N
N

N

HAL

open science

About cache associativity in low-cost shared memory
multi-microprocessors
Nathalie Drach, Alain GefHaut, Philippe Joubert, André Seznec

» To cite this version:

Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec. About cache associativity in low-cost
shared memory multi-microprocessors. [Research Report] RR-2083, INRIA. 1993. inria-00077193

HAL Id: inria-00077193
https://inria.hal.science/inria-00077193
Submitted on 29 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00077193
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

About cache associativity in low-cost shared
memory multi-microprocessors

Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec

N° 2083
Octobre 1993

PROGRAMME 1
Architectures paraléles,
bases de données,

réseaux et systemes distribués

apport
derecherche

Zd I N RIA

RENNES

About cache associativity in low-cost shared memory
multi-microprocessors

Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec*

Programme 1 — Architectures paralléles, bases de données, réseaux et systémes distribués
Projet Calcpar et LSP

Rapport de recherche n ° 2083 — Octobre 1993 — 20 pages

Abstract: In 1993, sizes of on-chip caches on current commercial microprocessors range
from 16K bytes to 36 Kbytes. These microprocessors can be directly used in the design of
a low cost single-bus shared memory multiprocessors without using any second-level cache.

In this paper, we explore the viability of such a multi-microprocessor. Simulations results
clearly establish that performance of such a system will be quite poor if on-chip caches are
direct-mapped. On the other hand, when the on-chip caches are partially associative, the
achieved level of performance is quite promising.

In particular, two recently proposed innovative cache structures, the skewed associative
cache organization and the semi-unified cache organization are shown to work fine.

Key-words: microprocessors, shared memory multi-microprocessors, cache, skewed-associative
cache, semi-unified cache.

(Résumé : tsvp)

*e-mail : drach, gefflaut, pjoubert, seznec@irisa.fr

Unité derecherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone: (33) 9984 71 00 — Té écopie: (33) 99 38 38 32

De I’associativité des caches dans les
multi-microprocesseurs a coiit modéré

Résumé : Aujourd’hui la taille des caches internes des microprocesseurs permet d’envisa-
ger la construction de multi-microprocesseurs a bus commun & cout extremement modéré,

¢’-a~d sans cache secondaire.
Dans ce rapport, nous étudions I'impact de ’assopciativité sur des caches internes sur les
performances de tels systémes. En particulier, les caches skewed-associatifs et semi-unifiés

sont évalués.

Mots-clé : multi-microprocesseurs, caches, caches associatifs

About cache associativity in low-cost shared memory multi-microprocessors 3

1 Introduction

Many commercial shared memory multi-microprocessor systems are built around a single
bus and a single memory as illustrated in figure 1: n processors are sharing a single bus and
a single memory. Encore Multimax [1], SGI Challenge or Sparc Station 10 are examples of
such multiprocessors. On such systems, the access to the bus and the memory is generally

N processors

PO P1 Pn

system bus

i

shared memory

Figure 1: General structure of a single bus single shared memory multiprocessor

the bottleneck for performance: reducing the traffic on the bus and memory is a dramatic
issue. In order to limit this traffic, caches are associated with the processors.

In most single bus single shared memory multi-microprocessor systems (e.g. Sparc Sta-
tion 10), a second-level cache is associated with each microprocessor. The hardware cost
induced by this second-level cache (cache memories, board space,..) may predominant over
the cost of the microprocessor itself. On the other hand, as they include on-chip cache cohe-
rency mechanisms, most of the newly introduced second generation RISC microprocessors
(e.g. MIPS R4000) may be used directly in the design of a shared memory multiproces-
sor without second-level caches. Then relatively a cheap single bus shared memory multi-
microprocessor may be built. In such a system, the chip count would remain very limited;
e.g. the overcost of an 8-processor system over a 4-processor system will essentially consist
in the four added microprocessor chips.

The aim of this paper is to explore the viability of such an approach considering current
available integration density. On current commercially available microprocessors, on-chip
cache sizes range from 16Kbytes (e.g. MIPS R4000 [9]) to 36Kbytes (TI SuperSparc [12]). As
performance of a multi-microprocessor system will essentially depend on the bus and memory
traffic, we investigate using some associativity on on-chip caches and particularly the use of
two recently proposed partially associative cache organizations, the skewed associative cache
[14, 13] and the semi-unified cache [5].

