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Abstract

Thanks to the Curry-Howard isomorphism, typed lambda-calculi provide a convenient logi-
cal framework to formalize the ‘concept of proof. The large size of proofs dictates the introduc-
tion of concepts of structuration and modularity. This in turn raises the problem of information
sharing between modules. This paper presents the results of such a study for a language derived
from Nederpelt’s system A. We first discuss the reasons why sharing is not correctly supported,
and then a new calculus is proposed, which allows the definition of modules. This calculus pro-
vides a mechanism of access between modules that let them share information. It is defined in
terms of an operational semantics, and a comparison with the system A is provided.

Résumé

Gréce a I’isomorphisme de Curry-Howard, les lambda-calculs typés fournissent un cadre
logique permettant de formaliser le concept de preuve. La taille importante des preuves impose
d’introduire des concepts de structuration et de modularité, qui créent a leur tour des problémes
de partage de I’information entre modules. Cet article présente les résultats d’une telle étude
pour un langage dérivé du systeme A de Nederpelt. Nous analysons d’abord les raisons pour
lesquelles le partage n’est pas réalisé correctement, et nous proposons ensuite un nouveau calcul
qui autorise la définition de modules. Ce calcul possede un mécanisme d’acceés entre modules
qui permet le partage de I’information. Le calcul est défini par une sémantique opérationnelle,
puis comparé avec le systeme A.

1. This work is partially supportcd by the EUREKA program (ESF project).
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Introduction

The will to formalize the notion of proof has led to the definition of formal systems in which
mathematical objects (variables, functions,...) and logical objects (axioms, inference rules, the-
orems, proofs) are represented at the same time. The Curry-Howard isomorphism [How80], by
establishing a correspondence between formal systems of logic on one hand and typed lambda-
calculi on the other hand, makes the latter interesting candidates for such logical frameworks.

The large size of proofs dictates the introduction of concepts of structuration and modularity.
Structuration is aimed at making proofs more readable and liable, while modularity allows to
reuse previous proofs.

The basic lambda-calculus offers the notion of scope of a declaration as a structuration tool,
but it does not contain the notion of modularty. Extensions have been defined, which formalize
this notion, but a problem is frequently raised when a proof reuses modules: how will these
modules share information? This problem is well-known in programming languages [Mac84],
but we want to study it in the context of a typed lambda calculus used as a proof system.

This paper is aimed at proposing a calculus in which modules may at will share the data they
import from other modules. This calculus, AS, is presented as an extension of the AC-calculus
[Gro91], which 1s itself an extension of the system A of Nederpelt [Ned73], which belongs to
the family of Automath languages [Deb80].

In order to introduce our formalism, we first give a partial definition of AC. We only present
the elements which are useful for our purpose. We then emphasize the deficiencies of the im-
portation mechanism of AC, and we propose a new mechanism of access between contexts,
which solves difficulties.

1 The AC Calculus.

1.1 Informal presentation.

A system aimed at the formalization of reasoning must allow the representation of different
concepts:

* Terms and types for mathematical objects.
* Propositions and proofs for logical objects.
The Curry-Howard isomorphism unifies the concepts of proposition and type on one side, of

proof and term on the other side. A proposition 1s seen as the type of its proof (seen as a term).
The formal system is simplified, the only concepts needed being terms and types.

The system A leads the simplification one step further, by identifying the notions of term and
type. This identification is based on the following remark: abstraction Ax:a.T (in the language
of terms) and dependent product Il(x:a)a (in the language of types) play the same syntactical
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role of binding operators, and can be identified. In the same way, application operations are
identified in the two languages. This leads to a quite simple syntactic system. On the other hand,
the role of an expression is not obvious from its syntax, but must be determined from the context
of its use.

