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Abstract: We give a first-order presentation of higher-order logic based on explicit substitutions.
This presentation is intentionally equivalent to the usual presentation of higher-order logic based on
A-calculus, i.e. a proposition can be proved without the extensionality axioms in one theory if and
only if it can in the other. We show that we can apply the Eztended Narrowing and Resolution first-
order proof-search method to this theory. We get this way a step by step simulation of higher-order
resolution. Hence expressing higher-order logic as a first-order theory and applying a first-order
proof search method is at least as efficient as a direct implementation. Furthermore, the well
studied improvements of proof search for first-order logic could be reused at no cost for higher-order
automated deduction. Moreover as we stay in a first-order setting, extensions, such as equational
higher-order resolution, are easier to handle.
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HOL-)Ao : une expression intentionelle et au premier ordre de la
logique d’ordre supérieur

Résumé : Nous proposons une présentation au premier ordre de la logique d’ordre supérieur,
utilisant le calcul des substitutions explicites. Cette présentation est intentionnellement équivalente
a la présentation traditionnelle de la logique d’ordre supérieur utilisant le A-calcul : une proposition
peut étre démontrée sans les axiomes d’extensionnalité dans un systéme si et seulement si elle peut
I’étre dans I'autre. On montre qu’on peut appliquer & cette théorie la méthode de recherche de
démonstrations pour la logique du premier ordre appelée Surréduction et Résolution étendues. On
obtient ainsi une simulation pas & pas de la résolution d’ordre supérieur. Ainsi, exprimer la logique
d’ordre supérieur comme une théorie du premier ordre et appliquer une méthode de recherche de
démonstration au premier ordre est au moins aussi efficace qu’une implantation dédiée. De plus
rester dans le formalisme de la logique du premier ordre permet de bénéficier des optimisations
connues dans ce cadre. Enfin, cela permet d’étendre simplement la méthode, par exemple & la
résolution équationnelle d’ordre supérieur.

Mots-clé : logique d’ordre supérieur, démonstration automatique, déduction modulo, réécriture,
skolémisation
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Introduction

Higher-order logic is a formalism that allows a natural expression of program specifications and of
mathematics. It is used in many theorem provers such as HOL, Isabelle, PVS, A\-Prolog, etc. In
this paper, we are concerned with automated theorem proving in this logic.

Higher-order logic can be expressed in many different ways using combinators, A-calculus, etc.
Some of these formulations express higher-order logic as a first-order theory, some other do not.
Expressing higher-order logic as a first-order theory permits to use standard first-order proof-search
methods. Another advantage is that extensions are easier to handle in this simple framework.

There are several ways to encode higher-order logic as a first-order theory and several proof
search methods for each encoding, which are more or less efficient with respect to the standard
higher-order resolution. For instance the encoding of higher-order logic using combinators is not in-
tentionally equivalent to the standard presentation using A-calculus, because some proofs require the
extensionality axioms in this presentation, but not in the standard one. This leads to inefficiencies.

In this paper we give a first-order presentation of higher-order logic called HOL-A¢ using the so
called, calculus of explicit substitutions [ACCL91]|. We show that this presentation is intentionally
equivalent to the usual presentation of higher-order logic based on A-calculus, i.e. the theories
are still equivalent when we drop the extensionality axioms in both cases. We show that proof-
search in this theory can be mechanized with the Eztended narrowing and resolution (ENAR)
method introduced in [DHK98|. The proof search method for higher-order logic obtained this way
is as efficient as higher-order resolution and in fact simulates it step by step. It keeps however
the simplicity of first-order frameworks and can easily be extended, for instance with equational
axioms. A rather surprising side effect of this presentation of higher-order logic is that it provides
a clarification of the intricate skolemization rule of higher-order logic [Mil83, Mil87].

The ENAR proof search method relies upon a presentation of first-order logic called deduction
modulo that allows to build-in a congruence identifying terms and also propositions. This leads to
shorter and more direct proofs by making congruent propositions equivalent instead of requiring
explicit proof arguments. Hence, we shall express HOL-Ao in deduction modulo.

In order to remain self contained, we recall the principal ideas of deduction modulo in section 1.
Then, we recall the usual presentation of higher-order logic in section 2 and its first-order presenta-
tion based on Curry combinators in section 3. Section 4 introduces HOL-Ao and etablishes its main
properties (termination, confluence, consistency and cut elimination). Section 5 is dedicated to the
equivalence theorem between HOL-\ and HOL-Ao (which rests upon cut elimination). In section 6
we show that the rather intricate Skolem theorem for higher-order logic can be deduced from the
first-order one. At last section 7 presents the ENAR proof search method (whose completeness rests
upon cut elimination) and its application to HOL-Ao.