The remainder of this paper is organized as follows. In section 2, we briefly describe
the skewed-associative cache organization and its characteristics; in section 3, the semi-
unified cache organization is presented. Then section 4 describes our simulation methodology.

RR n "~ 2083

4 Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec

Execution driven simulation results are given in section 5. These simulation results clearly
indicate that, using direct-mapped cache structures will lead to quite low performance level,
while using some associativity degree on on-chip caches will allow a higher performance
level. Performance achieved when using skewed-associative caches or semi-unified caches is
particularly encouraging.

2 Skewed-associative caches

The skewed-associative cache organization has been recently introduced in [14, 13].
2.1 Skewing on caches: principle

A set-associative cache is illustrated by Figure 2: a X way set-associative cache is built with
X distinct banks. A line of data with base address D may be physically mapped on physical
line f(D) in any of the distinct banks.

In a skewed-associative cache, different mapping functions are used for the distinct cache
banks i.e., a line of data with base address D may be mapped on physical line fo(D) in
cache bank 0 or in f1(D) in cache bank 1, etc.

This very slight modification in the design is illustrated in Figure 3.

2.2 Choosing the skewing functions

Insight on the properties that might exhibit functions chosen for skewing the lines in the
distinct cache banks in order to obtain a good hit ratio is given in [14, 13]. Here we only
recall the inter-bank dispersion property.

In a usual X-way set-associative cache, when (X+1) lines of data contend for the same
set in the cache, they are all conflicting for the same place in the X cache banks: one of the
lines must be evicted from the cache (Figure 2).

Skewed-associative caches were introduced to avoid this situation by scattering the data:
mapping functions can be chosen such that whenever two lines of data conflict for a single
location in cache bank i, they have very low probability to conflict for a location in cache
bank j (Figure 3).

Ideally, mapping functions may be chosen such as the set of lines that might be mapped
on a cache line of bank i will be equaly distributed over all the lines in the other cache
banks.

Nevertheless it was shown in [14] that very partial inter-bank dispersion gives equivalent
performance as complete inter-bank dispersion.

2.3 A family of skewing functions

The family of skewing functions used for the simulations presented in the paper are based
on manipulations on bit strings in addresses of data. The degrees of skewed associativity
that were simulated are 2 and 4.

Inria

About cache associativity in low-cost shared memory multi-microprocessors 5

data

tag

data

tag

f(A0) = f(AL) = f(A2)

A0 Al A2

Figure 2: 3 data conflicting for a single set on a two-way set-associative cache

data tag data tag
~ fl A —
\\
BL f £2) =
f0(A0) =f O(p1) =f 0(]2)
. .4

A0 Al A2

Figure 3: Data conflicting for a cache line on bank 0, but not on bank 1 on a skewed-

assoclative cache

RR n " 2083

6 Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec

From now, we consider that the cache consists in X cache banks 27%6 cache lines of 2°
bytes.

Let us consider the decomposition of a binary representation of an address A in bit
substrings A = (A4s ,A42, A1, Ag), Ao is a ¢+ n bits string. A; and A, are two 6 bits strings
and As is the string of the most significant bits.

Let (ys,ys, .., y1) be the binary representation of ¥ = Ei:LGyiQi_l. Let us consider the
function H defined as follows:

H: {0,.,2°~1} — {0,.,2°-1}
(y61y57"1y1) — (y6@y11y61y57"1y3ay2)

where @ is the XOR (exclusive or) operation.
Let us consider the four mapping functions from the main address space S in the cache
address space defined respectively by:

fo: S — {0,..,25—1}%{0,..,2¢t" — 1}
(Ag,AQ,Al,Ao) — (H(Al)@H_l(AQ)@AQ,Ao)

fi: S — {0,..,25—1}%{0,..,2¢t" — 1}
(Ag,AQ,Al,Ao) — (H(Al)@H_l(AQ)@Al,Ao)

fa: S — {0,..,25—1}%{0,..,2¢t" — 1}
(A3,A2,A1,A0) — (H_l(Al)EBH(Az)@AQ,AQ)

fa: S — {0,..,25—1}%{0,..,2¢t" — 1}
(A3,A2,A1,A0) — (H_l(Al)EBH(Az)@Al,AQ)

