the instance variables of its super- classes.

3.2 Composite objects

As mentionned previously, composite objects are basically structural aggregates of sub-parts
involving instances of component classes. A dependency relationship between the components
and the "owner" object must be provided if the semantics of the composite object is to be applied
on the components. For example, composite objects are instantiated as a whole in Loops, and
deleted as a whole in Orion. This dependency is system-defined in Loops, but generic in Orion
i.e., class-defined. In contrast, Cadb - an acronym for Computer-Aided Design Data Base -
supports the dependency relationship at the instance level. Instances of the components are
exclusively owned by one parent instance in the composite object class, which defines its context.
They may be shared by other instances.

3.3 Versions of schema, classes and instances

. A major goal in Encore is that the modification of object types i.e., class definitions, should
Temain transparent to the application programs [13]. The emphasis is on the preservation of the
behavior of the objects using versions of classes. An error-handling mechanism provides the
correct version for a class corresponding to a specific message version, and vice-versa. An object
instance belongs to exactly one specific version throughout its lifetime. All versions of classes can
be modified and instantiated at any time. Versions of sub-classes are created automatically upon
creation of new versions of classes. Orion extends the notion of version to that of versions of
§chema [17]. As described previously, generic instances are provided to support versions of
Instances [3]. Like Cadb, it supports versions of composite objects. Neither GemStone nor
Loops seem to support explicitly the notion of version.

4

3.4 Propagation of changes on class definitions

Schema changes in GemStone are controlled using a set of invariants that define the legal
configurations of the class hierarchy. For example, changing the name of an instance variable in a
class is propagated to its subclasses, provided they do not redefine it locally. In contrast with
Orion, a class may not be deleted in GemStone and Encore if there are any existing instances.
Since no reference to deleted classes and instances are allowed, classes referencing deleted ones
are forced to refer to their immediate superclass. For example, deleting the class AMPHIBIAN
aircraft in Figure 2 enforces direct inheritance between the classes AIRCRAFT and
SAM-AIRCRAFT.

In Orion, one can change the name or add new instance variables in a class definition. This is
propagated to the extent that no name conflict and no local redefinition appears in the sub-classes.
The domain of an instance variable can only be generalized, thus avoiding any impact on existing
instances [1].

In Encore, no propagation of schema changes is supported. Rather, a specific notion.of
compatible version is implemented to handle the mismatch between the successive definitions of
an object class and the corresponding methods. An error-handling mechanism provides for the
correct mapping between the various object versions and the comresponding methods. Associated
with each class is a version set interface which is the union of the specific version interfaces. It
includes only the least constrained instance variables and methods, thus providing a potential
interface for all versions. The refinement corresponding to each particular version is dealt with by
the error-handling mechanism which is attached to each particular version [13].

3.5 Propagation of changes on object instances

Schema modification is not per se an issue. Of primary concern is the capability to provide some

form of controlled side-effects on the object instances. The spectrum lies between a fully

automatic propagation of the changes and a manual one. _

The first approach is used in GemStone and Orion, while the second is that of Encore. An explicit

convert operator has to be invoked by the user in order to modify in Encore an instance and

conform it to a modified class definition.

Another relevant issue for change propagation is the delay by which the modifications are actually

performed on the object instances. Propagation can be immediate or deffered.

Immediate propagation is adopted in GemStone. It is called conversion. The impact of schema

modifications is immediately implemented on the instances involved.

Deffered propagation is used in Orion. It is called screening. The side-effects are propagated only

~ when the instances are accessed. The first solution emphasizes consistency and information
preservation. It also sacrifices performance. One advantage is that it limits the propagation to the

execution of epilogs in the execution of methods. The second solution emphasizes performance

but requires a permanent propagation mechanism throughout the system's lifetime.

Invariants preserving rules in Orion also avoid most propagation problems on object instances.

Screening deleted instance variables and adding defauit or nil values to an instance variables are

performed when fetching the modified class' objects.

4. DYNAMIC PROPAGATION OF CHANGES

Propagating the schema changes on the object instances is a capability that systems intended to
support engineering applications must provide [21]. It allows the designers to iteratively check the
side-effects of the data manipulations and to incrementally design the artifacts. It also helps
controlling their consistency with respect to existing objects and to the design rules. While most
systems support schema evolution, they seldom support automatic propagation of the changes. A
proposal is made in this section to address this issue. It relies on techniques like classification,
which are usually not provided in database environments, but rather in artificial intelligence for
knowledge representation.