1.2 Syntax.

There are two main syntactical categories: texts and contexts. Texts are used to represent ax-
ioms, deduction rules, theorems and proofs. These elements are grouped into theories, repre-
sented by contexts. The language uses a unique constant primal, and a countable set of vanables

X.

expression: e == t | ¢

binding: b == x:t | x:=t | x==c | importx
seq of bindings bb := b | b;bb

text: t == wprimal | x | [bkt] | tt) | (t)
seq of texts: tt o=t |ttt

context: ¢ == x | [bbl] | c®) | (¢)

variable: X € X

In a binding b, a variable x 1s bound either to a text t in a declaration x:t or in a text definition
x:=t, or to a context ¢ in a context definition x==c¢. Defimtions allow the ennchment of the lan-
guage by new constants.

The pseudo-binding import x is intended to be replaced by the bindings of the context bound
to X.

A variable x appearing in any position but the left hand side of a binding is a reference to the
variable x.

The abstraction [x:ty |- t3] may represent a function (with formal parameter x of type ty), an
inference rule, or the deduction of the proposition t5 under the assumption t;. Notice that x is
bound in t3, not in t;.

The abstraction [x:=t; |- t3] 1s used to introduce an abbreviation of the expression t; by the
variable x in the expression t;.

The application ty(t3) may represent the application of the function t; to the argument tj, or
the application of the inference rule t; to the proposition t,.

The application c(t) represents the instantiation of the generic context ¢ by the parameter t.
Parenthesis (t), (c) are used to eliminate syntactic ambiguities. Multi-ary functions are repre-
sented in a curryfied way, and the following abbreviations are used:

[by HI[by t]]
[xlztl; X2:t; }—t3]

[by; by -t]
[xl9x2:tl | t3]

[x:t; Fty] = [ty t;3] if x not free in tj
(t1(t2))(t3) = ty(tp,ty)
(c(tp)(t3) = c(ty,t3)
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1.3 Semantics.

First of all, a remark must be made concerning the names of variables. In lambda-calculus,
names of variables are irrelevant. This fact is expressed in the a-conversion rule Ax.e = Ay.[y/
x]Je. Moreover, when applying substitutions, renaming may be necessary to prevent variable
captures. Here, a convention is made that an implicit renaming mechanism prevents name clash-
es, and expressions are said syntactically identical if it is true modulo a-conversion. This con-
vention is justified by the existence of name-free notations, e.g. De Bruijn indices [Deb72],
[Gro91].

The semantics of the language is expressed by the validity check (or type checking) of an ex-
pression. To check an expression, it is necessary to check its subexpressions. Even if the expres-
sion is closed, its subexpressions may not be so. Therefore, validity check must be carried out
under an environment, which memorises the bindings visible from the checked expression. An
environment is a sequence of declarations, and of definitions of texts and contexts:

1.3.1 Environments.
K = @ | K[x:t] | K[x:=t] | K][x==c]

The search of a binding in an environment 1s defined by the sequent:

K| x-[xAe]

In the environment K, the variable x is bound to the expression e.

K |— x - [xAe]
K[xAell_— x—>[xAe] = X#Xx'
' K[x'A'e'] l=— x> [xAe]

Here A stands for :, :=, or == ; e stands for t or ¢. Notice that the last binding stored in the
environment (thus the last binding of the expression) gains always the priority in the case of
multiple bindings using the same variable name.

1.3.2 Typing expressions.

The type checking uses the type of an expression, defined by the sequent:

K —— tot
yp

In the environmemnt K, the type of tist’.

K j— x = [x:t] K| _— x—[x:=t] K e t >t

K| x>t Ko xot -
KixAe] |-t Kty ot

K g5 [xAekt] > [xhekt] K | o ty(ty) =t (t,)
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K | x> [x==0Ibbl]]  Kbb|_ t>t

K e [import x - t] — [import x}— t..'.]

Notice that only texts have a type, and that primal has no type. The typing of [import x |- t]
shows how context variables are expanded before being pushed onto the environment. This ex-
plains why environments contain only bindings, not pseudo-bindings.