Using these functions for mapping data on the cache ensures a reasonable dispersion of
the addresses over the cache banks:

VD VA Vi#jif fi(D)=f(d) & f;(D) = f;(d)} then d = D mod 2°+7+12

or in less mathematical terms: the set of data that are mapped onto a single line by mapping
function fy is splitted on 64 lines by the other mapping functions.
Hardware computations of these functions is quite simple (only a few XOR gates)
More precise justifications for this choice of skewing functions may be found in [13] and
in [14].

2.4 Replacement policy

LRU replacement strategy cannot be implemented at a reasonable hardware cost on a skewed
associative cache. Nevertheless, pseudo-LRU strategy with the same tag memorization cost
as a LRU replacement strategy on a set-associative cache has been shown to be effective.

Inria

About cache associativity in low-cost shared memory multi-microprocessors 7

2.5 Hardware cost

Using the proposed skewed associative cache organization in place of a set-associative cache
organization will induce a marginal hardware overcost in the microprocessor: essentially the
mechanism to compute the previously described functions f; i.e. a very few XOR gates.

3 Semi-unified caches

The major argument that is advanced for using direct-mapped caches rather than set (or
skewed) associative caches is a shorter cache hit time (i.e. the delay for accessing a data in
the cache on a hit) [8].

A cache read on a direct-mapped cache may be decomposed into two consecutive steps:

1. Read the word and associated tags in cache
2. Check the tags against the address of the data

While a cache read on a n-way set-associative cache consists in three consecutive steps:
1. Read a set of n words and associated tags
2. n parallel tag checks against the address of the data

3. Selection of the correct word in the set

This extra step induces a higher hit time on a set-associative cache than on a direct-mapped
cache, but differences between these hit times may not be very significant !.

Nevertheless, when using a direct-mapped cache, data (or instructions) flowing out from
the cache may be directly used after step 1, because checking the validity of the data word
may be executed in parallel with other pipeline activities. The current pipeline cycle is
canceled if the data (or instructions) is found to be unvalid.

Using such an optimistic execution on a direct-mapped cache allows to obtain a cache
hit time significantly lower than on a classical set-associative cache (15-30% are reported).
2

The semi-unified cache organization was introduced in [5] in order to maintain a low
cache hit time while introducing some on-chip cache associativity.

A semi-unified cache organization consists of two distinct instruction/data caches where
the instruction cache (resp. data cache) is used as the secondary cache for data (resp. ins-
tructions).

3.1 Sequencing a request on a semi-unified cache

The sequencing of an instruction request at address A is as follows:

1. the request is presented to the I-cache :

2. on a miss, the request is presented to the D-cache. From now, this first-level cache
miss is called an on-chip miss:

12% was reported by Hill [8]
?Notice that optimistic execution is also possible with a set-associative cache [4] but at a significantly
higher implementation cost.

RR n " 2083

8 Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec

e On a hit in the data cache, the requested line is brought back in the instruction
cache; a line must be rejected from the I-cache, the replacement of this line is

discussed in the next section.
e On a miss in the D-cache, the request is presented to an external cache or the

main memory. This second-level cache miss will be called an off-chip miss.

3.2 Replacement strategy for direct-mapped semi-unified cache

The semi-unified cache organization may be used with different basic cache structures for I-D
caches; but this organization is particularly attractive when both caches are direct-mapped
and have the same size [5].

A semi-unified cache built with two direct-mapped caches of equal sizes will be referred
to as a direct-mapped semi-unified cache.

Off-chip misses E.g. let us consider an off-chip instruction miss:

The requested instruction line I must be stored in physical cache line L(A)
(where A is the instruction request address) of the I-cache the content L1 of line
L(A) must be rejected from the I-cache.

But this rejected line L1 may be stored in the D-cache in physical cache line
L(A).
Finally the rejected line from the whole on-chip direct-mapped semi-unified cache
must be chosen among a set of two lines:
1. L1 the content of the targeted physical line L(A) in the I-cache.
2. L2 the content of physical line L(A) in D-cache: if L2 is rejected, then L1
is moved from I-cache to D-cache.