4.1 Incremental design of objects

Dynamic’ inheritance and classification provide a means to automatically propagate schema
changes on the object instances. Cadb is one of the first prototype to implement such
mechanisms, though no explicit notion of messages is implemented [12]. Rather, calculated
properties are made available to define instance variables whose values depend on other instance
variables from one or more objects.
Cadb is intended to minimize the restrictions usually burdening propagation of changes in other
engineering database systems. Object classes are defined by specification rules i.e., instance
variables, derivation rules and integrity constraints. Object instances are grouped into sets that
instantiate the classes. Composite objects are taken into account together with the notions of
dependent objects and context. In contrast with other proposals, both top-down and bottom-up
design of composite objects are simultaneously supported. This allows the instantiation of
partially known objects and the incremental design of large objects from existing components.
Mixing both approaches is possible i.e., include existing components and later reference new
components yet unknown.
In contrast, Orion allows only top-down design i.e., components may only be instantiated if their
- parent exists [3]. For example, engines cannot be created if the corresponding aircraft does not
exist. However, for most aircraft and engine manufacturers, items are designed and fabricated
- independently. This allows aircraft to be equipped with various powerplants from one model to
the other (B737, Airbus,...), from one version to another (B737-100, B737-200,...) and from
one serial number to another, depending usually on the carrier airline requests. Similarly, older
aircraft are periodically refitted with new engines. This implies replacing the en gine component
for those aircraft involved. While adding the new instances of engines is no problem, keeping the
old ones aside is not possible if a composite link exists between the classes AIRCRAFT and
ENGINE. Stated otherwise, the notion of dependent object as defined in Orion is here too strong.

4.2 Relevant classes

- In Cadb, the completeness and the consistency of the object instances are systematically taken into
account. An extended notion of object class, called relevant class, is implemented. Relevant
classes represent partial and meaningful designs, characterized as potential steps towards a
complete class definition. Every instance is attached to exactly one relevant class, whatever its
completeness and consistency. Relevant classes cannot be related by the subclass/superclass
relationship nor the generalization/specialization relationship [18]. Being partial definitions, they
are not subclasses with respect to the object-oriented paradigm. !
Relevant classes are characterized automatically by selecting from the powerset of the instance
variables and constraints in a class definition, those corresponding to meaningful combinations,

- with respect to semantic rules [8]. The semantic rules can depend on the data model only and can
be augmented by application dependent rules. A formal definition is given in [10].
The rules depending on the data model state for example that the definition of a relevant class

~‘must include all decidable constraints i.e those constraints whose arguments are all instantiated.
This provides a means to take the consistency of the objects systematically into account. For
example, if the "mtow" of an aircraft is the sum of its "maxload", plus its "fuel” weight, every
relevant class, hence each partially instantiated instance that includes those two properties must
also include its "mtow". The following partial definition is therefore irrelevant because it does not
include the "mtow" (Figure 4) :

AIRCRAFT
fuel
range

maxload

wing -
Figure 4. An irrelevant aircraft class.

The application semantics provides the opportunity to reduce further the number of relevant
classes. This is defined in Cadb using application dependent rules. For example, the design of a
new aircraft may involve two projects including the fuselage, the wings and the landing gear for
the first one, and leaving the design of the engines to another project - which is actually the way it
works. Each project may use a specific part of the class lattice, each of which is represented bya
set of relevant classes, for example AIRCRAFT1 and AIRCRAFT? in Figure 5. Note that both

6

classes include the mtow, fuel, range and maxload instance variables from AIRCRAFT, because
all are required to design engines, wings, etc.

AIRCRAFT2
miow

AIRCRAFT1
mtow
fuel

range
maxload

fuel
range
maxioad

Enamy

Project 1 Project 2
Figure 5. Two relevant classes for aircraft.

Incomplete objects, thus incrementally specified instances, are dynamically attached to the
relevant classes. Because they are partial although meaningful definitions of the final design, such
instances can always be attached to exactly one relevant class.

