N

HAL

open science

Theorem Proving Modulo
Gilles Dowek, Thérese Hardin, Claude Kirchner

» To cite this version:

Gilles Dowek, Thérése Hardin, Claude Kirchner. Theorem Proving Modulo. [Research Report] RR-

3400, INRIA. 1998, pp.27. inria-00077199

HAL Id: inria-00077199
https://inria.hal.science/inria-00077199
Submitted on 29 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00077199
https://hal.archives-ouvertes.fr

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Theorem Proving Modulo

Gilles Dowek, Thérése Hardin, Claude Kirchner

No 3400
April 1998

THEME 2

apport

derecherche

Zd INRIA

ROCQUENCOURT

Theorem Proving Modulo

Gilles Dowek*, Thérése Hardin!, Claude Kirchner?

Théme 2 — Génie logiciel
et calcul symbolique
Projets Coq, Para, Protheo

Rapport de recherche n° 3400 — April 1998 — 27 pages

Abstract: “Theorem proving modulo” is a way to remove computational arguments from
proofs by reasoning modulo a congruence on propositions. Such a technique, issued from
automated theorem proving, is of wider interest because it aims at separating deductions and
computations. The first contribution of this paper is to provide a “sequent calculus modulo”
that gives a clear distinction between the decidable (computation) and the undecidable
(deduction).

The congruence on propositions is handled via rewrite rules and equational axioms.
Usually rewriting applies only to terms. The second contribution of this paper is to allow
rewriting atomic propositions into non atomic ones and to give a complete proof search
method, called “Extended Narrowing and Resolution” (ENAR), modulo such congruences.
The completeness of this method is proved using the sequent calculus modulo.

An important application is that this Extended Narrowing and Resolution method sub-
sumes full higher-order resolution when applied to a first-order presentation of higher-order
logic. This shows that such a presentation can yield also efficient proof-search methods.

Key-words: Automated theorem proving, rewriting, resolution narrowing, higher-order
logic

(Résumé : tsuvp)

* INRIA-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France, Gilles.Dowek@inria.fr

T LIP6 and INRIA-Rocquencourt, Université Paris 6, 4, Place Jussieu, 75252 Paris Cedex 05, France,
Therese.Hardin@lip6.fr

¥ LORIA and INRIA, 615, rue du Jardin Botanique, B.P. 101, 54602 Villers-1és-Nancy Cedex, France,
Claude.Kirchner@loria.fr

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Teéléphone : 01 39 63 55 11 - International : +33 1 39 63 55 11
Télécopie : (33) 01 39 63 53 30 - International : +33 1 39 63 53 30

La Déduction modulo

Résumé : La “déduction modulo” est un moyen de supprimer les phases de calcul appa-
raissant dans les démonstrations en raisonnant modulo une congruence décrivant les calculs
effectués sur les termes et les propositions. Cette technique, apparue en démonstration au-
tomatique, est d’une portée plus large car elle permet de séparer les phases de raisonnement
et les phases de calcul. La premiére contribution de ce papier est la définition d’un “cal-
cul des séquents modulo” qui sépare nettement le décidable (le calcul) de I'indécidable (le
raisonnement).

La congruence sur les propositions est définie par un ensemble de régles de réécriture
et d’axiomes équationnels. D’habitude, la réécriture s’applique uniquement aux termes. La
seconde contribution de ce papier est d’étendre la réécriture aux propositions atomiques
et de donner une méthode compléte de démonstration automatique, appellée “Surréduction
et résolution étendues” (ENAR), modulo de telles congruences. La complétude de cette
méthode est établie en utilisant le calcul des séquents modulo.

Une application importante concerne la résolution d’ordre supérieur. Celle-ci peut étre
vue comme 'application de la méthode de surréduction et résolution étendues & une présen-
tation au premier ordre de la logique d’ordre supérieur. La réduction au premier ordre peut
donc également mener & des méthodes efficaces de démonstration automatique & ’ordre
supérieur.

Mots-clé : Démonstration automatique, réécriture, résolution, surréduction, logique
d’ordre supérieur

If let loose, usual automated theorem proving methods such as resolution or tableaux, can
be very inefficient, spending time in trivial deductions. For instance with the associativity
axiom:

VeVyVz (z+y)+z=2+ (y+ 2))

a prover may rearrange endlessly brackets. To improve efficiency, G. Plotkin [Plo72] proposes
to drop the associativity axiom and to replace unification by equational unification modulo
associativity (G. Plotkin says “building-in” the associativity axiom). This can be analyzed
as first defining a quotient of the set of propositions by an appropriate congruence and then
reformulating the proof search in the quotient.

This idea of working directly in a quotient of the set of propositions has appeared in
automated theorem proving but is of wider interest and deserves to be studied for itself.
Indeed defining a notion of proof in such a quotient yields a clear distinction between the
notions of computation and deduction. The first contribution of this paper is to propose a
sequent calculus modulo a congruence on propositions such that the propositions provable
in this calculus are the same as the propositions provable in the usual sequent calculus
extended by an appropriate theory depending on the congruence.

Usually the congruence on propositions is simply induced by a congruence on terms, but
congruences defined directly on propositions are of prime interest, in particular when dealing
with first-order presentations of higher-order logic.

Identifying atomic propositions with non atomic ones changes the logical structure of
propositions. So, different deduction rules can be applied, according to the choice of the
representative of an equivalence class. This leads to a true interaction between computation
and deduction and this brings serious difficulties in automated theorem proving as well as
in proof theory.

The second contribution of this paper is to introduce an FEztended Narrowing and Res-
olution (ENAR) proof search method that extends equational resolution to a large class of
congruences which allow to identify also atomic propositions with non atomic ones.

In particular, the ENAR method applied to a first-order presentation of higher-order
logic subsumes higher-order resolution. Thus we show that expressing higher-order logic
as a first-order theory and using a first-order proof search method is an efficient way to
implement higher-order proof search, provided we use the right automated deduction tools
for first-order logic.

After the end of this introduction, devoted to the presentation of the key ideas of the
paper, Section 1 presents the sequent calculus modulo and its main properties. Section 2
defines the Extended Narrowing and Resolution (ENAR) proof search method and sections 3
and 4 are dedicated to the completeness proof of this method. We conclude in Section 5 by
presenting some generalizations of the ENAR method.

On the use of congruences in automated theorem proving

As proposed by G. Plotkin, the explicit handling of equality in the deduction process can
be avoided by integrating part of the reasoning modulo equality in the deduction process.
This idea led a decade later to the so-called theory resolution of ML.E. Stickel [Sti85].

As an example, in arithmetic, we may identify propositions equivalent modulo rearrang-
ing of brackets. This permits to drop the associativity axiom:

VeVyVz ((+y)+z=x+ (y + 2))
as it belongs to the class of the trivial proposition:
VeVyVz (x4 (y+2) =2+ (y + 2)).

In counterpart, unification, the basic operation of automated deduction, is no more the
search of a substitution yielding identical terms but it has to find a substitution yielding
congruent ones. That is, unification has to be replaced by equational unification [JK91].