The strategy for chosing the rejected line may be random or LRU as on a classical
two-way set-associative caches.

On-chip misses Let us consider an on-chip instruction miss which hits on the secondary
on-chip cache. The requested line L lies in line L(A) of D-cache; this line must be brought
back to line L(A) in I-cache. The content L1 of line L(A4) in I-cache must be removed, but
since line L(A) in D-cache is now empty, it may be stored in this location (L1 and L2 are
swapped between I-cache and D-cache): no external traffic is induced, and the global content
of the on-chip cache has not changed.

3.3 Assets and drawbacks of semi-unified caches

The direct-mapped semi-unified cache organization built with two direct-mapped caches
of equal sizes S has most of the advantages of both two-way set-associative cache organi-
zation and direct-mapped cache organization; it has also the assets of both unified cache
organization and split cache organization:

Inria

About cache associativity in low-cost shared memory multi-microprocessors 9

e The cache hit time on a direct-mapped semi-unified cache is the same as when using
split direct-mapped instruction/data caches of equal sizes S.

But the off-chip miss ratio of the direct-mapped semi-unified cache is the same as that
of a unified two-way set-associative cache of size 2S.

e Parallel access to instructions and data is provided; yet the on-chip cache spaces res-
pectively devoted to instructions and data are dynamically adjusted as on a unified
two-way set-associative cache.

Implementing such a semi-unified cache organization induces some additional hardware
costs over the usual split cache organization: essentially, a data path is needed for swapping
the lines between I-cache and D-cache. Notice that an on-chip miss induces a miss penalty
even when the request hits on the secondary on-chip cache.

A performance study on the benefits of using a direct-mapped semi-unified cache in a
monoprocessor system may be found in [5].

3.4 Maintaining cache coherency

For an agent external to the microprocessor, the on-chip semi-unified cache must be seen
as an on-chip unified cache: in a multiprocessor, on a transaction on the system bus, both
I and D caches caches on the chip must be scanned for maintaining coherency. Notice that
this is already done on most microprocessors[12].

4 Simulation methodology

4.1 Simulation technique

In order to obtain accurate simulation results, we simulate address traces of real parallel
applications, using an efficient execution driven simulator, based on the SPAM kernel.

SPAM [7] allows the simulation of any shared memory multiprocessor architecture on a
single processor machine. SPAM implements execution driven simulation which is the only
technique that gives accurate simulation results for multiprocessor architecture. It ensures
that the execution providing the address trace to be simulated is exactly the one that would
be observed if the application was actually executed on the simulated architecture. The
basic idea of execution driven simulation is to interleave the execution and tracing of an
application with the simulation of the target architecture, and to let the simulator control
the execution. The main drawback of execution driven simulation is that it is difficult to
implement.

SPAM provides an easy way to implement an execution-driven simulation. The SPAM
kernel furnishes a trace generator based on the Abstract Execution [10], and a simulation
library. The trace generator delivers address traces and a set of synchronization events to the
simulator. The simulation library allows the execution of parallel applications using shared
memory on a single processor machine and provides a set of primitives used to control the
execution of the processes according to events generated in the address traces.

The architectural simulator is written in C and simulates each part of the architecture
described in Figure 1 on a cycle by cycle basis for optimal simulation accuracy.

RR n "~ 2083

10 Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec

4.2 Benchmark Programs

Appli Memory Global memory Shared memory
references references references
% Inst | % Read | % Write | % Read | % Write
Pthor 81 M 76 6 2.16 14 1.84
Mp3d 70 M 74 4 1.4 12 8.6
Water 78 M 69 19.9 6.44 4.1 0.56
Cholesky 66 M 70 6 2.7 18 3.3

Table 1: Application characteristics

The SPAM kernel assumes a programming model where a parallel application is made
of a set of processes communicating through shared memory and synchronizing with locks
and barriers. We ran our simulations on a set of four parallel scientific applications from the
Stanford SPLASH benchmark suite [15].

