N

N

On Super-High-Frequencies in Discontinuous 1st-Order
Delay-Differential Equations

Marianne Akian, Pierre-Alexandre Bliman

» To cite this version:

Marianne Akian, Pierre-Alexandre Bliman. On Super-High-Frequencies in Discontinuous 1st-Order
Delay-Differential Equations. [Research Report] RR-3443, INRIA. 1998. inria-00077201

HAL 1d: inria-00077201
https://inria.hal.science/inria-00077201
Submitted on 29 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00077201
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On super-high-freguenciesin discontinuous
1st-order delay-differential equations

M. Akian, P-A. Bliman

N° 3443
June 22, 1998

THEME 4

apport
derecherche







Zd I N RIA

ROCQUENCOURT

On super-high-frequencies in discontinuous 1st-order
delay-differential equations

M. Akian* , P-A. Bliman'

Théme 4 — Simulation et optimisation
de systeémes complexes
Projets Sosso et Meta2

Rapport de recherche n ‘3443 — June 22, 1998 — 32 pages

Abstract: One considers a scalar 1st-order nonlinear differential equation with a delayed
relay-output proportional feedback. One shows that, under a boundedness condition on
the nonlinearity only, any solution of this equation has, after a finite time, a finite number
of zeros on compact sets. An estimate of the time after which the super-high-frequency
disappears is provided. This improves some previous works by Shustin. As a consequence,
using some works by Fridman et al., any solution of the system under study coincides, after
a finite time, with one of the periodic solutions.
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Sur les oscillations a super-haute fréquence d’équations
différentielles a retard du ler ordre discontinues

Résumé : On consideére une équation différentielle non-linéaire du ler ordre avec retard
et relais. On montre que, sous une condition de bornitude de la non-linéarité uniquement,
toute solution de cette équation admet, au bout d’un temps fini, une nombre fini de zéros
sur tout ensemble compact. On fournit de plus une estimation de la durée au bout de
laquelle les super-hautes-fréquences disparaissent. On améliore ainsi des résultats obtenus
précédemment par Shustin. Ceci permet de prouver, & partir de travaux de Fridman et al.,
que toute solution du systéme étudié coincide au bout d’un temps fini avec une des solutions
périodiques.

Mots-clé : oscillations & super-haute fréquence, équations différentielles & retard, solutions
périodiques, solutions lentement oscillantes, relais.



On super-high-frequencies in discontinuous 1st-order delay-differential equations 3

1 Introduction
One studies here the scalar delay-differential equation

X = —sgnX(t — h) + F(X(t)), Xo =0, (1)

where h > 0, g € C((—h,0]) and X, a X|¢¢t—ns> t > 0. This equation arises e.g. when
controlling the nonlinear system & = F(x)+ u by use of a proportional (negative) feedback u
on the delayed output of a relay sensor. For example, the case where F' is linear decreasing
comes from an automotive control problem, see Franklin et al. [5], Akian et al. [1]. Equation
(1) is a particular case of a more general class, given by

X = f(X(t),X(t=h), (2)

which arises in a variety of models in the literature, see Diekmann et al. [3].
For equation (1), it is shown! in Fridman et al. [6] that, under the condition:

Fis a C' function such that sup |F(z)| <1, (3)

if zy has a finite number of zeros, then the same holds for X;, ¢ > 0. Indeed, denoting in this
case Z C [0,+00) the set of zeros of X with change of sign and v(t) = card Z N [t' — h,t’)
where t' = inf [t,+00) N Z, the function? v is well-defined, nonincreasing and even on
[h,+00) (see however the precise definition of Z in the general case in Section 4 below). For
any n € N, there exists a unique periodic solution with v = 2n [6]. The slowest one only
(corresponding to n = 0) is orbitally stable. It is also the only slowly-oscillating® periodic
solution. Any solution X departing from an initial condition xy with finite number of zeros,
is equal, after a finite time, to one of the periodic solutions [6].

Related results have been obtained for various, mostly smooth, systems of type (2), on
existence, uniqueness and stability of slowly-oscillating periodic solutions. Mallet-Paret has
shown in [11] that, under conditions involving in particular a negative feedback condition in
the delay, the dynamical system described by (2) possesses a global integer valued Lyapunov
function (just as v here), which gives rise to a Morse decomposition of the attractor into a
finite ordered collection of compact subsets of the phase space, invariant by the flow. Each
one of these subsets, called the Morse sets, contains a periodic solution [11, Theorem D]. In
the case of equation (1), the Morse sets are the singletons containing the periodic trajectories
with v = 2n, n € N. Due to the discontinuity of sgn on 0, their number is infinite.

Also, results on existence of chaotic motions have been obtained by several authors.
For an overview of these results and a commented bibliography, the reader is refered to

1The fields of application of the results by Fridman et al. [6] and Shustin [17] are indeed wider, as they
also include some nonautonomous systems.

2Here we choose a definition of v in the spirit of Mallet-Paret [11], whereas Shustin’s choice [17] ¢! =
sup [0,%] N Z necessitates special care for initialization.

3that is, such that any two distinct zeros are distant from at least the value h of the delay, see Nuss-
baum [14], Diekmann et al. [3].

RR n-° 3443



4 M. Akian , P.-A. Bliman

the monography by Diekmann et al. [3, Chapters XV and XVI]. See also the papers by
Peters [15] and Ivanov et al. [10] for some results concerning systems of type (2) where f is
discontinuous wrt the second variable.

At last, some partial results for 2nd order systems have been obtained by An der Heiden
et al. [2] and Fridman et al. [7].

One is interested here by the case where z is a continuous function with infinite number
of zeros (super-high-frequency). In Shustin [17, Theorem 0.5], it is shown that there exists
C > 0 (dependent on F, but not on zo nor h) such that v(¢) is well-defined and finite for

—4
t > hC (1 + (%") ) with &p a max{t —t' : —h<t' <t <0,z0 #0on (t',t)}. (4)

However, together with (3), a supplementary condition is required in Shustin [17, Formula
(0.6)], namely that (F'(hz) — F(0))/z be small, together with its first derivative. This can
be interpreted as a small-delay condition. In Theorem 2, one generalizes Shustin’s result
and sharpen (4). For the proof, one uses the technique of Shustin [17], that is, for a solution
X of (1), one considers a “measure” on the lengths of open intervals where X; has constant
sign and proves that this measure strictly decreases with respect to n, when ¢ = o — nh and
a is an accumulation point of the set Z of zeros of X with change of sign. The measure
being bounded, this leads to a bound on «, and then on ¢ such that v(t) is infinite. In short,
one proves that the super-high-frequencies are asymptotically stable for the backward time
flow, and then unstable for the forward time flow. Such a technique is also used in Fridman
et al. [6] and Akian et al. [1] to prove the unstability of the non slowly-oscillating periodic
solutions.

Some results of Fridman et al. [6] and Shustin [17] (namely the fact that v decreases and
the disappearance of super-high-frequency oscillations) have been generalized by Dix [4] in
the case of a varying delay such that Id — h is strictly increasing. One believes that the
results presented in the present paper may be generalized in the same way.