In a similar way P. Andrews [And71] proposes to build-in conversion axioms of higher-
order logic. Therefore unification is replaced by equational unification modulo #rn-conversion,
usually called higher-order unification [Hue72, Hue75].

The same concern of building-in part of the equality in equational reasoning itself [KB70]
has also led to the study of equational reasoning modulo, whose main landmarks are the
study of associative-commutative completion [PS81], the general study of coherence of an
equational theory with respect to a rewrite system [JK86], its unified presentation in [Bac87]
and its extension in [Vir95].

A drawback of this approach is that equational unification may be undecidable or quite
complex. Fortunately deciding unifiability can be postponed and modularized by the use of
constraints. Starting from the seminal work of G. Huet on higher-order resolution [Hue72],
the notion of deduction with constraints spread, with constraint logic programming [JL87],
and then constraint programming. The counterpart in theorem proving is deduction with
constraint [KKR90] and complete constraint saturation processes [BGLS95]. This gives
first a generalization of the concept of building-in specific theories, second it allows specific
treatment of the constraints and third it generalizes to various constraint languages.

Finally, the various advances on rewriting techniques have demonstrated that orienting
equality, i.e. determining which object is greater than the other, can lead to dramatical im-
provements. The integration of rewrite based techniques and ordering in first-order theorem
proving began in the early eighties [HR86] (for a survey see [HKLR92]) leading to very pow-
erful results and systems, which, together with the techniques based on constraints, allowed
recently to solve problems considered by mathematicians as hard [McC97] (see also [Kol96]).

Identifying propositions

When considering rules rewriting propositions to propositions, equational resolution can
easily be extended when both sides of the rewrite rules are atomic propositions. For instance,

in arithmetic we can equate the propositions
S(x)=S(y) andz =y

which allows to drop Peano’s third axiom.

But we may also consider identifying atomic propositions with non atomic ones. A first
attempt in this direction has been achieved by S.J. Lee and D. Plaisted [LP94] who have
proposed a proof search method where defined predicate symbols may be unfolded.

Here we want to use more general rules transforming atomic propositions to arbitrary
propositions. For instance, in the theory of integral rings, we want to have the equivalence
between the propositions

zxy=0andz=0Vy=0

or between
zxy=xxzandy=2Vzx=0

To operationalize the use of the congruence we consider a set £ of equations and a set
R of rewrite rules. Equations may relate terms to terms or atomic propositions to atomic
ones.

Since propositions in first-order logic contain binders (quantifiers) such rewriting systems
are in fact Combinatory reduction systems [KvOvR93]. As usual in first-order logic, we use
a single category of names for free and bound variables.

Rewrite rules may rewrite atomic propositions to arbitrary ones. Rules rewriting terms
to terms are added in the generalization presented in Section 5. Rules whose left members
are not atomic such as the simplification of the proposition AAA to A are technically difficult
to handle because putting a proposition in clause form may spread a redex. They are left
outside the scope of this paper.

A typical example: HOL

Rules rewriting atomic propositions into non atomic ones are used for instance in (many-

sorted) first-order formulations of higher-order logic (see, for example, [Dow97]).
The sorts of this theory are inductively defined by:

e , and o are sorts,

e if T and U are sorts then T — U is a sort.

The language contains the constant symbols:

e Sryyv ofsort (T -U—-V)- (T —-U)-T->V,

e KryofsortT - U =T,

e — of sort 0 — o,

o\:/ofsorto—)o—)o,

o YV of sort (T — 0) — o,

the binary function symbol:

e aypy of rank (T - U, T) U

and the unary predicate symbol:

e ¢ of rank (o).

Notice that in this presentation there is a distinction between propositions as zero-ary
relations (i.e. objects of type o) and true propositions of the first-order language. Objects of
type o are built using the combinators -, V and VY while true propositions are built using
the true connectors and quantifiers. If ¢ is a term of type o, the corresponding proposition
is written e(¢) [Dow97].

The system RE is:

R = {e(a(*,2)) = =e(@),e(a((V, 2),y)) = (@) Ve(y), e(a(Vr, 7)) = Vy e(a(z,y))}

& ={ala(a(S;2),9),2) = ala(z,2),(y,2)), ala(K,z),y) =z}

The same kind of rules, in particular rules introducing quantifiers, can also occur in set
theory, where we may want rules like:

€ (@ {y,2}) > @=y)V(z=2)

€ (z,P(y)) = Vz (€ (2,z) =€ (2,9))

Extended narrowing

With such rules, the resolution method (or the tableaux method) is not complete anymore
even if we replace unification by equational unification.

For instance, in the example of the integral rings, the proposition 3z (a*xa =2 = a =)
is provable since the propositions a xa = 0 and a = 0V a = 0 are identified modulo the

congruence:
a=0Fa=0 a=0Fa=0

V-1
a=0Va=0Fa=0
axa=0Fa=0
Faxa=0=>a=0 =
I-r

Fdz (axa=2=a=2)

But, the clause form of its negation has only the clauses a x a = £ and —a = = and thus the
resolution rule cannot be applied.

As another example, in HOL, the proposition 3z ¢(z) is provable since the propositions
e(a(a(V,y),a(-,y))) and e(y) V —&(y) are identified modulo the congruence:

e(y) Fe(y)
Fe(y), (y)

Fe(y) vV —e(y)
Fe(a(a(V,y),a(,y)))
F 3z e(x)

I-r

But, the clause form of its negation has only the single clause —&(z) and thus the resolution
rule cannot be applied.

This problem was already met in higher-order resolution [Hue72, Hue73], although in a
different form because higher-order logic is not presented as a first-order theory there. It
has led to the development of a new rule called Splitting which, together with the rule
Resolution, form a complete system for higher-order logic. This Splitting rule allows to
generate the different cases of proposition construction allowing to continue the search in
a complete way. For example —&(z) will be splitted in —&(p1),... ,~e(p,) according to the
various possibilities to instantiate z in a minimal way.

In this paper, we show that such a rule can be formulated for a large class of first-order
theories extended with a rewrite system rewriting atomic propositions to arbitrary ones. This
rule happens to be quite similar to the narrowing rule used for equational unification [Hul80]
and for combining logic and functional programming [Han94].

1 Sequent calculus modulo

In this section, we introduce a sequent calculus modulo a congruence which is operationally
treated using a rewrite system and a set of equations. We establish the equivalence lemma,
stating that a proposition P is provable in this calculus if and only if it is provable in the
standard sequent calculus using an appropriate set of axioms. However, although the two
calculi have the same theorems, the proofs are different and the proofs modulo are shorter
since computations steps are removed from them.

We consider a set of fixed arity function symbols F, a set of fixed arity predicate symbols
P and a set of variables X with no symbol in common. The set of terms built on F and
X is denoted T (F,X) or more generically Term. The set of atomic propositions built on
the set of predicates P and the set of terms 7 (F,X) is denoted AP(P,F,X) and in a
generic way AtomProp. The set of first-order propositions build on the atomic propositions
in AP(P,F,X), with the usual connectors A,V,=-,—, L and quantifiers V and 3 is denoted
P(P,F,X) and in a generic way Prop.