e Pthor is a logic-level circuit simulator. It uses a variant of the Chandy-Misra algorithm
that avoids using a single global time and allows each element to advance its own
value of time independently of the other elements. The distribution of tasks between
the different application processes is realized through task queues assigned to each
process. The circuit used in the simulation is composed of 5060 elements and the
program runs for 5000 time steps.

e Mp3d is a rarefied fluid flow simulation program used to study the forces applied
to objects. Mp3d solves a problem in three-dimensional rarefied fluid flow simulation.
The algorithm simulates individual particles moving and colliding in three-dimensional
space. For the simulation, we use 5000 molecules in a 14x24x7 (2646-cell) space for 80
time-steps.

e Water simulates the evolution of a system of water molecules in the liquid state. The
computation is performed over a number of time-steps in a cubical box. We use 100
molecules and 2 time-steps in the simulation.

e Cholesky is a program that performs a parallel Cholesky factorization of a sparse ma-
trix. Cholesky was run using the matrix besstk14 from the Boeing-Harwell benchmark
matrices, and it has 1806 equations and 61648 non-zeroes.

The basic characteristics of the applications are summarized in table 1. Results are given
for four processors during the parallel phase of the computation. Private memory references
correspond to accesses to code and private stack or heap. Shared memory references are
only data accesses in the shared memory segment. All percentage are relative to the total
number of memory references.

Inria

About cache associativity in low-cost shared memory multi-microprocessors 11

4.3 Simulated configurations

In order to simplify simulations a single instruction issue per cycle was simulated; parallel
access to data and instruction on the same cycle in the cache was considered.
The four benchmarks were simulated for 1, 4, 8 and 12 processors 3

Cache parameters

Instruction and data caches had the same size.
Line size was 32 bytes.
Various cache structures and sizes were simulated:

e Direct-mapped
e Set-associative 2-way and 4-way
e Skewed-associative 2-way and 4-way

e Direct-mapped semi-unified
The simulated cache coherency protocol was a 5 states write invalidate protocol.

Timing considerations

On current microprocessors, main memory access time is generally around 250 ns. 100 Mhz
issue rate is a current level with today‘s technology (e.g. MIPS R4000, MC88110); the system
bus width is generally 64 bits.

The timings used in the simulations approximately match these parameters:

1. On a write on a shared line, the bus is busy for 3 cycles by the invalidation on the
other caches.

2. When the missing line is supplied by an other cache, the bus is busy for 10 cycles
corresponding to one address cycle, 5 cycles of cache latency and 4 successive cycles
of bus occupancy by the four 64 bits words of the line.

3. On a miss request served by the memory, the bus is busy for 30 cycles corresponding
to 25 cycles of memory latency and 5 cycles of bus occupancy by the address and four
successive words of the line. More complex bus protocols with imbrications of requests
might have been more realistic as e.g. allowing the cache of processor P2 to supply
a line for processor P3 while the memory is servicing a miss for processor P1; such
protocols would result in slightly higher performance than measured in our simulations
[3, 6] and we are here considering a low-cost multiprocessor then the bus must not be
too complex.

4. In the particular case of the semi-unified cache, a first-level cache miss does not always
lead to an off-chip transaction. In our simulations, we considered that on a first-level
instruction (resp. data) cache miss scanning the data (resp. instruction) cache costs
a 3 cycles penalty.

3Due to memory size of our workstations, we were not able to simulate 12 processors for water

RR n "~ 2083

12 Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec

5 Simulation results

Theoretical peak performance is one Instruction Per Cycle (IPC) per processor. Figures 4
to 6 illustrate the performance achieved on the four benchmarks for various cache sizes and
organizations. Figure 7 illustrates the speed-ups for a cache size of 16 Kbytes; speed-ups are
measured as the ratio of the performance obtained using a particular cache organization and
the performance achieved with a uniprocessor and the same cache organization.