1.3.3 Reductions.

The equality of two expressions is defined modulo some reductions, defined by the sequent:

Kij—e>_ e r:=pf|dloldls

red

In the environment K, e r-reduces to e’

K i—— [xit, Fty](t3) >> [xi=tzkt,]
K —— [x:t;;bbl] (t;) >> [Ix:=t;;bbi]

K j-—— x > [x:=t]

K | x> [x==[Ibbl]]

K i—— x>t ‘ K {— import x >> bb
K — [x:=t, Ft,] >> t, if x not free in t,
K |— [x==ckt] > t if x not free in t

The B-reduction is defined in a lazy way: instead of substituting all the occurrences of x in ty
by t;, the operation is registered in a definition x:=t;. The B-reduction is defined for text and
context applications.

The &-reduction expands the text definitions, while the d-reduction allows the elimination of
definitions once they have been totally expanded.

The o-reduction expands in line the importations of contexts, while the s-reduction allows
the elimination of a context definition once all the importations of this context have been ex-
panded.

The relation of reduction is the union of the relations of §3, d, o, d, s-reductions.

1.34 Contractions.

An expression can contract into another expression via the application of several (possibly
none) steps of reductions (reflexive-transitive closure of the relation of reduction). At each step
the reduction is applied either to the whole expression, or to a subexpression (congruential clo-
sure). The reflexive, transitive, congruential closure of the relation of reduction is called con-

traction, and denoted by the sequent: K |—- - e >> e
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1.3.5 Equality.

As it was pointed out in paragraph 1.3, the use of a name free notation for variable names
avoids a-conversion. Syntactical identity (denoted =) is equivalent here to the “syntactical iden-
tity modulo a-conversion” of classical presentations of lambda-calculus.

The congruence induced on the set of expressions by the reduction relation (i.e. its reflexive,
symmetric, transitive and congruential closure) is called equality, and denoted by the sequent

K |_c?J" e = e'. Notice that the sign
es in this paper, does not belong to the formalisation.

alone (i.e. without the sequent), used in various plac-

The reduction relation being Church-Rosser and every valid expression being strongly nor-
malizable [Gro91], the equality is decidable, and a straightforward decision algorithm 1s to
compare the (unique) normal forms of the expressions:

K|

H ] ] -—
e >> e, Ki—.. e > e e, =e',

cornt cont

Kj—e=e¢e

equ

1.3.6 Validity.

The complete system of rules can be found in [Gro91]. Only the rule for text applications is
given here:

K.—t K—¢t

toval ©oval

K|l tot, Kiotot Koty =[xt Ft,] ( |
- t_app

K — t(t)

This rule expresses the fact that, for the application t(t’) to be valid, t must have a functional

type [x:t’; -t;], and the type of the formal parameter must be equal to the type t’; of the ar-
gument.

1.4 The importation mechanism.

As it was pointed out in paragraph 1.2, the pseudo-binding import c1 allows to expand in a
context c2 the set of bindings of a context cl.

cl == [I x: primal ]
c2 == [limportcl; y:x|] isequivalentto ¢2==[Ix:primal;y:xl]

This mechanism permits the definition of theories, and their reuse in the development of new
theories. Moreover, it is possible to define generic (parametric) contexts, which are instantiable
at will. For instance, we can define the theory of generic equality:
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sort : primal 1

equality == [|s:sort; =:[s; s I propl; refl:[x:s - x=x1; ..... 1]

N : sort

0,1:N

equN == equality (N)

import equN --equivalentto =:[N; N} prop]; refl:[x:N | x=x]; .....
refl(1) .....

[t should be noticed that declarations play a double role in contexts. For instance, in the ex-
ample above, the intended meanings of s and = are as follows:

» s:sort declares the formal parameter s; its semantics is exactly the one of abstraction in
lambda-calculus; s is aimed at being instantiated by an argument (3-reduction).