We assume the reader familiar with the basic notions of term rewriting as described for
example in [DJ90]. We are dealing in this work with congruences described by class rewrite
systems, i.e. pairs composed of:

— R: a rewrite system rewriting AtomProp to Prop and defining a rewrite relation denoted
—R,

— &: a set of equational axioms equating AtomProp with AtomProp or Term with Term and
defining a congruence denoted =¢.

Remark 1.1 It is possible, under some conditions, to consider additional rules in R rewrit-
ing also Term to Term (see section 5).

Definition 1.1 Given a class rewrite system RE, the atomic proposition t RE-rewrites to
t', denoted t —gret', if t =¢ u[o(l)]w and t' =¢ ulo(r)],, for some rulel - r € R,

some atomic proposition u, some occurrence w in u and some substitution o. We denote
=Rre the equality generated by R and £. Following G. Peterson and M.E. Stickel, the
atomic proposition t R, E-rewrites to t', denoted t — g e t', if t' = t[o(r)],, for some rule
I = r € R, some occurrence w in t and some substitution o such that o(l) =¢ t|,.

For example, if R = {a + b — ¢} and £ contains the associativity and commutativity
axioms, the term b + (a + a) RE-rewrites into ¢ + a but it is R, E-irreducible.

In the rest of the paper, in order to let proof-checking be effective, we assume the following
property of the relation =r¢:

Assumption 1.1 The relation =rg to be decidable.

Notice that neither -+r¢ nor -5 ¢ are supposed to be decidable. For instance in HOL,
=r¢ is decidable (see, for instance [Dow97]) but the decidablity of ¢ seems to be linked
to the decidability of higher-order matching which is, up to our knowledge, an open problem.

Definition 1.2 We define in Figure 1 a sequent calculus, extending the usual one [GLT89,
Gal86], by allowing working modulo RE. In these rules we assume that the "," is associative
and commutative, i.e. T and A are finite multisets of propositions.

Remark 1.2 Proof checking for the sequent calculus modulo is decidable: we can check for
each rule that the conditions of application are satisfied because the relation =g is decidable
and we provide the needed information in the quantifiers rules. When the congruence =g
is simply the identity, this sequent calculus specializes to the standard one. In that case
sequents are denoted using F.

Remark 1.3 From the definition of the calculus, it is easy to see that if P =re @ then
I'tre P,A if and only if T bre Q,A and T', PbFre A if and only if T, Q Fre A.

Definition 1.3 The theory T is said to be compatible with RE if, for any proposition P in
T there is a proposition Q) such that P =re @ and t @, i.e. P is equivalent to a proposition
Q@ which is a tautology in the standard sequent calculus.

Conversely, the class rewrite system RE is said to be compatible with T if, P =re @
implies T+ P & @,

T and RE are said to be compatible if T is compatible with RE and vice-versa.

For any class rewrite system RE, we denote Tre any theory such that RE and Tre are
compatible.

Proposition 1.1 Let T be a given theory. If the class rewrite system RE is compatible with
T, then we have:
T,TFA if and only if T,T Fre A.

s P
Prre anlom i re @
[Q1,Q2Fre A

F, P Frz A contr I RE Ql RE Q2

I'kFre A

L TRED eakel
T, Prre A

P7P7Q}_RSA

—— === Al fR= P
1_"R|_7”:A/\ if R=re (PAQ)

P,Pl-Rg A P,Q "RE A
I RFre A

V-l if R=xe (PV Q)

I'Fre P,A T,QFre A
I'RFre A

=-1 if R =r¢ (P = Q)

T'tre P A

— -’] fR= -P
T,RFre A RE

mL—l If P:RS _L

T,Q{z + t} Fre A
T,Prre A

D,Q{x + y} Fre A
T,PFre A

(Q,t) V-l if P=reVz Q

(Q,y) 31 if P=peg 3z Q

F,Pl—RgA I'Fre Q,A
T'Ftre A

I'Fre Q1,Q2, A
I'tgre P, A

cut if P=re Q

contr-r if P =g Q1 =re Q2

I'Fre A

L TRED enke
Thre PA AT

I'tre PA T'kgre Q’A/\-r if R=ge (PAQ)

T Fre R, A
%V-r if R=re (PVQ)
%:J if R=re (P= Q)
%ﬂ_r if R =pe P

T |-Rg Q{.’I: < y}, A

T Fre P.A (Q,y) Vr if P=reVz Q

Ihre Q{x + t}, A

o pA (@) 31 if P=rs 3 Q

Figure 1: The sequent calculus modulo

Proof: The “only if” part is an obvious induction on the structure of the derivation of
T,T'F A, expliciting the witnesses using first-order matching,.

The “if” part is an induction on the structure of the derivation of 7,T Fre A.
First notice that using the contraction rule any proof of this statement can be trans-
formed into another where the propositions of 7 appear in the left part of every
sequent.
As an example, we give the case of the A-r rule.
If the proof has the form:
s p
T.I'tre PA T,T'kge@,A
T,T'tre R, A

A-r where R =re PAQ

By induction hypothesis we have proofs ' and p' of T,T'F P,A and 7,T' + Q,A. We
build the proof:

' r
TTFPA TTFQA
T.TFPAQ,A B

We have R =r¢e (P AQ), thus by hypothesis 7,T' - (P A Q) = R. The modus ponens
is a derived rule of sequent calculus:

. A4
LBFBS ™" Sraps vk e iS gy
~ A= BF B3 =1 JF A= B,B,s Veakrs
~F B3 cut

Thus we can build a proof of 7,I'F R,A. O
T can be internalized in the sequent calculus modulo, formally:

Corollary 1.1 (Equivalence) If the theory T and the class rewrite system RE are com-
patible then we have:
T, I'FA if and only if T Fre A.

Remark 1.4 If we have only rules of the form L — R and equations of the for L = R where
L and R are propositions, a natural candidate for the theory T is the universal closure of
the propositions L < R. This way the system RE is compatible with the theory T and
vice-versa.

If we have equations of the form | = r where l and r are terms, we can add the universal
closure of the propositions | = r. But this requires to have an equality predicate in the
language and hence the axioms of equality. If we do not have an equality predicate, then we
can toke the universal closure of all the propositions of the form P < @ where P =rg Q.

10

2 Extended narrowing and resolution

We are now extending the standard resolution based calculus on clausal forms to a calculus
where equalities are built-in. For reasons that will appear later, in the rest of the paper, we
assume the following properties of the relation —r¢:

Assumption 2.1

o the relation — g is confluent and weakly terminating,

o the cut rule is redundant in the sequent calculus modulo RE.

The last property is proved in [DW98] for a large class of systems including the sim-
plification of integral rings and the first-order presentation of higher-order logic introduced
above.

Definition 2.1 A clause is a finite set {A1,... ,A,} of propositions, such that every A;
is either an atomic proposition or the negation of an atomic proposition. A clause is said
ground when it contains no variable. The empty clause is denoted O.