Benchmarks behavior

The behavior of the four benchmarks is quite different:

e water has a very limited working set:
when using a 8Kbytes skewed-associative or 4-way set-associative cache or a 2 *
8Kbytes semi-unified cache, a hit ratio superior than 0.99 is obtained leading to very
high speed-up; to reach the same order of hit ratio with a 2-way set-associative cache
(resp. direct-mapped cache) , 16Kbytes (resp. 32Kbytes) are necessary.

e On pthor, due to a large number of synchronizations, the speed-up is relatively low
and it seems that there is low benefit in increasing the number of processors from 4
to 8 or 12. Nevertheless, using some associativity on the cache clearly dramatically
improves performance.

e On cholesky, there is a quite regular benefit in increasing the size of the caches. For
a monoprocessor, the performance obtained with a direct-mapped cache is close to
performance obtained with associative caches, but the performance gap dramatically
increases with the number of processors.

Notice that the influence of cache size in this application is clearly illustrated by the
behavior of the semi-unified cache which exhibits higher performance than the other
configurations for 8 Kbytes.

e On mp3d, increasing the cache size also results in a clear performance benefit. Parti-
cularly for 32Kbytes caches, increasing the processor number is worthwhile when some
associativity is available on the cache and particularly skewed associativity.

Speed-ups

As foreseeable, using some associativity in caches improves overall IPC performance for
monoprocessors, it also achieves better speed-ups (figure 7).

cholesky and water exhibits good speed-ups, while performance on pthor is not signifi-
cantly increased when using 8 or 12 processors rather than 4 processors. mp3d would need
quite large cache (32K bytes) and a good associativity mechanism to obtain a large speed-up.

Nevertheless, it seems that using 8 or 12 processors would be a good performance/price
trade-off: as pointed out in the introduction, the hardware cost of an 8 or 12 processors
system will be very close to the hardware cost of a 4-processor system.

Inria

About cache associativity in low-cost shared memory multi-microprocessors

13

Speedup

Speedup

Speedup

Instructions per cycles

10

10

10

10

JORCOC

cholesky

Cache size: 2 * 8192 bytes

direct-mapped

2-way set-associative

4-way set-associative

2-way skewed-associative

4-way skewed-associative

semi-unified

w1

JORCOC

8
Processors

Mp3d
Cache size: 2 * 8192 bytes

direct-mapped

2-way set-associative

4-way set-associative

2-way skewed-associative

4-way skewed-associative

semi-unified

o MM

JORCOC

Processors

pthor
Cache size: 2 * 8192 bytes

direct-mapped

2-way set-associative

4-way set-associative

2-way skewed-associative

4-way skewed-associative

semi-unified

ol ol

JORCOC

Processors

water
Cache size: 2 * 8192 bytes

direct-mapped

2-way set-associative

4-way set-associative

2-way skewed-associative

4-way skewed-associative

semi-unified

il

a
Processors

Figure 4: Performance: cache size 2 * 8 Kbytes

14

Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec

Speedup

Speedup

Speedup

Instructions per cycles

10

10

10

10

cholesky
Cache size: 2 * 16384 bytes

direct-mapped

2-way set-associative

4-way set-associative

2-way skewed-associative

4-way skewed-associative

JORCEC

semi-unified

nile

a 8
Processors

Mp3d
Cache size: 2 * 16384 bytes

direct-mapped

2-way set-associative
4-way set-associative
2-way skewed-associative

4-way skewed-associative

JORCEC

semi-unified

o [0

Processors

pthor
Cache size: 2 * 16384 bytes

direct-mapped

2-way set-associative
4-way set-associative
2-way skewed-associative
4-way skewed-associative

semi-unified

JORCEC

e ALATL A

Processors

water
Cache size: 2 * 16384 bytes

direct-mapped

2-way set-associative
4-way set-associative
2-way skewed-associative

4-way skewed-associative

JORCEC

semi-unified

(il ‘

a
Processors

Figure 5: Performance: cache size 2* 16Kbytes

About cache associativity in low-cost shared memory multi-microprocessors

15

Speedup

Speedup

Speedup

Instructions per cycles

10

10

10

10

cholesky
Cache size: 2 * 32768 bytes

direct-mapped

2-way set-associative

4-way set-associative

2-way skewed-associative

4-way skewed-associative

JORCEC

semi-unified M

[Tl ‘

a 8
Processors

Mp3d
Cache size: 2 * 32768 bytes

direct-mapped

2-way set-associative
4-way set-associative
2-way skewed-associative

4-way skewed-associative

JORCEC

semi-unified

il

Processors

pthor
Cache size: 2 * 32768 bytes

direct-mapped

2-way set-associative
4-way set-associative
2-way skewed-associative
4-way skewed-associative