» =:[s; s} prop] declares the operator = of the theory equality, which becomes visible
in all contexts importing equality; = is not a formal parameter.

In the following, the two types of declarations are distinguished: the former is called para-
metric declaration, and the latter data declaration. Declarations inside texts are always paramet-
ric, as a text cannot be imported. The distinction, which is for the moment immaternal, will be
made explicit in AS.

2 Sharing information between
contexts.

2.1 Example.

When theories import other theories, the problem illustrated in the example below is very
common:

1. In order to ease the reading of examples, we take some freedom with the syntax, neglecting square
brackets and semicolons at the external level. Binary operators + and = are written in infix notation, +
having priority over =. ..... is intended for the irrelevant continuation of the expression. Comments are pre-
ceded with --.
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base_

[I sort,prop:primal

-
’

1)

N:sort

add_N == [| import base_N
; +:[N;NEN]
]

equ_N == [| import base_N

; =:[N;Nt prop]
)]

prop_N == [| import add_N
; import equ_N

; commut:[X,y:N | x+y=y+x]

J!

Basic properties of naturals are stated in the context base_N. Addition and equality theories
in N are then independently stated in contexts add_N and equ_N, which naturally import
base_N. Then, in order to specify properties of addition in N, the context prop_N imports
add_N and equ_N. It is thus equivalent to:

prop_ ==
[I sort(y),prop(p): primal
; N(l):SOI't(l)

5 +:[Ny; Ny - Nyl
; sort),prop(y): primal
5 N(z):sort(z)

;i =:[N@); N - propz)]

; commut:fx,y:N(z) F x+y=y+x]
1]

The declarations of sort, prop, N are made two times. Meta-indices (1) and (2) have been
added to disambiguate the expressions. They obey to the rules of search of a binding in an en-
vironment (cf paragraph 1.3.1).

The application x+y is ill-typed, as the type N(y) of the formal parameters of + is not equal
to the type N(z) of the arguments of +. Though this example may seem artificial (why decom-
pose such a simple theory in three sub-theories?), it illustrates a rather common situation: sev-
eral theories thy, thy,..., thy,, developed in an independent way (possibly by different program-
mers) may use the same theory thy. Every time a theory th,,, imports at least two theories
among thy, thy,..., th,, the problem may anse.
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2.2 Analysis of the problem.

The problem shown above arises from the following causes:

e AC uses the standard scoping rule of lambda-calculus: when the same variable is de-
clared several times, the last declaration always gains priority. For instance, in

[x:t; x:t - x], the third occurrence of x references the second declaration x:t. This rule
corresponds to the following intuitive meaning: the redeclaration of a variable points out
the intent not to reuse the previous one. Notice that here the redeclaration 1s explicitly
made by the programmer.

» The importation of a context yields a textual copy of this context in the importing con-
text, thus a redeclaration of the bindings of the imported context. This may seem well
tuned to intuition, as several importations of the same context in a given context point
out an explicit will of redeclaration. Unhappily, the previous example shows that the
transitivity inherent to the copy mechanism induces unwished redeclarations.

Declarations explicitly made by the programmer are now called primary declarations, while
those which result of the copy of a context are called secondary declarations. The above analysis
shows that the problem is caused by secondary declarations. One primary declaration may in-
duce several secondary declarations by copy. The latter are considered as different declarations
by the formalism, whereas they are unique in the programmer’s mind.

2.3 A first approach to the solution.

The most radical solution is to eliminate secondary declarations. For this purpose, textual
copy associated with importation is replaced by access authonzation to the information en-
closed in a context. Then a unique version of a context exists (the one declared by the program-
mer), to which other contexts have access. The access authorization uses the key-word see, in
order to underline the semantic difference with the importation mechanism. Moreover, see may
be followed by any context, as opposed to import which could only be followed by a context
variable.,

base_N == [|sort,prop:primal; N:sort!]

add_N == [Isee base_N; +:[N; NI N]{]

equ_N == [|see base_N; =:[N; N |- prop]l]

prop_N == [Isee add_N; see equ_N; commut:[x,y:N F x+y=y+x]1]

There is a unique declaration of N, made in the context base_N, and made visible in the other
contexts by see instructions. The declarations of +, x and y reference the same vanable N, and
the application x+Yy in the context prop_N is well typed.