An important point in equation (1) is the choice of sgn0. Here, sgn is chosen as a single-
valued map, otherwise uniqueness of solution of (1) cannot be expected, due to the delay.
Instead of choosing sgn0 = 0 as in Shustin [17], it seems more realistic, in the context of
control, to take sgn0 € {—1,+1}: the sign usually models a binary sensor or actuator. Let
us define finally sgnX as follows. Let z € L®(—h, +00) with |2(¢)| = 1, one denotes:

1 if X(t)>0,
sgnX(t) =< -1 ifX(¢)<0, (5)
z2(t) ifX(#)=0.
This permits to model various policies: e.g. sgn0 = 1, or sgn X (t) switches as late as possible

... An important consequence is that any solution of (1)-(5) verifies: meas {t > 0 : X (t) =
0} = 0, see Lemma 5. Moreover, as solving (1) requires regularity of the right-hand side

INRIA



On super-high-frequencies in discontinuous 1st-order delay-differential equations 5

only in those points where it vanishes, (5) permits to weaken the regularity assumption on F'.

The main results are given in Section 2. Theorem 1 states the existence of solutions
of (1)-(5), proved in Section 3. Theorem 2 states the disapperance of super-high-frequency
oscillations, proved in Section 4. In Corollary 3, the condition sup, |F(z)| < 1 is weakened.
In Corollary 4, boundedness of the solutions of (1)-(5) is proved using Theorem 2 and the
results of Fridman et al. [6]. The bounds given there are optimal.

2 Main results

Let us first state the existence of solutions to (1).

Theorem 1. Suppose that F' is a measurable function such that sup,cp |F(x)| < 1. Then,
for any zy € C((—h,0]), there exists at least one function X € C((—h,+0)), absolutely
continuous on [0,4+00) and satisfying (1)-(5) almost everywhere. By definition, such a func-
tion is called a solution of (1)-(5) on [0, +00).

Uniqueness of the solution is guaranteed when x( has a finite number of zeros, see Section
3. For general initial conditions, it may be ensured by assuming e.g. F' Lispchitz continuous
or F nonincreasing. However, there is no evidence that the measurability of F' does not
guarantee uniqueness too.

Our central result is the following:

Theorem 2. Suppose that F' is a measurable function such that sup,cg |F(z)| < 1. Then,
for any xo € C((—h,Q]), there exists t, > 0 such that, for any solution X of (1)-(5) on
[0,+00), X; has a finite number of zeros for t > t,,. For any e > 0, there exists C. > 0
(dependent on sup, |F(z)| only), such that

5 —2—¢
tay < hC. (1 + (E) )

with § 2 sup{meas I : I interval C (—h,0), sgnzo constant a.e. on I} . (6)

The value of § depends jointly upon zo and z, and one shows easily that é > ;.

Corollary 3. Suppose that F' is measurable, and that there exists an open set Q C R such
that sup,cq |F(z)| < 1 and such that, for any solution X of (1)-(5) on [0, +0c0), there exists
tx,0 > 0 with X(t) € Q for t > tx,0. Then, for any solution X of (1)-(5) on [0,+00), there
exists tx > 0 such that X; has a finite number of zeros fort > tx.

The assumptions of Corollary 3 are fulfilled e.g. when F' verifies: zF(z) < 0 on R. In
particular, the case treated in Akian et al. [1], where F(z) = —z, follows from Corollary 3.
Proof of Corollary 3 is left to the reader.

RR n-° 3443



6 M. Akian , P.-A. Bliman

When no super-high-frequency may be sustained, the asymptotic behavior is summarized
by the periodic solutions. This offers the possibility to express some asymptotic properties
of the solutions. As an example, one may prove the estimates contained in the following
corollary, which are the best possible. Let us define the increasing functions F. by

b
02 [ T @

Corollary 4. If the assumptions of Corollary 3 are fulfilled, then, for any solution X of
(1)-(5) on [0,400), there exists tx > 0 such that, for any t > tx, t — X (t) is periodic, and

(F)H=h) < X(t) < (Fy) MR , (8)
sup{t'—t : t'>t, X >0ae. on [t,t']} <T} ShiFoo (F)71(h) , (9)
sup{t' —¢ : ¢ >¢, X <Oaeon[tt]} <T 2h—Fpo(F ) (=h). (10)

Moreover, if F' is odd, then, for any solution X of (1)-(5) on [0,+00),

1 7t
lim —/ X(t)dt=0. (11)
t—+oo t 0
The bounds on X in (8) are null when h vanishes. This must be linked with the fact that
when h = 0, any solution of (1)-(5) vanishes identically after a finite time. The inequalities
in (9), (10) are optimal for the slowly-oscillating periodic solution; the period of this latter

is equal to Ty + T with T defined in (9), (10).

Proof of Corollary 4. When F is regular, Fridman et al. [6] proved that, when the initial
condition zy has a finite number of zeros, any solution of (1)-(5) is equal, after a finite time
tz,, to one of the periodic solutions. Using Theorem 2, the restriction on the number of zeros
may be removed. Now, it is easy to show that the amplitude and the intervals of constant
sign of the slowly-oscillating solution are larger than the same quantities computed for the
other periodic solutions. Using this property, one gets (8) to (10). Indeed, for ¢ > t,,, one
gets

sup{t' —t : t' >t, X >0 (resp. X <0) a.e. on [t,t']} < Ty (resp. T_) ,

where T, (resp. T-), defined by (9) (resp. (10)), is the length of the time intervals on which
the slowly-oscillating solution is positive (resp. negative), see the beginning of Section 4.2.1
below. One then deduces that

(Fp +F) H=T2) S X() < (Fp + F2) H(Ty)

see Formula (23) and its interpretation.

INRIA



On super-high-frequencies in discontinuous 1st-order delay-differential equations 7

When F'is odd, then T’y = T, and the other periodic solutions have the same symmetry
property. More precisely, for any periodic solution X* of least period 7' > 0, for any
t € [0,400), one has

T
X*(t+ >

)= -X"(t).

Formula (11) is deduced from this property.
When F' is non regular, this proof may be generalized by adapting the proof by Fridman
et al. [6]. O

3 Proof of Theorem 1 (Existence result)

Let us prove the existence of a solution of (1)-(5) on [0, h]. The global existence result is
then obtained by induction. Let us denote

e {t € (0,h) : sgnzo(t —h)=—1} .