semi-unified

JORCEC

oo AL

Processors

water
Cache size: 2 * 32768 bytes

direct-mapped

2-way set-associative
4-way set-associative
2-way skewed-associative

4-way skewed-associative

JORCEC

semi-unified

wll

®

a
Processors

Figure 6: Performance:

cache size 2* 32 Kbytes

16

Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec

Speedup

Speedup

Speedup

Speedup

10

10

10

10

cholesky
Cache size: 2 * 16384 bytes

8
Processors

Mp3d
Cache size: 2 * 16384 bytes

8
Processors

pthor
Cache size: 2 * 16384 bytes

8
Processors

water
Cache size: 2 * 16384 bytes

Processors

Figure 7: speedups; cache size 2* 16Kbytes

About cache associativity in low-cost shared memory multi-microprocessors 17

Analyzing associativity

In order to have a better evaluation of the impact of using associativity on caches in multi-
processors, we ran the simulations considering processors using 2* 256 Kbytes direct-mapped
caches, then we used these performance results in order to normalize the previously reported
results. We define the normalized performance of the application as the ratio

IPC achieved with same number oIfP;();;‘oacce};Zseovridand 2x256 K direct—mapped caches Figure 8 illustrates
this normalized performance for a cache size of 16 Kbytes.

Except for mp3d which seems to require at least a 32 Kbytes data cache, using a 2*16
Kbytes associative cache structure allows to achieve the same level of performance as a 256
Kbytes direct-mapped cache.

It may be noticed that this indicates that, when an associative cache structure is used
on the microprocessor chip, a second-level direct-mapped cache smaller than 512 Kbytes
will probably not enhance performance: when a second-level cache is used, the global miss
penalty on a second-level cache miss is higher than the miss penalty without second-level
cache, moreover maintaining cache coherency is more complex and maintaining inclusion
property induces extra first level misses [2].

Direct-mapped caches

When using 2*16Kbytes direct-mapped caches, for the four applications the normalized per-
formance decreases quite significantly when the number of processors increases: the number
of cache misses is significantly higher than when using 2*256 Kbytes caches and the number
of cache misses served by the caches of the other processors is more limited, then the memory
is rapidly saturated.

Semi-unified caches

It must be pointed out that the performance achieved when using direct-mapped semi-unified
cache organization is closer to the behavior of a set or a skewed-associative cache structure
than to the behavior of a direct-mapped cache structure. This is particularly interesting
because the cache hit time on a semi-unified cache is very close to the cache hit time on a
direct-mapped cache.

When the cache size increases, the performance when using a semi-unified cache orga-
nization becomes slightly lower than when using set or skewed-associative split I-D cache
organization; this is due to “less” associativity and on-chip cache miss penalties.

Skewed-associative caches

Performance achieved when using skewed-associative caches is higher than when using usual
set-associative caches. For example, for a 2¥16Kbytes cache size and a 8-processor system,
the average normalized performance achieved on our set of benchmarks is 1.05 with a 4-way
skewed-associative cache, 1.00 with a 2-way skewed-associative cache, 0.93 with a 4-way
set-associative cache, 0.90 with a 2-way set-associative cache, 0.90 with a semi-unified cache
and 0.49 with a direct-mapped cache.

RR n " 2083

18 Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec

cholesky
Cache size: 2 * 16384 bytes

Normalized performance (%)

a 8
Processors

Mp3d
Cache size: 2 * 16384 bytes

Normalized performance (%)

a 8
Processors

pthor
Cache size: 2 * 16384 bytes

Normalized performance (%)

a 8
Processors

water
Cache size: 2 * 16384 bytes

Normalized performance (%)

20
10 ’7
o ‘

a
Processors

Figure 8: Normalized performance on the four benchmarks

About cache associativity in low-cost shared memory multi-microprocessors 19

6 Conclusion

Building a relatively low-cost shared memory multi-microprocessor system has become fea-
sible with current microprocessor technology.