Definition 2.2 (Clause form) Let ® be a set of propositions and A a proposition, we write
®, A for the set ® U {A}. Let E be a set of sets of propositions and ® a set of propositions,
we write E,® for the set EU {®}.

We consider the following transformations on sets of sets of propositions.

o E,(3,ANB) — E,(®, A),(®,B)
E,(®,AVB) — E,(3,A,B)

° E,(
,(®,A= B) — E,(®,-A, B)
(
(

,(®,Vx A) — E, (P, A{z — y}) where y is a fresh variable
& dz A) — E,(®,A{z — f(y1,--- ,yn)}) where y1,... ,yn are the free variables

E
E
E,
of A
E,(®,1) — E,®
E,(®,~(A A B)) — E, (®,-A,~B)
E,(®,~(AV B)) — E, (®,-A), (®,~B)
E,(®,~(A = B)) — E, (3, A), (¥, -B)

o E,(®,-Vz A) — E,(®,-A{z — f(y1,--- ,Yn)}) where y1,...,yn are the free vari-
ables of A

e £ (®,-3z A) — E,(®,~A{x — y}) where y is a fresh variable

11

{A1,...,An,By,...,Bn}[B1]1 {=Ci,...,—Cp,Dy,...,Dy}[E5]
{By,...,Bm,Dy,... , DBy UB,U{A =% Ay... =L A, =L Cy ... =% C,}]

Resolution

CILFE]
cl(Clrlp) [EUA{C), =¢ 1}]

Narrowing ifl 5> reR

Figure 2: Extended narrowing and resolution (ENAR)

e £ (®,-1) — E
o I, (@,—1—| A) — E, ((I),A)

This transformation terminates, as the multiset of pairs < a, b > decreases for each rule,
where a is the number of occurrences of the symbols A, vV, =, 1, V, 3 and b the number of
occurrences of the symbol — in the sets of propositions elements of E.

The set of sets of propositions obtained this way is a set of clauses.

If E is a set of sets of propositions, we write cf(E) its clause form.

Definition 2.3 For some equational theory £, an equation modulo £ (for short equation) is
a pair of terms or atomic propositions denoted t =% t'. A substitution o is an E-solution of
t =% t' when o(t) =¢ o(t'). It is an E-solution of an equation system E when it is a solution
of all the equations in E.

Definition 2.4 A constrained clause (also called a clause with constraint) is a pair C [E]
such that C is a clause and E is a set of equations. It schematizes the set of all instances
of C' by the solutions of E.

If C is a set of clauses {Ci,...,Cn} and E is a set of constraints, then C[E] is a
notation for the set {C1[E],... ,Cy [EJ}.

This definition could be extended to more general constraints, in particular including
ordering constraints on terms, see [KKR90].

Definition 2.5 Let C be a set of constrained clauses, we write
Cw»C'[E']
if the constrained clause C' [E'] can be deduced from the clauses of C using finitely many

applications of the extended Narrowing and Resolution rules described in Figure 2.

Remark 2.1 As usual, before applying the Resolution rule, we rename the clauses in such
a way that all their free variables are fresh.

12

Remark 2.2 Notice that when R is empty the rule Narrowing never applies and we get
back equational resolution. When R and £ are both empty we get back resolution. Notice also
that these two inference rules are not embedding paramodulation [Pet83] since Narrowing
is always performed with the same built-in equality.

The main theorem, proved in the next sections, states the correctness and completeness
of the ENAR method with respect to the standard as well as equational sequent calculi:

Theorem 2.1 (Main Result) Let RE be a decidable class rewrite system such that — re
is confluent and weakly terminating and the cut rule is redundant in sequent calculus modulo
RE. Then, for all propositions Ay, ..., A,, B1,..., By, we have the following equivalences:

Tre, A, ... Ay F By,... . B
=
Ai,... A, Fre By,... B
=
Cf({{Al}, 7{An}7{_'Bl}7'-' 7{_'BWL}}) [@] w» O[E]

where E is an E-unifiable set of equations.

The proof of this fundamental result is detailed in the next sections. The roadmap of
the proof construction is the following:
Gddel 30 Cor. 1.1 Prop. 3.7 Cor. 4.1

Tre, TEA & Tre,TFA & ThreA & c,-A)— 0 & c(T,-A)[P]w+»OLE]

\/ _/
Prop. 3.2 Prop. 4.1

3 An intermediate system

In order to prove Theorem 2.1, we introduce an intermediate system called Ground Extended
Resolution. Note that the clauses in this system do not need to be ground for applying an
inference rule.

Definition 3.1 Let E be a set of clauses, we write
E<c

if the clause ¢ can be deduced from the clauses of E using finitely many applications of the
rules described in Figure 8. This means that there exists a derivation of the clause ¢ under
the assumptions E, i.e. a sequence ¢, ... ,c, such that either n = 0 and c is an element of
E orn > 1, ¢, = ¢ and each c¢; is produced by the application of a rule in Figure 8 from
clauses of the set EU {c1,... ,ci—1}.

13

Instantiation

__Cc
C{z — t}
€ Conversion if C =¢ C'
v Conversion if €' =¢
% Reduction if C —sx P and C' € cf(P)
(C, A} {C',-A}
{C,C'}

Ground resolution

Figure 3: Ground extended resolution (GER)

Some proofs by induction on the length of derivations below are destructuring the deriva-
tions in a top-down manner. These proofs use the following remark.

Remark 3.1 If n > 1 and c1,... ,c, is a derivation of ¢ under E then ca,... ,cp is a
derivation of ¢ under EU {c1}.

Notation Let C = {4;,...,4,} be a set of propositions. We write VC for the proposition
Vo, ... Yz, (A1 V...V A,) where z;,...,z, are the variables of Aj,...,A,, and the
proposition L if C' is empty.

3.1 Soundness

We first start with the well-known proposition on the correctness of the clause form. Notice
that the proof of this proposition uses Skolem theorem (i.e. the correctness of skolemization).

Proposition 3.1 (Correctness of the clause form) Let Ay,..., Ay, B1,..., By be propo-
sitions, and T be a set of propositions. When:

{Cla s an} = Cﬁ({{Al}, cee 7{An}’ {ﬁBl}a s 5{_'Bm}})a

we have: B _
T,Al,---,An[_Bl,---,Bm =4 T,VCl,...,VCpl-

Corollary 3.1 Let Ay,...,A,,By,..., By be propositions, when:

{017 s :Cp} = ce({{Al}v SR {An}7 {ﬁBl}v s 7{_'Bm}})a

we have: B _
Ay,... Ay bre By,...,B,, & V(Ci,... ,ch Fre

14

Proposition 3.2 (GER Soundness) Let Ay,...,Ap, B1,..., By be propositions. If:

then:

cA({{Ar}, ... {A.}, {-B1},... ,{"Bn}}) = 0O

Ai,...,ApFre Bi,...,Bm

Proof: Let {C1,...,Cp} = cl({{A1},... ,{An},{-B1},... ,{=Bn}})
We know that if VC1,... ,YCp Fre then A;,... Ay Fre Bi,... ,Bn. Thus, we only
need to prove that if Cy,...,C, < O then VCi,...,VC, Fre. We prove this by
induction on the structure of the derivation of C4,...,C, — O.