Since M is measurable, there exists a nonincreasing sequence of open sets U,, of (0, k) such
that

+o0
M cU,, meas (ﬂ Un\M> =0.

n=1

As equation (1)-(5) has to be verified a.e., one may suppose that M = ﬂ+°° U,,- Moreover,
for any n € N, U, is a finite or countable union of disjoint intervals (¢n,m,t'n,m), and one
denotes

||l>

m
U nm’tnm’

When M =V, ,, for certain n,m € N\ {0}, (1)-(5) admits a unique solution X, ., on [0, h].
Indeed, assuming that the intervals (¢, m/,t'nm’) have been reordered, that is t', v <
tn,m'+1, and denoting t',, 0 = 0,t,,m+1 = h, one has

m ?
Xan(t) = '7::1 (f—(Xn,m(tln,m’)) - (t - tln,m’)) ifte (tln,m’atn,m’+1)7 m' = 0,...,m
Xpm(t) = Fr (Fe(Xnm(tnm)) + (E = tpm)) it € tpmrstnm)s m' =1,...,m,

where F are defined in (7). Denote

RR n-° 3443



8 M. Akian , P.-A. Bliman

then
1 1 1 1 1

- = <F()< —— = |
2 <2a=n " TrswE SO ST T o

For any n,m € N\ {0}, X, € C([0, h]) and is differentiable a.e., with | X, .. (t)| < 2(1 =)
a.e. Hence, by Ascoli’s Theorem, there exist a subsequence also denoted X, ,,, and a function
X, € C([0,h]), such that X, m» — X, in C([0, h]) when m — +oo. The limit X, is Lipschitz
continuous with constant 2(1 — X). As well, there exist a subsequence also denoted X,, and
a function X € C([0, h]), such that X,, — X when n — 400, and X is Lipschitz continuous.
Both X,, and X are absolutely continuous. To prove that X is a solution of (1)-(5) on [0, A
is equivalent to show that, for any ¢ € [0, h],

! X(s)
t = /0 —sgnzo(s — h) + F(X(s))
- / dF (X (s)) - / dF_(X(s))
(0,0 M

[0,8]nMe

ds

F-(X(0)) = F-(X(1)) +/ d(Fy + F-)(X(s)) 5 (13)

[0,6]NM

where M¢ 2 [0,h] \ M.
Suppose first that M = U, (that is X,, = X)) for a certain n € N\ {0}. Let € > 0, there
exists m such that meas (U, \ Vi,m) < . One has, for t € [0, hl:

t+ F_ (Xnm(t) — F-(Xn,m(0)) = /{0 o d(Fy + F_)(Xn,m(s)) .

The left-hand side of the previous formula tends to ¢t + F_(X,(t)) — F—(X,(0)) when m —
+00. Now, if m > m, then

[ dFE ) S - [ A+ L))
[0,t]NVe,m [0,£]NU,,

< % (meas (Vam \ Va,m) + meas (Uy, \ Vn,m))

[ A P (Xm(5) — s+ ) (Xns)
[0,4]NVo,m
< T A ) Xnnls) — A + ()|
[0,t]NVn,m

where the last integral goes to 0 when m — 400, m fixed, due to the continuity of Fy, F_
and the convergence of X, ,, towards X,. This being true for any € > 0, one gets

E F(Xo(t) = F_(X0(0)) = /[ o, AF AT

INRIA



On super-high-frequencies in discontinuous 1st-order delay-differential equations 9

The left-hand side of the last formula tends to t+ F_(X (¢)) — F_(X(0)) when n — +o0.
Let € > 0, there exist n, m such that meas (U, \ M) < ¢ and meas (Up\ Vp,;m) < e. Ifn >n,
then one has

/ d(Fy + F_)(Xn(s)) - / d(Fy +f_)<X<s>>‘
[0,2]NUx [0,tjnM

< 1 (meas (Un A Vi) + meas (M A Vn,m)>

- A

/[0 s AF A+ F X)) = dF s+ F )X

+

m

d(Fy + F)(Xn(s)) — d(Fy + 7")(X(8))‘

4e
< _
< )\+

7

where AA B2 A\ BUB\ 4, and using the fact that M C U, C Uy and Vi C Uy. So,
by the same arguments as before, X satisfies (13) for any ¢ € [0, k] and hence (1)-(5) a.e.

4 Proof of Theorem 2 (Disappearance of the super-
high-frequency oscillations)

In order to prove Theorem 2, one follows the technique of Shustin [17], except that one
considers the set Z of zeros with change of sign instead of the set of all zeros. This is
possible because of our choice of sgn0, which has as a consequence that the set of all zeros
of X on [0,+00) is zero-measured (see Lemma 5). Also, the measure on the set of open
intervals which is used is different, and the inequalities are sharper.

Let X be a solution of (1)-(5) on [0,+00). The precise definition of Z is as follows:

78 {t>0: X(t)=0and Ve > 0,3t € [t —¢,t),t" € (t,t +¢], X()X(t") <0} . (14)

Let us denote AccZ the set of accumulation points of Z.

If ¢t > h and Z N [t — h,t] is infinite, that is if X; has an infinite number of zeros with
change of sign, then, by compacity, there exists at least one accumulation point a € AccZ
in [t — h, ] (conversely, if @ € AccZ and a > h, then X; has an infinite number of zeros with
change of sign for @ < t < a+ h). Hence, if AccZ is empty or bounded, then X; has a finite
number of zeros with change of sign for ¢ > maxAccZ + h (with max@) = 0), and X; has a
finite number of zeros for ¢ > max AccZ + 2h. Therefore, in order to prove Theorem 2, one
shall bound AccZ (when it is not empty) by hC.(1 + (6§/h)~27¢).

RR n-° 3443



10 M. Akian , P.-A. Bliman

4.1 Properties of the zeros of the solution

Lemma 5. The following properties are true:

meas{t >0 : X(t)=0}=0,
té€7Z =X >0o0rX <0 a.e. in a neighborhood of t .

Proof. Denote N C Rt a set of measure zero such that X is differentiable and (1)-(5) is
fulfilled outside N. For any £ > 0, there exists an open set U such that N C U and

meas U < ¢. Denote § 2 {t >0 : X(t) = 0}. It is clear that S\ N has no accumulation
point, otherwise on such a point ¢, one would have X (t) = 0, X(¢) = 0, so |F(X(¢))| = 1.
As S\U C S\ N, the set S\ U has no accumulation point. Being closed (by the continuity
of X), it is then finite or countable. Hence, meas (S\U) = 0, so meas S = meas (SNU) < ¢
for any € > 0. This proves the first property. The second property is deduced from the first
one and (14). O

Lemma 6. The set Z is closed.

Proof. Let t; be a sequence of elements of Z converging to ¢t. There exists a subsequence,
also denoted t;, which converges e.g. from below. Let ¢t} < ¢; < ¢}/ < t be such that
X (t)) X (t]) <0, together with ¢ —t; — 0 when i — +o00 (see (14)). Then ¢},¢} tend to .

Let ¢ > 0 be fixed. There exists 7 such that t,t! € (t —¢,t). Now, by Lemma 5, the set

1771
of all zeros of X on [0, +00) is zero-measured, due to the choice of sgn0. Hence, there exists

t" € (t,t + ¢) such that X (") # 0. One has X (t;)X (") < 0 or X(¢/)X(¢"") < 0, which
proves that ¢ € Z and completes the proof. O

The following result is proved in Shustin [17] too.
Lemma 7. Ift € AccZ,t > h, thent —h € AccZ.