In this paper, we have explored the viability of building a single-bus single memory
multi-microprocessor system without using any second-level cache. Such an approach clearly
reduces the hardware cost of the system. Such a low-cost multiprocessor system may be used
as a stand-alone machine. This structure may also be considered for basic clusters for non-
uniform memory access (NUMA) shared memory systems [11].

Simulations were run on a scientific set of benchmarks for various cache sizes and or-
ganizations. These simulations clearly indicate that with the current level of integration
technology and the current level of microprocessor performance, the speed-ups that could
be obtained on such a multi-microprocessor system is highly dependant on the cache orga-
nization and mainly on its associativity. Direct-mapped cache structures will lead to very
poor performance compared with using partially associative cache structures; this poor pe-
formance is due to lower monoprocessor performance conjugated with lower speed-up.

On the other hand, on our benchmark set, using a 2*16 Kbytes * partially associative
cache organization leads to performance comparable with a 2*256Kbytes direct-mapped
cache organization.

Among the partially associative caches, we have particularly focussed our attention on
two innovative partially associative cache structures: the skewed-associative cache and the
semi-unified cache organizations. The skewed-associative cache organization exhibits the
best performance. As a skewed-associative cache has the same integration complexity as a
usual set-associative cache, microprocessors designers should consider this new structure of
cache.

The semi-unified direct-mapped cache organization definitely exhibits a behavior close
to a set-associative cache organization while it achieves the same cache hit time as a direct-
mapped cache. Clock frequency is generally determined by cache hit time; clock frequency
determines peak theoretical performance. Using a semi-unified direct-mapped cache organi-
zation might be the best trade-off for industrials in order to announce high peak performance
and to achieve the best level of effective performance.

References

[1] “Using the Encore Multimax”, Tech. Mem. No 65, Rev. 1, Argonne National Laboratory,
Feb. 1987

[2] Baer J.L., W.H. Wang “On the inclusion property for multi-level cache hierarchies” ,
Proceedings of the 15th International Symposium on Computer Architecture (IEEE-
ACM), June 1988

%i.e. the current level of integration density

RR n " 2083

20

Nathalie Drach, Alain Gefflaut, Philippe Joubert, André Seznec

(3]

[4]

[5]

[6]

[7]

M. Cekleov et al “SPARCcenter 2000: Multiprocessing in the 90’s!” | Proceedings Comp-
con Spring ’93, Feb. 93

J.H. Chang, H. Chao, and K. So “Cache Design of A Sub-Micro CMOS System/370”
pp208-213, Proceedings of the 14th International Symposium on Computer Architecture
(IEEE-ACM), May 1987.

N. Drach, A. Seznec “Semi-unified Caches” Proceedings of the International Conference
on Parallel Processing, August 1993

J.M Frailong et al, “The Next-Generation SPARC Multiprocessing System Architectu-
re”, Proceedings Compcon Spring 93, Feb. 93

A. Gefflaut, P. Joubert “SPAM : A Multiprocessor Execution Driven Simulation Ker-
nel”, INRIA Report, March 1993

M.D. Hill, “A case for direct-mapped caches”, IEEE Computer, Dec 1988
G. Kane, J. Heinrich MIPS RISC Architecture Prentice-Hall, 1992

J. Larus, “Abstract Execution : A Technique for Efficiently Tracing Programs”, Software
Practice and Experience, Dec 1990

D. Lenoski et al, “The Stanford DASH multiprocessor”, Computer, March 1992
“TMS390Z50, Data Sheet”, Texas Instrument, 1992

A. Seznec, F. Bodin “Skewed Associative Caches” Proceedings of PARLE’ 93 (Lecture
Notes in Computer Science) June 1993

A. Seznec, “A Case for Two-way Skewed Associative Caches”, Proceedings of the 20%"
International Symposium on Computer Architecture, May 1993

J.P. Singh, W. Weber, A. Gupta “SPLASH : Stanford Parallel Applications for Shared-
Memory”, Technical Report CSL-TR-91-469, Stanford University, 1991.

M. Slater, “Corollary Unveils 486 Multiprocessor Cache Chips”, Microprocessor report,
aug 1991

Inria

JINRIA

Unité derecherche INRIA Lorraine, Technpole de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derechercheINRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derechercheINRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