O

e If the derivation is empty, then one of the clauses C; is O. Thus VCy, ... ,VC), Fre.

o If the first rule is Ground resolution leading to a clause C’, then we have C; =
CiU{4}, Cj = Cju{-A} and C' = C;UC}. Wehave C1,...,Cy,C" = O, thus by
induction hypothesis we have a proof of the sequent VC1, ... ,VC,,VC’ Fre. The
sequent VC;,VC; Fre VC' is provable, thus by the cut rule we get a proof of the se-
quent VC4, . .. ,VCP, YC;, VCJ' Fre and by contraction a proof of VCy, . . . | VCP Fre.

o If the first rule is Reduction reducing the proposition C; to C;, then let the set
{D1,...,Dp} be c€({C}}). We have C1,...,Cp,D; — O, thus by induction hy-
pothesis we have a proof of the sequent YC1, ... ,VC,, VD]- Fre and by weakening
of the sequent YC4,... ,VCp,VDy,... ,VD, Fre.

Theset {C1,...,Cn,D1,...,D,}is the clause form of {{VC },...,{VC,},{VC!}},
thus by correctness of the clause form the sequent VC4, ... ,VC,,VC! e is prov-
able and thus the sequent YCi, ... ,VC,,VC; Fre also. By contraction we get a
proof of the sequent YCi, ... ,VC, Fre.

o If the first rule is Conversion converting the proposition C; to C}, then we have
Ci,...,Cn,C; = O, thus by induction hypothesis we have a proof of the sequent
VCi,...,¥Cy, YO} Fre and by contraction we get a proof of VC4, ... ,VC), Fre.

e If the first rule is Instantiation, let C; be the instantiated clause. We have
C1,Cs,...,Ch, Ci{z — t} — 0O, thus by induction hypothesis we have a proof
of VC1i,... ,YCn,¥(Ci{z ~ t}) Fre. The sequent VC; Fre V(Ci{z — t}) is
provable thus we get by the cut rule a proof of the sequent YC1, ... ,VC,,VC; Fre
and by contraction a proof of VCi, ... ,VC, Fre.

3.2 Completeness

Because we have rewrite rules transforming atomic propositions into non atomic ones, the
transformation to clause form (including skolemization) cannot be done as an initial part
of the algorithm but it must be done on the fly. Thus if we try to prove that, if C1,...Cy,

15

are clauses, (VC4, ..., VCp, Fre) implies (Cy, ...,Cp, = O) the recursion does not go through,
because propositions that are not clauses may occur in the proof of VCi, ...,VC), Fre. Thus
we have to prove directly that

Ay... A, Fre By...B,

implies
cl({{A1},... ., {An}, {-B1},... ,{-Bp}}) = O
The difficult case is for the left rule of the universal quantifier and the right rule of the
existential quantifier. Indeed, in these cases, a variable of a proposition is instantiated by a
term and thus the set of free variables is modified. So the skolemization of the propositions
gives a completely different output.
For instance, if we have a proof of the form:

Jy P(h(u,v,w),y) k...
Ve Jy P(z,y) F ...

vi

then skolemizing the proposition Vz Jy P(z,y) yields P(z, f(x)) with a unary Skolem symbol
f, while skolemizing the proposition Jy P(h(u,v,w),y) yields P(h(u,v,w), g(u,v,w)) with
a ternary Skolem symbol g. In such a case, we have to build a refutation of P(z, f(z)) using
one of P(h(u,v,w),g(u,v,w)). To achieve this goal we need the following propositions,
that are related to Skolem theorem and are proved using techniques also used in syntactical
proofs of Skolem theorem.

Proposition 3.3 (A form of Skolem theorem for the system <) Let wy,... ,w, be
variables, t1,... ,tp be terms and f and g be two fresh function symbols. From a derivation
of:

EUcl(A{z~ f(a1,-..,ap)}) = O
we can build one of:
EUcl(A{z— gti{wi — a1,... ,wn = an}, ..., tp{ws — a1,... ,w, = apt})) = 0
Proof: By induction on the length of the derivation. O

Proposition 3.4 From a derivation of EU cl({C{z — t}}) — O for some term t, we can
build one of EU cl({C{z — y}}) — O.

Proof: We proceed by induction on the number of connectors and quantifiers of C. If z has
no occurrence in C then the result is trivial. Otherwise we detail the possible form of
the proposition C.

o If the proposition C' is atomic then c/({C{z — y}}) = C{z — y}. With the rule
Instantiation, we can derive the clause C{z — t} from the clause C{z — y}.
Hence, from a derivation of EU C{z — t} — O we can build one of EU C{z —
y} — 0O.

16

If C = Dy A D then:
C{z — t} = Di{z — t} ANDa{z — t}
cL({C{z = t}}) = {cL({Di{z = t}}), cl({Do{z = t}})}
Thus, we have a derivation of:
EU{ct({Di{z — t}}),cl({D2{z = t}})} = O
by induction hypothesis we have a derivation of:
EU{ct({D1{z = t}}),cl({D2{z = y2}})} = O
and
EU{ct({D1{z — y1}}), cl({D2{z = y2}})} = O
Substituting y by y1 and y2 with the rule Instantiation, we get a derivation of:
EU{ct({Di{z = y}}),cl({D2{z = y}})} = O

i.e.

Eu{cL({C{z—»y}})}—0O

If C =3z D then:
C{z —t} =3z D{z — t}

Let {u1,...,un,z} = FV(C) and {v1,... ,vp} = FV(t) — {u1,... ,un}.
d(C{zx— y}) =cl(D{z— g(u1,...,un,y)})

cd(C{z — t}) =cl(D{z — t}{z— flu1,... ,Un,v1,...,0p)})

By hypothesis, we have a derivation of:

Eucl(D{z— t}{z flur,-.. ,un,v1,...,0p)}) = 0O
By proposition 3.3 we get a derivation of:

EUuct(D{z— t}{z - g(u1,... ,up,t)}) = O

i.e.

Eucd(D{z— yHy - t}H{z - g(ur,... ,up,t)}) = 0
i.e.

EUcl({D{z = yHz— gus,... ,un,y)H{y — t}) = O
By induction hypothesis we get a derivation of:

EUucl(){D{z — y}{z— g(u1,... ,upn,y)} = O

- EUct({C{z = y}}) = O

17

e the case C = —Vz D is similar.

e the other cases are similar to the second one.
O

Proposition 3.5 If there is a derivation:

cl({{C},{A2},... . {4n}, {-B1},... ,{"Bn}}) = O

and one:
cl({{D}, {42}, . {4n}, {=B1},... ., {=Bn}}) = O

then we can build a derivation of:

cA({{CV D},{As},... ,{A.}, {=B1},... ,{=Bn}}) = O

Proof: Let E = cl({{C}}), F = L({{D}}), G = c£({{C VvV D}}) and
H =cl({{A2},... ,{An},{-B1},... ,{"Bm}}). We check that:

c({{C},{A42},... . {Ax}, {-B1},...,{-Bn}}) =EUH

c({{D},{Az2},... ,{A.}, {-B1},...,{"Bn}}) =FUH
d{{CV D},{Az2},... . {Ax}, {-B1},...,{"Bn}}) =GUH
Thus EUH — O and FUH — 0O.