Proof. Indeed, due to Lemma 5, if t € AccZ, then there exists for instance an increasing
sequence t; € Z with X increasing around the points ¢2; and decreasing around the points
t2i+1 and such that ¢; — ¢ when § — +o00. Then, sgnX (t; — h) = (=1)**!, and there exists
t; € (ti,ti+1) such that t; —h € Z. Hence, t —h =lim; , 4 t; — h € AccZ. O

4.2 Principle of the proof

4.2.1 Preliminary notations

Let t,b > 0 be such that X (¢) = X(t+b) = 0. When X > 0 on (¢,t+b) and X is increasing
and then decreasing on [t,t + b], one denotes GF(b) (resp. G¥ (b)) the time length of the
increasing (resp. decreasing) phase. When X < 0 on (¢,t + b) and X is decreasing and
then increasing, one denotes G (b) (resp. G¥ (b)) the time length of the decreasing (resp.
increasing) phase. Simple computations lead to:

24 a Fro(Fr+F )™, G¥(b) 2 —GE(=b),

INRIA



On super-high-frequencies in discontinuous 1st-order delay-differential equations 11

where F.. are defined in (7) (P, N stand for positive, negative). Remark that G (resp. GY)
depend only upon F|g+ (resp. F|g-). When F is odd, then G¥ = G¥.
Below are listed some useful properties, whose proof is straightforward (A is defined in

(12)).

1+ F
GF) = S—o(Fe+F )Y,

0<A<(GY) <1-A<1, a€{P/N},
G°+G$=1d, a€{PN}.

4.2.2 Measures on the set of open intervals

For any C! convex function ¢ on Rt such that ¢(0) = ¢'(0) = 0, one denotes

b
cp“(b)é/ 'oGe(H) db , a€{P,N}, beR" .
0

One proves easily that for a € {P, N}, ¢? is convex, ¢%(0) = (¢*)'(0) =0, and

T0() < ") < plb) Vo> 0.

Definition 8. Let pu, denote the (unique) function on the set of bounded open intervals
I C[0,+0), such that

po(I) = P (meas I)  if X >0 ae. on T,
po(I) = ¢ (measI) if X <0 ae. onl,
po(I) = Z po(J)  forall I .

J connected
component of I \ Z

For any bounded open interval I, one denotes

A
/'LP(I) = M{s»—»sl’}(I) , p>1,

Y=

11>

Z (meas J)? | , p€[l,+00),

J connected
component of I\ Z

Il

>

1] 0o sup meas J .

J connected
component of I\ Z

RR n“ 3443



12 M. Akian , P.-A. Bliman

For any open interval I, the set I\ Z is open, since Z is closed. Hence, it has at most
a countable number of connected components J, which are open intervals. Since p,,(J) > 0
and meas J > 0, the sums on J in Definition 8 do not depend upon the ordering of the
connected components. Hence, u,(I) and ||I||, are well-defined. Moreover, if I is bounded,
then meas I < +oo, ||I||, < |||l = meas I < 400 (as meas Z = 0 by Lemma 5), and
po(I) <35 p(meas J) < p(meas I) < +oo (by the convexity of ¢ and ¢(0) = 0).

Note that (p,(I ))% and ||I||, are “equivalent”:

N7E N < (up(D)> < 1l - (15)

In the sequel, we shall denote also ||-||, the usual [P-norm of sequences, when no ambiguity
is possible.

4.2.3 The central intermediate result

In order to bound AccZ, let us fix @ € AccZ, @ > 2h. By Lemma 7, a — kh € AccZ for all
k€N, k < #. In the following, one exhibits a function y of a € AccZ N [h, +00) (depending
on Z), such that on the one hand u(a — kh) decreases and “tends to 0 when k — +00”,
and on the other hand, pu(a — koh) is lower bounded by some constant (depending on §), for
ko = [§] — 1. Here, | #] denotes the integer part of ¥. This furnishes a bound for ky and
then for a.

Proposition 9. Let ¢ be as before. Let v € (0,1], p € (1,+00]. Then, there exists § > 0
depending on v, p and sup,cg |F(x)| only, such that, for any open interval I C [h,+00) with
bounds in AccZ and length meas I < h,

po(I = h) < pp(I), (16)
=) < oypa(1)— g M (17)
! - (meas Npeitl

In Proposition 9 and in the sequel, one denotes A £t ={t' £¢ : t' € A} foranyt € R
and A subset of R.
Applying (17) to
A
Iy =(a—(k+1h,a—kh), k=0,....,k—1,

one gets

ko—1
e +2+'v
Hy+1(Tko) < piy+1(Lo) — ) Z 17k 115 7
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On super-high-frequencies in discontinuous 1st-order delay-differential equations 13

Using formulas (15) and (16) for p € (1, +00), one obtains

ko—1 L+2+ ko—1 . s )
STIRIET™ > 3 () F242)
k=0 k=0

> ko (pp(Iy))? (72T +27)

— 3 19
> kAT LI

Passing to the limit, the resulting inequality is also valid for p = 4+o00. Since p,4+1(ly) <
ILl17E < 1L)I7H = h7+Y, one gets

yH1
1 B\ Pt
e ()
or 247 g, Il

Let us bound || I, ||, from below wrt §. The connected components of Z¢ = R* \ Z are the
maximal intervals where X has a constant sign a.e. Let T be a bounded interval of (—h, +00)
with e.g. sgnX (t) = 1 a.e. on I. Then, X decreases in I + h, which implies that either X has
constant sign on I + h, or X is positive on the first part of the interval I + h and negative
on the other part. Hence, I + h is included in the union of the closure of two connected
components of Z¢. This implies that § verifies:

6 = sup{measT : I interval C (—h,0), sgnX constant a.e. on I}
< 2sup{meas I : I connected component of (0,h)\ Z}
< 4sup{meas I : I connected component of (o — (ko + 1)h,a — koh) \ Z}

ko lloo < 4l ko lp -

The second inequality is deduced from the fact that (a — (kg + 1)h,a — koh) C (0,2h).
Therefore,

Lo 1 4p\ 7T
0= 9)\1%"’+2+’7 6 ’

so maxAccZ < (kg + 2)h < hCp,(1 + (h/6)ﬁ+2+7) for a certain constant Cj,, > 0
depending on p, v and A only. The proof of Theorem 2 is achieved taking p = +o0 and

v =¢.

4.2.4 Overview of the proof of Proposition 9

In order to end the proof of Theorem 2, it only remains to prove Proposition 9. This is done
in four steps, in Sections 4.3 to 4.6. Let us give an overview of this proof.

When I and (I—h) do not contain accumulation points of Z, their connected components
may be ordered, together with the sums defining the measures involved in (16) and (17). For

RR n-° 3443



14 M. Akian , P.-A. Bliman

the particular case where X changes only one time its sense of variation on any subinterval
of I where its sign is constant (that is when any connected component of I\ Z intersects no
more than two connected components of I\ (Z + h)), the proof is treated in Section 4.3.

When some connected components of I'\ Z intersect more than two connected components
of I\(Z+h), but always a finite number of them, which is the case when I—h does not contain
accumulation points of Z, the computations are more cumbersome. They are presented in
Section 4.4. Note that this part does not use Section 4.3: the particular case presented
therein is simpler, and one provides it for pedagogical purpose rather.

The next step (in Section 4.5) consists in allowing an infinite number of changes of
variation on subintervals of I where X has a constant sign, that is to eliminate the restrictions
on I —h. The proof in this case follows from the results of Section 4.4, by an approximation
process.

Last, the case where I contains accumulation points of Z is treated in Section 4.6: a
summation of contributions coming from each connected component of I \ AccZ, that are
treated by the results of Section 4.5, is achieved. This ends the proof of Proposition 9.