4.3 Schema change operations

The modifications allowed on the schema are modelled by finite sequences of four operations.
Namely reduction, augmentation, connection and product.

The reduction and augmentation are used to drop and add instance variables, constraints and
methods to classes [10].

Reduction and augmentation have two arguments. The first one is a class name and the second is
a list of instance variables, methods and constraints to be dropped or added to the class definition.
The operators are symmetrical : the result of a sequence of both reduction and augmentation
operators using the same arguments is to leave the class definitions unchanged. The connection
and product are used to combine class definitions together, in order to define composite objects.
The connection applied on two argument classes produces a class definition which is an aggregate
of the two arguments. Note that it can be implemented by iteratively applying the augmentation
operator. The connection operator does not reflect any semantic dependency between its
arguments. It is a mere structural aggregation. This departs from the dependency relationship
between an object and its components. The product has three arguments : two classes and a list of
instance variables, methods and constraints used to match the argument definitions. It can be
implemented using a sequence of augmentation and reduction operations. The result is a class
definition which is an aggregate of the two arguments, without repeating the matching elements in
the list.

For example the class LANDING GEAR can be defined by connecting the classes MAIN GEAR -
and NOSE GEAR. It is depicted by double lines in Figure 6. An instance of the class LANDING
GEAR is subsequently an aggregate of instances of NOSE GEAR and MAIN GEAR.

AIRCRAFT
mtow

FUSELAGE

length
width

connection
argument class

Figure 6. Connecting classes.

" The reduction, augmentation, connection and product operators are designed as low level
operators which provide a limited but powerful set of schema changes. They can be used to
define specializations and generalizations of existing objects (e.g EXTENDED range aircraft),
‘sub-sets of objects depending on their use by other objects, and entirely new objects (e.g
LANDING GEAR). They can therefore be used to implement higher level operators, e.g
specialization, generalization and aggregation [10]. As such they are expected to support most
schema change operations on inheritance lattices.

7

4.4 Dynamic classification

An effective classification mechanism is described in this section to propagate the changes
performed on the schema. It uses the notion of relévant classes and elaborates on classification
mechanisms proposed in artificial intelligence for knowledge representation.
Once schema modifications are performed, their impact on the relevant classes are characterized.
For each modified class, the changes are defined and- tested on its relevant classes. Should all
these changes be correct with respect to the model and the semantic rules, the corresponding sets
of instances are modified. This means that the modifications can be propagated on the whole sets
of instances belonging to the relevant classes as atomic operations. Because every instance
belongs to exactly one relevant class, all instances involved are processed. They need not be
scanned and updated individually. Rather, the reduction or augmentation corresponding to each
relevant class is systematically applied on all its instances. Since consistency and side-effects have
already been checked on the relevant classes' definitions, there is no need to further control the
. -changes on.each particular instance. Because relevant classes are defined from a finite set of
instance variables and methods, and because no cyclic definition is allowed, the propagation
process always terminates.
Recursive application of this heuristic may result in changing the class membership for the
modified instances. For simplicity, the following is an example which deals only with the
modification of domain constraints. Assume that the range constraints on the various AIRCRAFT
sub-classes are as follows (Figure 7) :

- SHORT range class : range < 1,000 nautical miles,

- MEDIUM " : 1,000 < range < 2,000 nm,
- - LONG " : range > 2,000 nm,
- EXTENDED " : range > 3,000 nm.

Changing the constraint in the EXTENDED range class from 3,000 to 2,500 nm implies that all

the instances of LONG range aircraft having a range between 2,500 and 3,000 nm are now

also instances of the EXTENDED range class. This implies moving those instances downward in

- the class lattice. It can be derived automatically by checking the range constraints corresponding

to the various classes. Once characterized, those LONG range instances having a range between
2,500 and 3,000 nm can be propagated as a whole set to the EXTENDED range class.

j
rAIFlCRAFT

. engines
mtow

P fuel
range

maxload '
LONG) MEDIUM SHORT
2,000 < range 1,000 < range < 2,000 range < 1,000 4

EXTENDED
2,500 < range

2,500 < range < 3,000

instances

Figure 7. Moving instances of modified classes.