Now G = {C1 UCy | Ci € E,Cy € F}. Consider an arbitrary clause Z in F. We
transform the derivation of £E U H — O in such a way that each time we use in
EUH — O aclause X in E we use the clause X U Z instead. We get this way either
a derivation of GU H — O or a derivation of GU H — Z.

If for some clause Z in F we get a derivation of G U H — O we are done. Otherwise
we get a derivation of G U H — Z for every clause Z of F. Using these derivations
and the one of F'U H — O we construct a derivation of GUH — O. 0O

Proposition 3.6 If A =g BAC then there exists propositions B' and C' such that A =%,
B'AC', B=re B' and C =r¢ C".

If A =rg BV C then there exists propositions B' and C' such that A —%¢ B' Vv C',
B =RE B’ and C =RE Cl.

If A =rg B = C then there exists propositions B' and C' such that A =%, B' = C',
B =RE B' and C =RE C'.

If A =rg —B then there exists a proposition B' such that A —%. -B' and B =r¢ B'.

If A=pe 1 then A =5, L.

If A =re Vx B then there exists a proposition B' such that A —%¢ Vx B' and B =rg¢ B'.

If A =re¢ 3z B then there exists a proposition B' such that A —%, 3z B' and B =rg¢ B'.

18

Proof: Because the relation —¢ is confluent and the rewrite system rewrites only atomic
propositions. O

Proposition 3.7 (GER Completeness) Let A;,...,A,, B1,...,By be propositions. If:
Al,--- 7An |_'Rg Bl,--- 7Bm

then:
cA({{Ar},.-. , {4}, {-B1},..., {"Bn}}) = O

Proof: By induction on the structure of a cut free proof of Ay,...,A, Fre B1,...,Bp,.

o If the last rule is A-1 then one of the A4;’s (say A1) rewrites to C A D.
By induction hypothesis:

cl({{C},{D},{A2},... ,{4.}, {-B1},... ,{"Bn}}) = O

and using the rules Conversion and Reduction we can deduce the clauses of
this set from the set cf({{A1},{A42},...,{An},{-B1},...,{=Bm}}). Thus:

c({{A1}, {42}, ..., {Ax}, {-B1},... ,{"Bn}}) = 0O

e If the last rule is V-1 then of the A;’s (say A1) rewrites to C'V D. By induction
hypothesis:

A({{C},{A4z2},... , {A.},{-B1},... ,{-Bn}}) = O

and
Ad({{D},{Az2},... . {An}, {-B1},.-. ., {7 Bn}}) = O

Using proposition 3.5 we get a derivation of:
cd({{C Vv D}, {As},... . {An}, {-B1},... ., {"Bn}}) = O

Using the rules Conversion and Reduction we can deduce the clauses of this
set from the set cl({{A1},{A2},...,{An},{-B1},...,{=Bm}}). Thus:

c({{A1}, {42}, ... {Ax}, {-B1}y ..., {-Bn}}) = O

o If the last rule is A-r or =-1, we proceed as for V-1.
o If the last rule is V-r or =-r, we proceed as for A-l.

o If the last rule is —-1, —=-r, contr-l or contr-r then the clause form of the antecedent
and the succedent of this rule is the same, thus we simply apply the induction
hypothesis. If the last rule is weak-l or weak-r then the clause form of the an-
tecedent is a subset of the clause form of the succedent, thus we simply apply the
induction hypothesis.

19

o if the last rule in -1, then one of the A;’s (say A;) rewrites to L.
The clause O is in the set cl({{L},{42},...,{An},{—B1},...,{=Bn}}) hence:

cl({{L},{42},... , {A.},{-B1},... ,{-"Bn}}) = O

and using the rules Conversion and Reduction we can deduce the clauses of
this set from the set cl({{A1},{A2},...,{An},{-B1},... ,{"Bm}}). Thus:

cl({{A1},{A42},... ., {4}, {-B1},... ,{"Bn}}) = O
e If the last rule is V-1 then of the A;’s (say A;) rewrites to Vz C. Call:

E =cl({As},... , {4}, {-B1},... ,{-Bw}})

By induction hypothesis we have a derivation of E U cf({C{z — t}}) — O for
some term ¢. By proposition 3.4 we have a derivation of EUcl({C{z — y}}) — 0O,
i.e. one of EUcl({Vz C}) — 0O.

Using the rules Conversion and Reduction we can deduce the clauses of this
set from the set cf({{A1}, {42},.-.,{4n}, {-B1},--. ,{-Bm}}). Thus:

cAl({{A1},{A42},... ., {4}, {-B1},... ,{"Bw}}) = O

o If the last rule is 3-1 then of the A;’s (say A1) rewrites to 3z C. By induction
hypothesis, we have a derivation:

Cﬂ({{C{m = y}},{A2}, s J{An}a {B1}7 s 7{Bm}}) =D

where y is a fresh variable. The clause form of:

{{3z C}, {42},, {4}, {B1},... ,{Bn}}

is the one of:

{C{z - f(z1,...,20)}},{A2}, {An}, {B1}, .-, {Bm}

where f is a Skolem symbol.
In the derivation of:

AL{{C{z —~ y}},{A2},... ., {4An}, {B1},... ,{Bn}}) =D

we replace y by f(z1,...,%,) and we get a derivation of:
cl({{3z C},{A2},... {4}, {B1},... ,{Bn}}) — O

Using the rules Conversion and Reduction we can deduce the clauses of this
set from the set cl({{A1},{Az2},..., {4}, {-B1},...,{-"Bm}}). Thus:

cA{{A1}, {42}, ... {An}, {7B1}s .-, {"Bn}}) = O

20

e If the last rule is V-r then we proceed as for 3-1.
e If the last rule is 3-r then we proceed as for V-1.

e If the last rule is an axiom then n = p =1 and A; =r¢ B;.

We build a derivation of cf({{A1},{—B1}}) — O with the rules Conversion,
Reduction and Ground resolution.

O
Proposition 3.8 Let Ay,... ,A,,B,..., B, be propositions.
Ai,..., Ay Fre B1,... ,Bn

if and only if
c({{A1}, ..., {A},{B1},...{"Bn}}) = O

Remark 3.2 We may restrict the rule Instantiation to RE-normal terms while keeping a
complete system.

4 Proof of the main theorem

4.1 Soundness

Proposition 4.1 (ENAR Soundness) Ifcf({{A1},...,{4An},{=B1},...,{=Bmn}})[0]+» O[C],
where C is a unifiable set of constraints, then Ay,... , A, Fre By,..., Bn,.