Independently, one presents in Section 4.7 a simpler variant of Sections 4.4 and 4.5, in
the case where F'is odd. It consists in proving that, given the set I'\ Z, the value of p,(I—h)
obtained in the particular case of Section 4.3 is indeed the maximal that may be obtained.
The technique uses Schur convexity as a central tool.

4.3 Proof of Proposition 9 in a particular case where / and 7 —h do
not contain accumulation points of Z

If I is an open interval with bounds in AccZ such that I N AccZ = @, then the points of
Z NI may be ordered in increasing order. Therefore, the connected components of the open

set U 2 I'\ Z may be ordered in increasing order too. Let us denote them by U;,j € J C Z
(Uj increasing wrt j), and put U; = @ for j € Z '\ J. Since, by the definition of Z, the sign
of X is constant a.e. in U; and alternating wrt j, one imposes e.g. sgnX = (—1)’ a.e. on Uj.

Let us define the sequences a and b by: a; a P if j is even, a; 2 N if jisodd, j € Z,

and b; 2 jeas U; for j € Z. One has meas I = ||b||1, ||I]lp = I|bllp, and pu(I) = pe(b) a

2 jez 9 () i
Suppose now that I — h does not contain accumulation points of Z too. Denote Uj,
j € J CZ, the connected components of U 2 I\ (Z + h), increasingly ordered as the Uj,

and put f]j ={Pforje Z\j Let b be the sequence defined by: I;j 2 meas Uj for j € Z. One

has g, (I — h) = py(b) = > jez ¢ (bj). Since X increases (resp. decreases) around t € I if

and only if X(. —h) < 0 (resp. X(. — h) > 0) a.e. around ¢, the sets U;, j € J, are exactly
the connected components of the open subset of I containing all the points around which X
is monotonous. The sequence b verifies the following property: there exists X € Wh>°(I)

INRIA



On super-high-frequencies in discontinuous 1st-order delay-differential equations 15

such that, for all j € Z,

X = (-1 +F(X)ae onU; ,(=1)’X >0 a.e.on Uj . (18)

Any sequence verifying this property is called a predecessor of b. A particularly simple
predecessor, denoted b’ is obtained by using a function X satisfying (18) and being either
increasing/decreasing, or decreasing/increasing, on any interval U;. Let us denote X' the
corresponding value of X. One shows easily (see Figure 1) that this corresponds to choose

hio1 =G  (b2) + G (baj—1) ,  bh; =GN (bajyr) + GF (baj) (19)
that is

by = GU (bj1) + GY (b)) = bj + G (bjr) — G2 (b;) -

J

<--t---- >< -S> -

/ ! /
bj_1 b; +1
>

Figure 1: The predecessor b’ (the indexation shown corresponds to an even integer j)

In this section, one proves Proposition 9 in the particular case where b= b'.
Using the identity

P+ o2 o) = (o) + oz + [ (90' 0 G® (5 + 81 — 83) —w'(8)> ds,  (20)

83

one gets

G (b)) a

aj (p! a; Gt (bj41) Gt By41) Y aj /
@ (b) = ¢ (b;) + [p(s)] + 0o @' oG (s+G7 (b)) —¢'(s)] ds.
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16 M. Akian , P.-A. Bliman

Let us study the last term of (21). If e.g. G*(b;) < G***(bj11), then one has, for any
s € [GY(bs), G (bjya)],

GU(bj) < 5= GY (b)) < GY 0 ()71 (s) = s+ GV (b)) < (G2) M (s) = G (s + G (b)) < s,

using G* + G¢ = Id and the fact that the functions G¢ are increasing. More precisely, using
the bounds on the derivatives, one gets:

GU(s+GY (b)) —s = GZ(s+GY (b)) —G¥(s+GY 0(G2) ()

< (1);7/\) (gij(bj)—s) <0.

Then, by the convexity of ¢, one obtains
¢ oGl (s+GY (b)) —¢'(s) <0,

and the last term of (21) is nonpositive. A similar proof holds when G* (b;) > G*** (b;4+1).
Hence, one obtains by addition of (21): p,(b') < pe(d), that is (16), using the fact that
#(G% (b7)) — 0 when |j| — +oo.

To prove (17), consider the sequence ¢; 2 G% (b;). The previous computations lead to

2

(6 + gD = 9) ds

(V') < py(b) + Z/Cj-H

JEZ S

For ¢(s) = 8711, bounding ¢" from below, one deduces:

, y— A2 (cj — ¢ )2
po(b') < prg(b) —v(v+1)(§telgzw) 1(1—/\) ]% 2 o

Let us now use (with ¢ = 2) the following interpolation inequality, which is a discrete analog
of a result by Gagliardo [8] and Nirenberg [13]. A proof is given in Appendix.

Lemma 10. Let 1 < p < 400 and 1 < ¢ < 4+0o. Then, there ezxists Cp 4 > 0 such that,
for any nonzero real sequence (bj);cz, the following formula is true, as soon as the involved
norms are finite:

p(2¢9-1)

18l *~"

||bj - bj—1||g > Cp,q

One gets

INRIA



On super-high-frequencies in discontinuous 1st-order delay-differential equations 17

As (sup ;)" > |le[l7 =", one deduces

ez~
py41 () < pn42(B) = elﬂzljlﬁ ’ (22)
clli”

where 6’ > 0 depends on 7,p and A. Using the inequalities on (G%)" and the fact that
G%(0) = 0, one gets

llelly = Allbllp el < (T =)ol

which gives (17) in the case where b= b'.

4.4 Proof of Proposition 9 for general I such that [ and I — h do
not contain accumulation points of Z

One studies here the case where INAccZ = IN(AccZ+h) = 0, so the connected components
of U=T\Z and U =TI\ (Z + h) may be ordered as in Section 4.3, but one supposes that
the predecessor b of b is different (up to a translation) from b’ defined in (19).

Let Uj,bj,ﬁj,i)j,aj be defined as in Section 4.3. The function X = X |1 satisfies (18).
Let us denote ¢; the right boundary of the interval U; (the t; are exactly the local extrema
of X). Let us define also

4 2 |(Fy + F)X ()] (23)
The quantity d; is the time necessary for a solution of (1)-(5) to go from 0 to X (t;) and back
to 0 with only one change of the sense of variation. For any j € Z, let us denote j = 7(j)
the unique index such that Uj NU; # 0 and [7']- NUj4+1 # 0. The parity of j and j is the
same. The maximal integer I such that U;_; C U; is even and denoted 27 = 2I(j). One has
Uj—1 CUj for 1 =1,...,2l, and j(j) — 2I(j) — 1 = j(j — 1). For all the notations, see Figure
2.