Subsequently, if the range constraint for the class LONG range is changed from 2,000 to 2,200
nm, all the instances of LONG range aircraft having a range between 2,000 and 2,200 nm have to
be moved upward in the lattice to the AIRCRAFT class.

Next if the range constraint on the MEDIUM range class is relaxed to : 1,000 < range < 2,200,
the previous instances are then moved downward from the AIRCRAFT to the MEDIUM class.
These two changes imply a lateral move of the instances from the LONG to the MEDIUM range
class (Figure 8). '

8

Clearly, propagating the instances in the appropriate classes can yield a large overhead. It requires
checking recursively the constraints in all super-classes and sub-classes of the modified class. As
noted elsewhere, the balance is between information preservation and performance [11]. The
opportunity to deffer the modifications on the instances leaves this responsibility to the user.

AIRCRAFT
- engines
miow
fuel
range
maxload

2,000 < range < 2,200

LONG MEDIUM SHORT
2,200 < range}| 1,000 < range < 2,200} | range < 1,000

EXTENDED
2,500 < range

Figure 8. Moving instances laterally.

instances

Augmenting and reducing the class definitions is propagated on the corresponding relevant
classes. Existing instances can therefore be modified dynamically, as a result of changing the
class definitions in the schema. Accordingly, they can be moved among the corresponding
relevant classes. The process.is as follows. First, the schema modifications are characterized in
terms of relevant classes. New or modified class definitions exhibit specific relevant classes.
These relevant classes are compared with existing ones to check if additional ones have been
produced. The unchanged ones need no further processing. Pairwise differences between the new
and the existing relevant classes are characterized in terms of new and deleted instances variables
or methods, and modified constraints. The differences are systematically applied on all the
instances belonging to the old relevant classes. The instances are then propagated to the new
relevant classes. This is applied until all the relevant classes for all the classes involved in the
schema change have been processed. Since relevant classes are attached to classes and because
they are in finite number, the propagation process always terminates.

Current extensions directed toward the full support of dynamic information are underway in the .
Sherpa project. It is a joint INRIA and IMAG project which started in 1988. The goals in Sherpa
are to design and implement a prototype knowledge base management system supporting :

- dynamic instances with automatic propagation of changes on semantically related objects, e.g
dependent objects,

- dynamic schemas with automatic propagation of changes on the class lattice and on the instances
involved,

- dynamic inference i.e., support for non-monotonic reasoning.

The first two points borrow from previous work on Cadb. Provision for incompleteness of the
instances is a major step towards an effective system intended to support engineering design
applications. The last point calls upon artificial intelligence techniques. In particular,
non-monotonic reasoning is supported by an assumption-based truth maintenance system [2].

5. CONCLUSION

An analysis of various schema change operations is given, as well as an overview of other
relevant issues. Prototypes systems are then compared with respect to these issues. Some
systems provide extensive functionalities, including the management and versioning of composite
objects, while other sometimes just ignore some of the capabilities described here. Further,
results indicate that if most systems provide some form of schema evolution, very few support
adequate propagation mechanisms to make the changes effective on the object instances.

A proposal is made that enables a prototype object-oriented knowledge base system called Sherpa
to fully support schema change operations and control their impact on the object instances. It is
based on a dynamic inheritance and classification scheme that propagates any schema change
operation on all the classes involved and on the corresponding instances. The method provides
for both immediate or deffered update. It also fully supports top-down as well as bottom-up
design of composite objects. As such, Sherpa should support a wide variety of engineering
applications.

The approach implemented is based on an extended notion of object class, called relevant classes,
which takes systematically into account the partial completeness of the objects.

Propagation is performed by characterizing the modifications in terms of the relevant classes only,
and grouping the changes to simultaneously update the instances belonging to the same relevant
classes. It therefore avoids characterizing and propagating the changes by enumerating all
instances individually.

This approach is an extension of techniques used in artificial intelligence for knowledge
representation. It extends classification mechanisms with a dynamic capability which adequately
supports evolving class definitions. It is expected that this approach will provide an effective
methodology for managing dynamically evolving schemas in object-oriented database and
knowledge base systems.

Acknowledgements.
The authors are grateful to their colleagues from the Sherpa project : L. Buisson, J. Escamilla, J.