Proof: By induction on the structure of the derivation of

cl({{Ar},... ., {An},{-B1},... . {=Bm}})[0]+» O[C]

we build a derivation of
Ce({{Al}a - 7{An}7 {_'Bl}7 see {ﬁBm}}) — 0

Let {1 — t1,... ,2n +> t,} be a unifier of C.

e If the first rule is Resolution, we substitute with the rule Instantiation the vari-
ables z; of the renamed clauses by the corresponding t;, with the rule Conversion
we convert these propositions in such a way that they have opposite literals and
we apply the rule Ground resolution.

e If the first rule is Narrowing, we substitute the variables x; of the clause by
the corresponding t; with the rule Instantiation and we reduce it with the rule
Reduction.

21

4.2 Completeness

Proposition 4.2 Consider
e q clause dU {a},
e q set C' of equations and a substitution 6, solution of C,
e a clause d' and propositions ay, ... ,a;, such that 6d' =¢ d and Vi, 0a; =¢ a,
e a proposition b such that a - b and a clause ¢ € cf(dU {b}).

Then, the rule Narrowing can be applied to the constrained clause (d' U {ay,... ,a,})[C]
leading, in several steps, to a constrained clause c'[C'] and there is a substitution 0', bigger
than 6, solution of C', such that 0'c' =¢ c.

Proof: The clause c is an element of cf(d U {b}), and 0d' =¢ d, thus there exists a clause
co € cf(6d' U {b}) such that ¢y =¢ c.

We have fa; =¢ a and a —x b thus, as R applies only to propositions, we have
Hag —R,E b.

Hence the proposition fa; contains an occurrence u; such that (6aj)j.,, =¢ oil; for
some substitution o; and rule I; — r;. The substitution 8 is trivially R,E-normal
(because R reduces only propositions and § substitutes variables by terms). Hence
the occurrence u; is an occurrence of a; and (8a5)|., = 0(a; ,,,)-

Let " = CUU{a; |,, = li} and ' = 6 UJoi. The substitution 6" is a solution of C*
and there is a clause ¢’ € cf(d' U {a}[r;].;) such that 6'c' = ¢o and hence 6'¢' =¢ c.
The rule Narrowing applies to d' U {aj, ... ,a;} leading to the constrained clause
d[C'. O

Proposition 4.3 If E is a set of constrained clauses, Ea set that contains renamed copies
of clauses of E, 6 an E-unifier of all the constraints of E, F a set of clauses such that
OF =¢ F and F — 0O, then Ew» O[C] where C is an E-unifiable set of constraints.

Proof: We have F' — O hence there exists a derivation ¢y, ... ,c, of the clause O under F'.
We reason by induction on 7.

If n = 0, the set F' contains the empty clause and hence E contains a clause O[C]
where C' is a set of constraints and § is a solution of C.

If n > 1 then cg,. .. ,c, is a derivation of O under the set of assumptions F' U {c; }.
The clause ¢; produced by some rule from elements of F. We detail the four cases.
e If the used rule is Ground resolution, the set F' contains two clauses that

contain opposite literals A and ~A. Thus, in E there are two constrained clauses
containing respectively literals Aq,..., A, and =Bi,... ,~B, such that §4; =¢

22

A =¢ 0B;. Therefore, the rule Resolution applies to E leading to a constrained
clauses ¢'[C'], 6 is an E-unifier of C’ and 8¢’ = ¢;.

The sequence cs,...,c¢, is a derivation of O under the assumptions F,c¢; and
hence, by induction hypothesis E, ¢'[C'] +» O[C] where C is an £-unifiable set of
constraints. Hence E w» O[C] where C is an E-unifiable set of constraints.

e If the used rule is Instantiation x — ¢, then there exists a clause ¢ in F' such
that ¢; = ¢f{z — t}. There exists a constrained clause ¢’ in E such that ¢’ =¢ c.
We let ¢’ be the clause obtained by renaming z into z' in ¢/. We let E' = Eu{c"}
and ' = 0 U {2’ — t}. The substitution 8’ is an £-unifier of all the constraints of
El and G’E’ =c FU {Cl}.

The sequence cs, ... , ¢, is a derivation of O under F' U {¢;} hence, by induction
hypothesis E #» O[C] where C is an -unifiable set of constraints.

e If the used rule is Conversion, we have simply 0E =¢ F =¢ F U {¢1}.

The sequence cg, ... , ¢, is a derivation of O under F'U {c;} hence, by induction
hypothesis E #» O[C] where C is an £-unifiable set of constraints.

o If the used rule is Reduction, then there is in the set F' a clause of the form
dU{a}, a proposition b such that a -z b and ¢; € c¢f(dU {b}). Thus, there exists
a constrained clause (d'U{aj, ... ,a,})[G] in € such that 0d =¢ d' and fa} =¢ a.

By the proposition 4.2 the rule Narrowing applies to this constrained clause
leading to a clause ¢'[G'] and there exists a substitution ', -unifier of all the
constraints of EU {c'[G']} and #'E U {'[G']} =¢ F U{c1}.

The sequence ¢z, . . . , ¢, is a derivation of O under FU{¢; } and hence, by induction
hypothesis E, ¢'[G'] +» O[C] where C is an &-unifiable set of constraints. Hence
E w» O[C] where C is an £-unifiable set of constraints.

O
Corollary 4.1 (ENAR Completeness) If Ay,... , A, Fre By,...,B,, then:
ct({{Ar}; - s {An},{=B1,-.. , =By} P[]+ B[C]
where C is a E-unifiable set of constraints.
Proof: By the proposition 3.7, if the sequent A:,... , A, Fre Bi,..., B, is provable then:
cAL{{A}, ..., {4}, {-B1,... ,mBp}}) = O

and thus, by the proposition 4.3

ct({{Ar};- -, {An}, {=B1, .., ~Bp} P[]+ O[C]

where C is a £-unifiable set of constraints. O

23

5 A Generalization

So far, we have considered a rewrite system R containing only rules rewriting atomic propo-
sitions to arbitrary propositions. We can extend the method above to a rewrite system
containing also rules rewriting terms to terms provided the systems verifies the three as-
sumptions below.

The only difference is in the proof of the proposition 4.2 where we have used twice the
fact that the system R reduces only propositions.

First, we have used the fact that as R reduces only propositions, if a =¢ @’ and a —»% b
then a’ —x ¢ b. Now we need a strong coherence property between the relation — ¢ and
=g

Assumption 5.1 Ifa =¢ a’ and a =r.¢ b then there exists a term b' such that a' =% ¢ V'
and b=¢b'.

Then, we have used the following fact. In a proposition of the form fa, if there is a redex
at the occurrence u, then it is a proposition occurrence and thus an occurrence of a.

To have the same property, we now need the substitution 6 to be R, £-normal. To main-
tain this normality hypothesis, we need to use the Instantiation rule with R€-normal, and
hence R, £-normal, terms (see remark 3.2) and to apply the rule Reduction on innermost
R-redexes only. Then to achieve completeness we must prove that any —-deduction can be
transformed into another one where we apply the Reduction to innermost R-redexes only.
This is possible, for instance, when the innermost R, £-reduction terminates.