This simple mechanism however fails in the case of parametric contexts:

ctx1 == [|s:sort 1; +:[s;s s8]l
ctx2 == [| N:sort; see ctx1(N); ..... i
ctx3 == [| R:sort; see ctx1(R); ..... 1]

1. We make a free use of previously declared identifiers like sort, prop, neglecting to declare them in each
example.
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The context visible from ctx2 is [|+:[N; N - N|], whereas the one visible from ctx3 is

[I+:[R; R I R]1I]. These two contexts being different, copies of ctx1 must be created, in order
to be instantiated by N and R.

24 The proposed solution.

As copies of contexts are unavoidable, it 1s impossible to eliminate secondary declarations.
So we must define criterions to decide when two declarations are equal (1.e. are the declaration
of the same variable).

* Two primary declarations are always different, as they point out the will of the program-
mer to declare two different variables.

* Two secondary declarations (or a primary and a secondary one) are equal if the following
conditions stand:

- They must be copied from the same primary declaration (a primary declaration is
considered as copied from itself); as a matter of fact, in this case, the programmer
has made only one declaration.

- The declared variables have the same type. This means that the possible instantia-
tions of parameters have not modified (or have modified in the same way) their de-
clared type.

The effect of these rules is shown in the following example:

M,N,P:sort

ctxl==[|s:sort; x:s; y:Pl]

ctx2==[|t:sort; z:t|]

see ctx1(M) -- equivalent to see [Ix:M;y:Pl]
x1:=x

yl:=y

see ctx1(M) -- equivalent to see [Ix:M; y:P|]
x2:=x

see ctx1(N) -- equivalent to see [IX:N; y:Pl]
x3:=x

y3:=y

see ctx2(M) -- equivalent to see [|z:M]
z4:=z

The following relations stand:

xl1=x2 same origin, same type
yl =y3 same origin, same type
x1 # x3 same origin, different types
x1 #2z4 different origins, same type

Therefore a secondary declaration must keep a trace of the prnimary declaration from which
it 1s copied, in order to apply the above rules. Before defining the corresponding formalism, we
show that, as opposed to what happens with AC, the names of declared variables can no longer
be neglected. and that name-free notations (as De Bruijn indices) are no longer usable.
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» Parametric declarations (in a text or a context): the name of parameters is irrelevant; the
only pertinent information is their relative position. De Bruijn indices are well adapted
to this situation, as they forget the name and remember the position. In the following ex-
ample, al = a2, though the parameter names t and u are different.

al:=[t:sort |- t]
a2:=[u:sort |- u]

» Data declarations (necessarily in a context): here, the relevant information is the exist-
ence of the declaration, not its position. As a matter of fact, every primary declaration
creates a new variable, but the precise position where it is created is irrelevant. In the fol-
lowing example, the two vanables t are considered as different, as they appear in two
distinct declarations. Thus b1 # b2, although they are syntactically identical. Butcl =
c2, as they reference the same variable u, declared in the context ctx. The use of De Bru-
1jn indices does not allow to distinguish bl and b2, as the references to the variable t
yields the same index.

bl:=[see [It:sort|] I t]

b2:=[see [It:sort]] |- t]
ctx==[u:sorti]

cl:=[see ctx | u]

c2:=[see ctx I u]
The representation of variables must allow a finer discrimination than the one possible in AC.
It is necessary to distinguish between parametric and data declarations on one hand, and primary
and secondary declarations on the other hand. A formalism allowing a uniform representation

of all types of declarations is chosen. Every variable 1s identified by a unique name, and two
distinct variables have different names. This representation has practical consequences:

* As two primary declarations always correspond to different variables, two declarations
of variables with the same name must not exist in a program.