Euzenat, V. Favier, P. Fontanille, P. Jean, F. Rechenmann, A. Sales-Simonet and P. Uvietta for
many invaluable discussions.

10

REFERENCES

[1] BANERIJEE J., KIM W., KIM H.J, KORTH H. Semantics and implementation of schema
evolution in object-oriented databases.
Proc. ACM SIGMOD Conference. San Francisco (Ca). May 1987.

[2] DE KLEER J. An assumption-based truth maintenance system.

- Artificial Intelligence. 28-II. 1986.

[3] KIM W., BANERIJEE J., CHOU H.T. Composite object support in an object-oriented
database system. Proc. OOPSLA '87 Conference. Orlando (Florida). October 1987.

[4] LECLUSE C., RICHARD P., VELEZF. 02, an object-oriented data model.
Proc. ACM SIGMOD Conference. Chicago. May 1988.

[5] MAIER D., STEIN J., OTIS A., PURDY A. Development of an object-orzented DBMS.
Proc. OOPSLA '86 Conference. Portland (Oregon). September 1986.

[6] MOLL N. Aqua Van : Cessna Caravan amphibian.
Flying. Vol. 113, no. 3. Diamandis Communications Inc. March 1988.

[71 NGUYEN G.T. Semantic data engineering for generalized databases. Proc. 2nd International
Conference on Data Engineering. Los Angeles (Ca) . February 1986.

[8] NGUYEN G.T, RIEU D. Expert database support for consistent dynamic objects.
Proc.13th International Conference on Very Large Data Bases. Brighton (England).
September 1987.

[91 NGUYEN G.T, RIEU D. Expert database concepts for engineering design.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing. 1(2).
Academic Press. 1987.

[10] NGUYEN G.T, RIEU D. Heuristic control on dynamic database objects.
Proc. IFIP Conference "The Role of Artificial Intelligence in Databases and Information
Systems". Guangzhou (P.R of China). July 1988.

[11] PENNEY D.J, STEIN J. Class modification in the GemStone object-oriented DBMS.
Proc. OOPSLA '87 Conference. Orlando (Florida). October 1987.

[12] RIEU D., NGUYEN G.T. Semantics of CAD objects for generalized databases.
Proc. 23rd Design Automation Conference. Las Vegas (Nevada). June 1986.

[13] SKARRA A.H, ZDONIK S.B. The management of changing types in an object-oriented
database. Proc. OOPSLA '86 Conference. Portland (Oregon). September 1986.

[14] STEFIK M., BOBROW D.G. Object-oriented programming : themes and variations.
The Al magazine. January 1986.

[15] GOLDBERG A., ROBSON D. Smalltalk 80 : the language and its implementation.
Addison-Wesley. 1983.

[16] NEBEL B. How well does a vanilla loop fit into a frame?
Data & Knowledge Engineering 1. North-Holland. 1985.

[17] KIM W., CHOU H.T. Versions of schema for object-oriented databases.
Proc. 14th International Conference on Very Large Data Bases. Los Angeles (Ca).
August 1988.)

[18] SCHREFL M., NEUHOLD E.J. Object class definition by generalization using upward
inheritance. Proc. 4th International Conference on Data Engineering. Los Angeles (Ca).
February 1988.

[19] BANCILHON F. Object-oriented database systems.
Proc. 7th ACM Symposium on Principles of Database Systems. Austin (Texas).
March 1988.

[20] MOON D.A. Object-oriented programming with Flavors.
Proc. OOPSLA '86 Conference. Portland (Oregon). September 1986.

[211 KIM H.J. Issues in object-oriented database schemas.
PhD Dissertation. The University of Texas at Austin. May 1988.

[22] NGUYEN G.T, RIEU D. Schema evolution in object-oriented database systems.
Data & Knowledge Engineering. Elsevier Science Publishers B.V. North-Holland. 1989.

[23] KIM W., BALLOU N,, CHOU H.T, GARZA J.F, WOELK D., BANERIJEE J.
Integrating an object-oriented programming system with a database system.
Proc. OOPSLA '88 Conference. San Diego (Ca). September 1988.

Imprimé en France
ar
I’ Institut National de Recherche en Informatique et en Automatique

3t

