On a Non Linear Geometrical Inverse Problem of Signorini type : Identifiability and Stability

Abstract : This report deals with a non linear inverse problem of identification of unknown boundaries, on which the prescribed conditions are of Signorini type. We first prove an identifiability result, in both frameworks of steady state thermal and elastostatics testing. Local Lipschitz stability of the solutions with respect to the boundary measurements is also established, in case of unknown boundaries which are parts of ${\cal C}^{1,\beta}$ Jordan curves, with $\beta > 0$.
Type de document :
Rapport
[Research Report] RR-3175, INRIA. 1997
Liste complète des métadonnées

https://hal.inria.fr/inria-00077198
Contributeur : Rapport de Recherche Inria <>
Soumis le : lundi 29 mai 2006 - 17:18:32
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : lundi 5 avril 2010 - 21:43:24

Fichiers

Identifiants

  • HAL Id : inria-00077198, version 1

Collections

Citation

Amel Ben Abda, Slim Chaabane, Fadi El Dabaghi, Mohamed Jaoua. On a Non Linear Geometrical Inverse Problem of Signorini type : Identifiability and Stability. [Research Report] RR-3175, INRIA. 1997. 〈inria-00077198〉

Partager

Métriques

Consultations de la notice

269

Téléchargements de fichiers

199