* When a secondary declaration is created (by copy), a new name of variable must be used.
However, the old name must be remembered in the secondary declaration (trace of ori-

gin).
* The a-conversion rule must be explicitly used to establish the equality of two expres-
sions containing parametric declarations.

3 The AS Calculus.

3.1 Syntax.
Modifications concern bindings b and contexts c.
binding: b

context: C

x:t | x{x}:t | x:=t | x==c | seec
x | [Ibb{] | [IbbEbb(] | c®) | (c)
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In the declaration xq{x3}:¢t, x; is the name of the declared variable, x3 is its origin.
- Primary data declaration: it is its own origin; thus X3 = X1.
- Secondary data declaration: xy{x3}:t results of the copy of a pnmary declaration
xa{xa}:t’.

In the declaration x:t, x is the name of the vanable; this form is used when the origin is not
relevant (e.g. for parametric declarations, and for many semantic rules).

For text and context definitions, 1t 1s not necessary to keep track of the origin, as two defined
variables may always be compared by expanding them (8 or o-reduction). The pseudo-binding
see ¢, which makes the bindings enclosed in ¢ visible outside, 1s named an access.

The structure of contexts is enriched by the construction [ bb | bb|]. We have seen the ne-
cessity to distinguish parametric and data declarations. In AC, this is made at the metalanguage
level, as shown by the example in paragraph 1.4. When importing a context, nothing prevents a
declaration from being considered at one time as a parametric declaration, at the other time as
a data declaration. In AS, such a confusion leads to incoherences, and the distinction parametric-
data must be dealt with at the language level. The construction [| bb {] now corresponds to non-
parametric contexts.

3.2 Semantics

3.21 Naming of variables.

We have explained in paragraph 2.4 that there should not exist two vanable declarations us-
ing the same name in a program. This constraint can obviously not be imposed to the program-
mer. It could not be obeyed when reusing already existing modules. Thus, the following con-
vention will be adopted: in a program, variables are designated by identifiers which are free of
constraint. The validity check is divided into two phases:

» Naming of variables: for each variable bound in the program, a name is created, which
1s substituted to all the occurrences of this variable identifier. Names respect the unicity
constraint. During this phase, context variables are expanded if necessary, in order to in-
sure a correct naming.

» Validity check itself: it corresponds to the one of AC.

The naming phase is not formalized here, as it involves rather boring technical details, but is
illustrated on an example.

a==[|s:primal|] = eeeeeeeeeeee > ay==[Isy{sy}: primal |]

see a naming see ay

b==[Ix:s | y:xI] by==[Ixy:s1 F yil{yi}:xq 1]
N:s N1{Nq}: s

see b(N) see [Ixy:51 F yaly1}:x2 11(Np)
z:y z1{z1}:y2

z:Z : z22{z22}:2
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In this example, identifiers are represented by a letter, and names by an indexed letter. It can
be seen that context variables are expanded only when necessary (i.e. when they are involved
in an application). When copied, data declarations yield new names. but keep track ot their or-
igin. Two distinct variables get different names, even when they have the same identifier.

It should also be noticed that context expanston does not eliminate the key-word see, whereas
in AC it eliminates import. This conforms to the announced semantics: see ¢ is an access au-
thorization to the bindings enclosed in the context ¢, but these bindings do not become bindings
written at the level of the accessing context, even in case of a local copy. Particularly, see cannot
create parameters in a text or a context.

The validity check is formalized in the following lines, with particular insistence upon the
peculiarities of AS.