To compare, as in Section 4.3, p,(b) and p,(b), one remarks that

21(4)

Db = D 9 (b)) -
JEL JEZ 1=0
Then, one is led to compare Elzi(g) pri-t (l;j(j),,) and ¢% (b;). One has (see Figure 2)

by = GYY(dp) +GY(dj 1) =dyj 1 +GU(dy) — G2 (dj )
i)j,l = gij (d]',l) — gij (dj,lfl) for I odd in {1, ceey 21_— 1}
b = —GY(dj0)+GY (dy11)
= dj—l—l — dj_l + gij (dj_l) - gf" (dj—l—l) for [ even in {2, ey 2[} .
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18 M. Akian , P.-A. Bliman

-1 b;

Figure 2: A predecessor b (here j is even, [(j) = 1)

4.4.1 Rewriting of p,(b) using identity (20)
First, one has, for [ = 0:

gIitt (dy)

¢ (by) = 9% (dj—1) + [p(s) ¢ (dy ) T

where the rest r; is given by:

N Y
/rj = /g ((’OI [e] g_J (5 + g+_7 (djfl)) - (pl(s)) dS :

2 (dy-1)

Second, for odd index I, one gets:

7 G (ds_1)

%5 (by-1) = ()]

+ 75—
7 (ds—i-1) =t

where, for [ odd

A
I (dyom1)

Third, for [ nonzero and even, one has

w17 a; G2 (ds-1)
¢ (bg—t) = 9" (dg—i-1 — dj—1) + [p(8)] 5o (d]__i_l)

Qij(di—t) ) )
Ti_1 = / (cp' 0 G (s — GY (dj_1-1)) — 90'(5)) ds .
g

g2 (d5-1) ‘ ..
+ / (cp' 0GY (s + GY (djoi—1) — dj—1) — 90'(3)> ds .
g

Y (dy_1m1)
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Adding the null term

1 1—2
¢ (Z(_l)lldi—l’—1> — " (Z(_l)l’dj—l'—1>

1'=0 1'=0
dj_1-1 . -1 ,
—/ @ oG [ (=1)'dsp_1+5) ds,
d5—1 =0
one gets:
l -2 6% (d,0)
iU ) = % VW d- — % 1\V'4- = (4= -
¢ (by-1) = ¢° (zrzo( 1) dJl’1> %* (,Z‘;( 1) dJl’1> +[90(5)]gij(d]__l_1)+rafl:

where, for [ nonzero and even

A g_J (d]—l) @i @
Tj—l = / ((p' 0GY (s + Gy (dj—1—1) — dj—1) — go'(s)) ds
4

I (dym1-1)
dy—1-1 -1 dj—1-1
+/ (Sol o gij (8 — dj—l) — (pl o gij (Z(—l)l dj—l’—l + S)) ds = / ’lpj’l(S) ds
d]'—l 1'=0 dJ'_l
and

03106 2 @) ¢! 067 0) = ¢! 06 (6% (5) = -1+ 6% (0511 )|

-1
+¢'0GY (s —dj1) —¢' 0 GY (Z(—l)l'dj—l'—l + 8) :

I'=0
By summation over all the indexes [, one gets:

o7 27
o . g ZH (dy)
;‘P ’ l(bj—l) =¢ <Z(_1)ldj_l_l> " [(p( )g (d'—2l 1) ng L

=0

As (cf. Figure 2)

and
i) -2(G)-1=5G-1),
one finally may write:
21(j) 21(5)

b) = Z Z ©%=1(bj(j)—1) = pe(b) + Z Z T3(5)~1

JEZ 1=0 JEZ 1=0
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20 M. Akian , P.-A. Bliman

4.4.2 Bounding of the rest

Let us consider the sequence (c% )jez, defined for j € Z by:

||l>

G (b;) (as in Section 4.3) ,

1]>2

G2 (dj5)-1) < ¢ (since djjy—1 < bj) ,

o:\»-t

1]>2

j—1 G (d] —21(5)— 1) <¢j  (since dJ(J —21(j)—1 <b;) .

-3

-

Lemma 11. For any [ = 0,...,2I, r5-1 < 0. Moreover, when ¢(s) = s7*1, there emists
Cy > 0, such that for all j € Z,

r35) < —Cyamax{cj, e} ez —¢p1)? (24)

1(5)

-1
Z’"ﬁ(i)*ﬂ < =Cyn e} (ejp1 =), (25)
=1
21(3)

-1
Z T3(5)—1 < _C’Y,/\ c} (Cj — Cj_%)2 . (26)
=1

From Lemma 11, all the r;_; are nonpositive, then p,(b) < p,(b) and (16) is deduced.
Now, for ¢(s) = s7T!, adding the three inequalities of Lemma 11, and then summing on
J € Z, one gets

+3
lle _||" b
23D i1 S —Coallglt Yo (e ¢ 3)° < —20"||c,~||z;1ﬁ :
JEZ 1=0 jetz cilly
by Lemma 10, where 6" > 0 depends upon A, and p. Since ||c% lp > llejllps ||c%-||1 < 3l
(as¢; > Cit1,Cim _) and sup,ez ¢; < ||¢jllp, one obtains:

T
.7

3p-1 1+1 p— 1+1
lles i

?

fy+1(B) < piyi1 (D) —

which is analogous to (22), and one ends the proof as in Section 4.3.

Proof of Lemma 11.
e When [ = 0, by the same proof as in Section 4.3, one may show that r; < 0 for any (C*
convex) ¢ and that, for p(s) = s7+1:

2
2(1—\)
)‘2 y—1 2
< —’Y(’H‘l)m max{c; 1,642} (2 —¢41)° .

1 < —y(y+ 1) max{G¥ (d;_1), %+ (d5)}~" (G%**(dj) — G% (d;_1))?
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Formula (24) is then deduced from the inequalities: ¢;, 2 < ¢j41, ¢j1 < ¢
o If [ is Odd, then dj,l Z djflfl and, for s € [Qﬁj (dj,l,l),gfj (dj,l)], one has

0<GY* (s =G (djmi—1)) < (L= A)(s = G¥(dj_i—1)) < s .
Hence, 7;_; < 0 for any ¢, and, when ¢(s) = s7*1, using the previous inequalities, G* (0) = 0

and A < 1, one gets:

< 0+ D ) [g (9% 50~ (d5.1.0))

#62ty-1-0) (2 () = 62010 |

@ o (A
< =y +1)(G% (b)) N (§(djz —dji-1)? + dj_i1(djy — djll))
’\3 Y—1/ 72 2
< v+ 1)3%’ (d5_ 1 —dj_ 1) -

o If [ is nonzero and even, then dj_; < dj_;—1. Let us rewrite

¥i0(8) = (G¥)'(3) [¢' 0 GY(s) —¢p' 0 GY (Z(_l)l,djl’l + s)

I'=0

b 00—y ) ¢ 06" (G() —dy 1+ G 1) )|

+(1=(G2)(s))

-1
(pl o giJ (S _ dj—l) _ SOI o gi-’ <Z(_1)l,dj—ll_1 + S)

I'=0

One has 0 < Eg:lzo(—l)l'dj_l/_l <bjforl!" =1-1,1—2,and s — G¥(s) — G} (dj_i—1) =
GV (s) — GY (dj—i—1) < 0 for s € [dj_i,dj_i1—1]. Therefore, 1;,(s) is a sum of nonpositive
terms and r;_; < 0 for any ¢.
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Using the fact that in the expression of r5_;, ¢’ is applied to numbers s € [0,¢;], one
obtains for p(s) = s7+1:

-1

r— < =y + AT [(Z(_l)l,di—l’—l> (dj1-1 = dj1)

I'=0

1—2
+%(dj—l—1 —d;_)? + (Z(—l)l,dj—l’—1> (dj—1-1 — dj—l)]