Assumption 5.2 The innermost R, E-reduction terminates.

At last we need to show that innermostness is preserved by the relation =¢. We denote
—%,¢ the reduction of an innermost redex.

Assumption 5.3 Ifa =¢ a' and a =% ¢ b then there exists a term b such that o' =% o b'
and b=¢ V.

Under these assumptions the method above is complete.

The assumptions above are similar to those necessary to establish the completeness of
equational narrowing modulo [Kir85] which is indeed an instance of the method developed
here.

Conclusion
In this paper, we have presented a sequent calculus that operates in the quotient of the set

of propositions modulo a congruence which can equate atomic propositions with non atomic
ones.

24

We have given a proof search method based on extended narrowing and resolution and
proved that it is sound and complete with respect to the sequent calculus modulo for a large
class of systems RE.

When we apply this method to the first-order presentation of higher-order logic above, the
rule Narrowing specializes exactly to the rule Splitting of higher-order resolution [Hue72,
Hue73]. The only difference with higher-order resolution is that we are using the combi-
nators S and K and not A-calculus. Using combinators let skolemization be simpler but
let unification be only equational unification modulo the axioms S and K and not modulo
the axioms (8 and 7 as in higher-order resolution. We believe that a first-order presentation
of higher-order logic based not on combinators but on explicit substitutions would simu-
late exactly higher-order resolution. A first step towards such a result, the expression of
higher-order unification as equational unification in the calculus of explicit substitutions,
has been achieved in [DHK95]. Giving a full first-order presentation of higher-order logic
using explicit substitution is work in progress.

We hope that this method will also be useful for theories stronger than HOL in particular
for HOL extended with equalities (e.g. associativity and commutativity of some operations)
simulating this way equational higher-order resolution.

References

[AndT71] P. B. Andrews. Resolution in type theory. Journal of Symbolic Logic, 36:414—
432, 1971.

[Bac87] L. Bachmair. Proof methods for equational theories. PhD thesis, University of
Illinois, Urbana-Champaign, (Ill., USA), 1987. Revised version, August 1988.

[BGLS95] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation.
Information and Computation, 121(2):172-192, 1995.

[DHK95] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit
substitutions, extended abstract. In D. Kozen, editor, Proceedings of LICS’95,
pages 366-374, San Diego, June 1995.

[DJ9O] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, chapter 6, pages 244-320.
Elsevier Science Publishers B. V. (North-Holland), 1990.

[Dow97] G. Dowek. Proof normalization for a first-order formulation of higher-order
logic. In E. Gunter and A. Felty, editors, Proceedinds of Theorem proving in
higher order logics 1997, volume 1275 of Lecture Notes in Computer Science,
pages 105-119. Springer-Verlag, 1997. Technical Report 3383 INRIA, 1998.

[DW9g] G. Dowek and B. Werner. Proof normalization modulo. Manuscript, 1998.

25

[Gal86]

[GLTS9]

[Han94]

[HKLR92|

[HR86]

[Hue72]

[Hue73]

[HueT75]

[Hul80]

[TKS6]

[JK91]

[JL87]

J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem
Proving, volume 5 of Computer Science and Technology Series. Harper & Row,
New York, 1986.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

M. Hanus. The integration of functions into logic programming: From theory
to practice. Journal of Logic Programming, 19&20:583-628, 1994.

J. Hsiang, H. Kirchner, P. Lescanne, and M. Rusinowitch. The term rewrit-
ing approach to automated theorem proving. Journal of Logic Programming,
14(1&2):71-99, October 1992.

J. Hsiang and M. Rusinowitch. A new method for establishing refutational
completeness in theorem proving. In J. Siekmann, editor, Proceedings 8th In-
ternational Conference on Automated Deduction, Ozford (UK), volume 230 of
Lecture Notes in Computer Science, pages 141-152. Springer-Verlag, 1986.

G. Huet. Constrained Resolution: A Complete Method for Higher Order Logic.
PhD thesis, Case Western Reserve University, 1972.

G. Huet. A mechanization of type theory. In Proceeding of the third international
joint conference on artificial intelligence, pages 139-146, 1973.

G. Huet. A unification algorithm for typed lambda calculus. Theoretical Com-
puter Science, 1(1):27-57, 1975.

J.-M. Hullot. Canonical forms and unification. In Proceedings 5th International
Conference on Automated Deduction, Les Arcs (France), pages 318-334, July
1980.

J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set
of equations. SIAM Journal of Computing, 15(4):1155-1194, 1986. Preliminary
version in Proceedings 11th ACM Symposium on Principles of Programming
Languages, Salt Lake City (USA), 1984.

J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: a
rule-based survey of unification. In J.-L. Lassez and G. Plotkin, editors, Com-
putational Logic. Essays in honor of Alan Robinson, chapter 8, pages 257-321.
The MIT press, Cambridge (MA, USA), 1991.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of
the 14th Annual ACM Symposium on Principles Of Programming Languages,
Munich (Germany), pages 111-119, 1987.

26

[KB70]

[Kir85]

[KKR90]

[Kol96]

[KvOvR93]

[LP94]

[McC97]

[Pet83]

[Plo72]
[PS81]

[Stis5]

[Vir9s]

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263—297.
Pergamon Press, Oxford, 1970.

C. Kirchner. Méthodes et outils de conception systématique d’algorithmes d’uni-
fication dans les théories équationnelles. Thése de Doctorat d’Etat, Université
Henri Poincaré — Nancy 1, 1985.

C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic con-
straints. Revue d’Intelligence Artificielle, 4(3):9-52, 1990. Special issue on
Automatic Deduction.

G. Kolata. With major math proof, brute computers show flash of reasoning
power. The New York Times, 1996. Tuesday December 10.

J. Klop, V. van QOostrom, and F. van Raamsdonk. Combinatory reduction
systems: introduction and survey. Theoretical Computer Science, 121:279-308,
1993.

S.-J. Lee and D. Plaisted. Use of replace rules in theorem proving. Methods of
Logic in Computer Science, 1(2):217-240, 1994.

W. McCune. Solution of the robbins problem. Journal of Automated Reasoning,
19(3):263-276, 1997.

G. Peterson. A technique for establishing completeness results in theorem prov-
ing with equality. STAM Journal of Computing, 12(1):82-100, 1983.

G. Plotkin. Building-in equational theories. Machine Intelligence, 7:73-90, 1972.

G. Peterson and M. E. Stickel. Complete sets of reductions for some equational
theories. Journal of the ACM, 28:233—-264, 1981.

M. Stickel. Automated deduction by theory resolution. Journal of Automated
Reasoning, 1(4):285-289, 1985.

P. Viry. Rewriting modulo a rewrite system. Technical report TR-20/95, Di-
partimento di informatica, Universita di Pisa, December 1995.

27

/<

Unit e de recherche INRIA Lorraine, Technop6le de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http:/ /www.inria.fr
ISSN 0249-6399