3.2.2 Environments.
K = @ | K[x:t] | K[x{x}:t] | K[x:=t] | K([x==c] | K/{[seec]

In contrast to AC, accesses in the form of see ¢ are pushed onto the environment. As see is
not eliminated by context expansion, 1t is interesting to keep inside environments the tree struc-
turation that contexts induce on the program. This allows more sophisticated searching methods
to be implemented, compared to AC which uses stack-like environments. For instance, the in-
terpreter based on the ideas presented in this paper makes a search guided by incomplete pathes
(represented by identifiers in dot notation) in the tree of contexts. Here, for the sake of simplic-
ity, we define a depth-first search.

K — x—>[xAe]

K[xAe] — x —[xAe] = X #X'
' K[x'A'e'] — x—[xAe]
Ki—5-¢c—>bb K bb Tx—)[xke]
= A stands for ¢, =, ==
K [see c] — x—[xAe]
Kl x—>[x==¢] Kj_.—c—bb
K \——- [Ibb]] —>bb -z - expar —
- K |5 X > bb

Because of the context processing made by the validity check, only two forms of pseudo-
bindings can be pushed onto the environment, namely see x (with x defining a non-parametric

context) and see [| bb []. Thus the sequent |

" cxpand

takes only these two cases into account.

323  Typing ‘expressi_ons.
K | o X — [x:t] K — x—o[x:=t] K !—,yp-— t-t
KimD Xt K;'E x-—)t" -
Kbl t=>t _Kigtot
K |— [bFt]>[blt'] K i t(t)) >t (ty)
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The fact that all the bindings (including accesses) are processed in an uniform way simplifies
the presentation of semantics, by eliminating the special treatment of the see case. As in AC,
only texts have a type, and primal has no type.

324 Reductions and Contractions

K [~ [Ix:t; FbbI(t3) > [x:=tykbbi]

red

K |- [ix:t;; bb, Fbb,l1(t;) >> [Ix:=ty;bb;bb,l]

i

red

K |— x - [x:=t]

K [/ x >3 copyt

K — [x:=t, +t,] >ty if x not free in t,

The B-reduction is the same as in AC, except for contexts, where it is only applied to para-
metric declarations, and not to data declarations.

The d-reduction uses the copy operation, the role of which is on one hand to create new
names for all the variables bound inside the copied expression, on the other hand to keep in each
copied declaration the track of the primary declaration it comes from. The process is shown by
an example:

copy [Ix{x}:t; y{y}:xi] = [Ix’{x}:t; y’{y}:x’1]
copy [Ix{x}:t; y’{y}:x"1] = [Ix’{x}:t; y’{y}:x"* ]

The d-reduction 18 exactly the same as in AC. There is no o-reduction, as context variables
are expanded at the time of naming. There is no reduction to eliminate context definitions and
accesses, as this operation should not preserve the closure of expressions in the environment.
This problem is treated at the level of conversions, where the eliminated context can be pushed
onto the environment.

The contractions are defined in exactly the same way as in AC.

3.2.5 Conversions

The simple syntactic identity check of contracted expressions used in AC is no longer suffi-
cient. The name-dependent notation imposes to use explicit a-conversion to compare parame-
ters, and rules for comparison of data declarations have been given in paragraph 2.4. These rules
define what we call y-conversion. The elimination of context definitions and accesses is also re-
alised here (s-conversion).

Kfl—e=c¢

cony

In the environment K, the expressions e and e’ are convertible.
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K |-.—~ primal = primal K |-, X=X (1d)
Kiue t, = t' ITJ:TJ" "" K ["{""} tl ] [x'{x"}: t'1]| conv_ B t' )
.. e [ . . I (a
K ;_s.c] - X > [X{X"}:t] K eai X' — [X'{X"}:t'] K cqu - t = t'
K conv X =X )
K[x= c]|wnv t=t K[x-——c]|conv t—t' )
S__
K |-Conv [x c}—t]—t’ K e t—[x--c Ft'] o
K(seec] | .- t=t K [seec'] —— t=t )
s
K | [seechktl =t K i t=[seec'Ft] e
Kot =ty Kl ty=t)
(app)