I'=0

IA

I'=0

-2
—y(v+ 1))\202_1 l%(dj_l_l —dj_)* + (Z(—l)l,dj—l’—1> (dj—1—1 — dj—l)]

\3 1 , 2 -2 , 2
< v+ 1)7031_1 (Z(—l)l dj—l'—1> - (Z(—l)l dj—l'—1> )

I'=0 I'=0

as A < 1.
e Summing the last inequality over all nonzero even indexes, one obtains

U
A3
ZT]LM < —’Y(’Y+1)7C;Y l(b? —d3,)
=1
)‘3 y—1 2
< D5 (b~ dia)
)\3

< v+ 1)mcz_l(cj —ci1)”,

that is (25).
e At last, summing the contributions over all nonzero indexes, one gets:

21
A
er—l < v+ 1)70;7 ' (bf - djg—l + (dg%—1 - d?—z)
=1

75—

+ (B s —di_ )+ + (d§72i+1 —d? 21)>

A3 _
S —’Y(’Y + 1)76’] l(bg - d]g,Ql',l) y as djlefl Z djle forl = 1, 0
X, )
< v+ 1)mcj (¢j —e¢j—1)”,
that is (26). O
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4.5 Proof of Proposition 9 for general I such that I does not contain
accumulation points of Z

One studies here the case where I N AccZ = 0, but I N (AccZ + h) # 0. The same notations
as in Sections 4.3 and 4.4 are used for U,U, U, bj,X',X’.

Since I — h contains accumulation points of Z, the connected components U;, i € Z C N
of U cannot be ordered in increasing order; to recall this fact, one uses a different notation of
the indexes, namely ¢ € 7 instead of j € J. They still correspond to the maximal intervals
on which X is monotonous.

Let € > 0. There exists a finite subset Z¢ of 7 such that

Z uw(ﬁi) < ¢ | measU — Z meas U; | <e . (27)

i€T\I; i€y

Let us approximate X by another solution X¢ of (1)-(5), defined as follows:

X=Xon |JU;, X*=X'onUjsuchthat U;n| |JT;| =0,
i€Z; i€Ly

and, to complete the definition, on any connected component of U; \ |J U;, one chooses

=
X* increasing and then decreasing if j is even, decreasing and then increasing if j is odd. The
function X¢ verifies (18) for a new, ordered, sequence U;, of lengths b5. For this sequence,
the result of Proposition 9 applies, due to Section 4.4, and gives:

o2+

. - b
1o (5°) < () Tor any o, 1y51(5°) < gy () — 112

3 11
(12 F
In order to get the result of Proposition 9 for I, it suffices to prove that for any ¢,

pio (I = ) < limsup p, (b°) .
e—07+

One has
oI =1) =3 1o @) = 3 o0+ 32 npl0) -
i€l i€T; i€T\I;
Now, for any € > 0,
S 1) < ()
i€T;

since any U; with i € Ty is included in a set [7; , and any U’ ; contains at most one U; with
i € Iy. Formula (27) permits to conclude.
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4.6 Proof of Proposition 9 for general /

Let now I be a general open interval with bounds in AccZ and meas I < h, and let
U =TI\ AccZ. Theset U is open, and is then the (finite or countable) union of its connected
components U;, ¢ € Z C N, which form a partition of U. However in general, the sets Uj;
cannot be ordered. Since meas Z = 0, one has:

z meas U; = meas U = meas I .
ieT
Moreover, I\ Z =U \ Z = |J;c;(U; \ Z) (disjoint union) and, by the definition of s,
o) = 3 g (U3 -
eI
Since t € AccZ implies t — h € AccZ (by Lemma 7), then (I — h) \ AccZ C U — h and
I-=hm\NZ=U=h)\Z=U;cz((Ui = h)\ Z) (disjoint union). Therefore,
po(I —h) = ZW@(Ui —h).
i€z

Since Proposition 9 has already been proved for open intervals with bounds in AccZ and
no accumulation points of Z inside, one has, for any i € Z:

po(Us — h) < puy(Us)
=1 +2+
A

7 Ui—h)<pu U;)-90
1 ( ) < pyt1(Ui) (tmeas U)

5 .
p-1tl

Summing the previous inequalities, one obtains (16), and:

A
po(I = h) < pp(I) — 6 =F :
¢ ¢ ZEZI (meas Ui)%“

Now, let us prove that

3 424 242+
[ [F
il+1

icz (meas U;)»-1""  (meas I)#1

+1 7
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Indeed, let ¢ a (% + l)p/(% +2+47), then ¢ > 1 since v < 1 and p > 1. Therefore

+24 At
P— Y
T = (||I||pqp1+1)_(ZIIU||p>

€L
(il = et
< L \a
= B <(meas Ui)q) iezz(meas Ui)
2424y
S I|U ” (meas I)p%l-l—l

icz (meas Ui)P_ilJrl

This ends the proof of (17) for general I with bounds in AccZ, and achieves the proof of
Proposition 9.

4.7 A proof using Schur convexity when F' is odd
When F is odd, then
Gl =6Y, o"=¢"

In this section, one proves that p,(I —h) < p,(b') for all I such that I N AccZ = (), which
implies Proposition 9, due to Section 4.3. This proof replaces that of Sections 4.4 and 4.5.

_ Let us first study, as in Section 4.4, the case where I N AccZ = I N(AccZ + h) =0 and
b#£b.

Let U,U]‘,bj,ﬁ,f]j,gj,Xl be defined as in Section 4.3, and X,7 = j(j),] = I(j) as in
Section 4.4. For any j € Z, let T; be the following transformation on the function X (see
Figure 3):

TjX=XonI\U;, T, X=X onUj. (28)

Let us partition U; into two subintervals U~ and U\, with U; < U and
meas U~ b_—gP( )5 measUfzb;'ébj—bj_zgf(bj).
If X is equal to X' on Uj, then [ = 0 and
UpaNU; =U;, U;nU;=Uf .

The transformation T} generates the following transformation, also denoted T}, on U
and b. The sets U— of_1,---,Uj are replaced by (T;U);_1 = U— a7—1 UU; and (T U)J~ =
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(~JJ~L~J Uj+. Therefore, the numbers 55_27_1, ..., b; are replaced by (Tjb);_1 = b~ + b; and
(ij)j =bt + bj_, with

b~ 2 meas U; o 1 \U;, bt 2 jneas U;\U; .
The other components remain unchanged, up to a reindexation.

(Tyb)5-1  (Tyb);

< ------= > << - >

X

Figure 3: Suboptimal predecessors and their transformation (5 is even, I(j) = 1)

Lemma 12. For all predecessorg of b and for all j € Z, one has

lhp(g) < Nw(TjE) .