K.IW t, () =t (t',)

Notice that a-conversion does not rely on the usual operation of substitution, but uses the en-
vironment: the rule (o) memorizes in the environment the fact that the two parameters are a-
converted, thanks to the sequent e~ which builds new variable names; this information is

used later by the rule (a—y) to check the a-convertibility of references to these parameters. The
same rule (a—y) checks also the y-convertibility of references to data declarations. For s-conver-
sions, notice how context definitions and accesses are stored in the environment once eliminated
from expressions.

Only rules for texts have been given. Analogous rules stand for contexts.

3.2.6 Equality

The reduction has the same properties as in AC. The algorithm for equality checking is sim-
ilar, but relies on convertibility instead of syntactic identity.

Ki——e>e Ki—-e€>e¢€; Kige=¢,
_ K] —e
equ
3.2.7 Validity.
K|.—e The expression e is valid in the environment K.
A stands for :, :=, ==
. ‘ K | x> [xAe]

val
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K|—t K|——t

val val (t_bind)
K |Tal— x:t K iv—a] X:=t
K|—c¢ K|-—¢ K |— ¢ = [ibb]]
val val il (c_bind)
K [ x==c K |—- seec
K|—-b Kb —- bb . K |— bb
" (seq_bind) - (cx)
K |—val_ b;bb K IT [lbbl]
Ki—b Kb |t K | bb, Kbb,‘-W bb,
(t_abs) ~  (c_abs)
K |- [bFt] _ K |—— [Ibb; kDbb,i]
Kimt Kigt,
Kit, >ty K|t t,
K | t', =[x:t',t'.]
TR 23 (t_app)
Ko t,(t;)

K—¢c¢ K}l-—t Kjl-—tot
val val typ
K = ¢ = [Ix:t' bbb -bb]]

K |— c(t)

val

bbb::=@® | ;bb' (c_app)

Concerning abstractions and applications, similar rules stand for texts and contexts. The rule
(c_app) performs another operation, which is not expressed in the present formalism, for the
sake of simplicity: after its validity has been checked, the application c(t) is B-reduced. This is
necessary for data declarations to be seen with their real type (i.e. possibly instantiated by t)
when accessed by see c¢(t). The rule (c_bind) shows that only non-parametric contexts can be
accessed via see. Thus, a parametric context must be totally instantiated before being accessed,
which is coherent with the distinction we introduced between parametric and data declarations.

So, after validity checking, see can be followed neither by a context application nor by a par-
ametric context. As every see pushed onto the environment has previously been checked, only
see x and see [| bb|] can be pushed onto the environment, as stated in paragraph 3.2.2.

Conclusion

This paper is aimed at introducing in a typed lambda-calculus two well-known concepts in
programming languages: structuration and modularity. A fundamental operation of lambda-cal-
culus is abstraction, which introduces a natural structuration, bound to the scope of declarations.
On the other hand, modularity needs an extension of the calculus. The simplest extension, which
is to internalise the notion of context (seen as a sequence of abstractions) leads to difficulties
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when several contexts must share the same declarations. We show how the introduction of a du-
ality between parametric and data declarations solves these difficulties. This leads us to define
a new conversion: the y-conversion (for data), dual of the a-conversion (for parameters).

The ideas presented in this paper have been used to extend the Deva language [Sin&al89],
itself based on the AC calculus. Some questions had to be considered. which were neglected in
the definition of the calculus. Among those are the access to distinct variables with the same
identifier (solved by a dot notation), the possibility to share or not data between contexts, and
the persistence of modules which, contrary to contexts, must be accessible to other programs
than the one where they are defined. We think that the solutions presented here for modularity
and sharing constitute a partial answer to the challenge set by the size of completely formalized
proofs and program developments.
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