Proof. Let us consider the two (2 + 2)-dimensional vectors

A g z A 7 D
= (bj—2l_—1’ ey bj‘), V= (0, .. .,0, (ij)]’_l, (ij)j) . (29)

Since Tji) and b differ only (up to a reindexation) by the coordinates present in u and v, one
has

2042 2042

1o (T) = 1B = 3 0P (w) = 3 P (w) -
=1 =1

The proof of Lemma 12 then reduces to show g(u) < g(v) for g : R2+2 — R u — g(u) =

21222 ©F(u;). Since pf is a convex function, g is Schur-convex (see [16], [9], and [12,
Proposition 3.C.1, p. 64], where a general presentation of the subject may be found). In
other words, g(u) < g(v) for any u,v € R***2 such that u is majorized by v, that is fulfilling
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the two following conditions:

2142 2142

Z Uy = Z U, (30)
=1 =1

< =1,...,21+2.
WL, 2 wS  mae D w, VI=D.o2l+2. QD)
Lc{1,...,2l+2} leL LC{1,...,21+2} leL

It then suffices to prove that v majorizes u, for u,v given by (29).
Since

+o0
by = (Tib)y = > by,

j'=—oc0 j'=—o0 j=—o0

one has 21222 u = 21222 vy, that is (30). Since v has only two nonzero coordinates, (31)
is fulfilled for L > 2. The case L = 1 is equivalent to

by—1 < max{(Tjb);_1, (T;b)5} -
l=0r,r.1..a:§l_+1 J l_max{( ] )J 1 ( J )J}

From the previous computations and as b, b~ > 0, it is sufficient to prove
maX{Bj_2i_1 - b_, 55—27+1a ey Bj_l} S b]_ ) (32)
maX{I;j_ﬂ, Ly B]',Q, IN)j — b+} S b;— 5 (33)
that is

max_ meas Uj_;NU; <measU; ,
1=1,...21+1
1 odd

max _meas U;_; N U; < meas U;' .
. i
1=o0,...21
| even

Since the intervals U; are the maximal intervals on which X is monotonous, the previous
inequalities mean that the maximum length of a subinterval of U; on which X increases (resp.
decreases) is less than the length of the (unique) subinterval of U; on which X' increases
(resp. decreases), that is by (resp. bf) if j is even, b (resp. by ) if j is odd. Tt is easy to
see from Figure 3 that this holds. This is indeed a consequence of the stationnarity of the
equation X = ¢ + F(X) (¢ = £1).

For instance, let us suppose that j is even, and consider an interval (¢,t") C U; =
(t,t + b;) where X increases. Then X satisfies X = 1 + F(X) on (¢,t"), and X(#') > 0.
But X' satisfies the same equation on (¢,¢ +b;), and X'(¢) = 0. If t" —¢' > b;, then
X" > X'(t + b;) (by the stationnarity of X = 1+ F(X) and the fact that X' and
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X increase), and ¢/ > ¢ + b; . Using all the properties of X' and X, that is: X' verifies
X'=-1+F(X')on (t+b;,t+b;), X either increases or is a solution of the same equation
on (t",t +b;), X(t") > X'(t +b;) and X (¢ + b;) = X'(t + b;) = 0, one obtains that the
trajectory of X on [t",¢+b;] contains all the trajectory of X' on [t+b; ,t+b;] but at different
instants. This is impossible, since there is not enough time: ¢ +b; —¢" < (¢t +b;) — (¢ +b;).

From this, one deduces (32). Analogously, one may show (33). This achieves the proof
of Lemma 12. O

By applying the transformations Tj successively for j € {—m,...,m}, one obtains a

function X™ a (T_pp 0 -+ 0Tp)X (the composition is commutative), equal to X’ on the

closure cl (U;n:_m U;). Since the limit of the latter increasing sequence of intervals is equal
to I, X™ tends to X' (pointwise). Applying the following lemma to b = (T_ppo---0T,)b,
one obtains p,(b™) — p,(b') when m — +oo, and finally deduces, with the help of Lemma

12, that p1,(b) < py(b'). Therefore, b’ is an optimal predecessor, in the sense that

Ho (b)) = max He (b) ,

b predecessor of b

and (17) is proved for general I such that I and I — h do not contain accumulation points
of Z.

Lemma 13. Let b be a predecessor of b and X satisfy (18). If X = X' on the closure
AU _, Uj), then

j=-m

P m—1 P —-m +o0
o ®) o0 < T Peas (1 03] =S5 00 30,

Proof. The proof proceeds from the following inequalities:

o ®) — o) < |3 PGB - 3 o)

J€Tm J€T
where 7, 2 {j €Z :U; ¢d ( U Ul>} and similarly for 7,
I=—m
P ~
< SDT(h)max Z b, Z b
JE€Tm  I€Tm
e"(h) [ <= ~—
< S Yy,
j=m

j=—o0
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using the fact that o (s) < spP(h)/h for 0 < s < h (due to convexity of ¢ and ¢ (0) = 0)

and the definition of Jp,, J,,- O

We now consider the case where TN (AccZ + h) # 0. We get from Section 4.5 that

po(I = h) < liminf ug (5%)

where the b are predecessors of b. From what was proved in the present section, we hence
deduce py,(I —h) < p,(b").

Remark that one may also generalize Lemma 12 to this case. Indeed, the weaker order
relation induced by (31), called weak majorization, suffices to prove g(u) < g(v), since o
is increasing in RT and w,v; > 0; this result is proved in [19, 20] and may be found in [12,
3.C.1.b, p. 64]. The weak majorization is satisfied by the vectors u and v generated by some
finite subsets of measures of those cl (U;) and (T;U); which intersect cl (U;). Then, Lemma
12 is deduced by passing to the limit.

A Appendix - Proof of Lemma 10

In a first step, one uses Gagliardo-Nirenberg result [8, 13] under the following form: for any
f € LY(R) N LP(R) such that f' € LY(R), one has

B g g N\
775 070G 2 5oy ) 1" (34)

For sake of completness, one provides the proof of (34). Let us first prove that , lim f(b)

exists — and hence is 0. For any s',s"” € R, one has (by Holder inequality):

q—

1" 1"

< [T 1) s < ( [ 1o ds) ( [ |f(s)|d8>

”

o=,

2qg -1
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which tends to 0 when max {s',s"} — —oco. From the following inequalities:

a(p—1)

11 =‘4udes=l/uwnuwW4ds

= [uen ([ anyeas) T a

a(p—1) a(p—1)
(2q

1) Pt /If(3)| (/_8 F'(s") sgnf(s) |F(sH)] "7 ds') S
(7)™ Lo (L a)* (furo d)_>—

2q¢—1
(by Holder inequality)

a(p—1)

2 — 1 271 p—1)
- ( - ) NFICEE

one gets (34) when p < +o0o. Inequality (34) holds for p = +00 too, by passing to the limit.
Now, let us define f € W1°(R) by:

f(S) = (bj_|_1 - bj)S + (J + ].)bj —jbj+1 for s € [],j + ].) .

One proves easily that || f||1 < ||b||l1, | f'|lq = |bj+1 — bjl|q- Moreover,

1 b1 |bjg1|P — bj|b; [P
j - J+1IY5+1 3195
I = g o e
1 +b;
~ 20p+1) > (|bj+1|p+ [b;[” + L(|bg+1|p |bj|p))
P JEL bj+1 —
1 1
> P Py = 1P .
2 2t D) jé(lbﬁll +1017) = =7 kil

This achieves the proof of Lemma 10 in the case p < +o00, with

249

o (9 \' (1 =
pa 2g—1 p+1

q q
i Coa = (%TT)’

Lemma 10 also holds for p = 400, with C 4 equal to this limit.

Since
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