1 Deduction modulo

In this paper we shall use a presentation of first-order logic, called deduction modulo [DHK98| that
permits to identify propositions modulo a congruence.

In deduction modulo, the notions of language, term and proposition are that of (many sorted)
first-order logic. We consider theories to be formed with a set of axioms I' and a congruence,
denoted =, defined on propositions. As a consequence, the deduction rules must take into account
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this equivalence. For instance, the modus ponens cannot be stated as usual

A=B A
B

but, as the two occurrences of A need not be identical, but need only to be congruent, it is stated
as
A'=B A

B if A=A’

In fact, as the congruence may identify implications with other propositions, a slightly more general
formulation is needed

c A
B

ifC=A=1B

All the rules of natural deduction or sequent calculus may be stated in a similar way. Figure 1 gives
a formulation of natural deduction modulo.

As an example, the proposition 3z (2 x x = 4) is rather cumbersome to prove in natural
deduction with the axioms of arithmetic. Indeed to prove the proposition 2 X 2 = 4 we have to say
that 2x2=1x24+2,1x2+2=0x2+2+2,... and thus to use the axioms of arithmetic and
equality many and many times.

In contrast, in natural deduction modulo, wehave the following proof

e —— axiom
m (.T,.’L' = .’L',4) V—elim
m (.’E, 2 X = 4, 2) J-intro

Substituting the variable x by the term 2 in the proposition 2 x x = 4 yields the proposition

2 x 2 = 4, that is congruent to 4 = 4. The transformation of one proposition into the other, that

requires several proof steps in natural deduction, is dropped from the proof in deduction modulo.

It is a mere computation that need not be written, because everybody can re-do it by him /herself.
In this case, the congruence can be defined by a rewriting system defined on terms

0+y —uy

S()+y— S(z+y)
Oxy—0
S(z)xy—zxy+y
Notice that, in the proof above, we do not need the axioms of addition and multiplication.
Indeed, these axioms are now redundant: since the terms 0 + y and y are congruent, the axiom
Vy 0 + y = y is congruent to the equality axiom Vy y = y. Hence, it can be dropped. In other
words, these axioms have been built-in [Plo72, And71, PS81].
The main originality of deduction modulo is that we have introduced the possibility to define

the congruence directly on propositions with rules rewriting atomic propositions to arbitrary ones.
For instance, in the theory of integral rings, we can take the rule

zXxy=0—2=0Vy=0
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that rewrites an atomic proposition to a disjunction.

In this paper, all congruences will be defined by confluent rewrite systems. As these rewrite
systems are defined on propositions and propositions contain binders, these rewrite systems are in
fact Combinatory reduction systems [KvOvR93|.

Notice at last, that deduction modulo is not an extension of first-order logic. Indeed, it is proved
in [DHK98] that for every congruence =, we can find a theory 7 such that I’ - P is provable modulo
= if and only if 7T F P is provable in ordinary first-order logic. Of course, the provable propositions
are the same, but the proofs are very different.

2 HOL-A

We first recall the usual presentation of higher-order logic [Chu40, And86].
Definition 2.1 Simple types are inductively defined by

e . and o are simple types,

o if T and U are simple types then T — U is a simple type.

We consider a set of typed variables and a set of typed constants, in such a way that there is an
infinite set of variables of each type. Among the constants are =, A and V, of type 0 — 0 — 0, =
of type 0 — o0, L of type o, Vp and Iy of type (T — 0) — o (we use a notation with a dot for the
constants to distinguish them from the connectors and quantifiers of first-order logic).

Definition 2.2 Terms of type T' are inductively defined by
e variables and constants of type T' are terms of type T,
e ifa is a term of type T — U and b is a term of type T then (a b) is a term of type U,
e if a is a term of type U and x is a variable of type T then Az a is a term of type T — U.
Propositions are terms of type o.
Definition 2.3 (Substitution)
o {b/z}z =0,
{b/z}y = v,
{b/xz}c =c, if c is a constant,
{b/x}(c d) = ({b/z}c {b/x}d),

{b/z}( Ay ¢) = Az ({b/z}{z/y}c) where z is a fresh variable, i.e. a variable not occurring in
Ay c or b,

Definition 2.4 The Bn-reduction is defined by the following rewrite rules
(Az t) u) = {u/z}t

Az (t ©) — t provided x is not free in t



Gilles Dowek, Thérése Hardin, and Claude Kirchner

maxiom lfAEF,EAI

Fffl: CB =-intro if C = (A = B)
w =_elim if C = (4 = B)
”ﬁ# A-intro if C = (A A B)
% A-elim if C = (A A B)
% A-elim if C = (A A B)
% V-intro if C = (AV B)
11: :: g V-intro if C = (AV B)
'-D Fﬁ::g I‘B'_CV—elimifDE (Av B)
Fffl'_i'_; —-intro if C' = -4
w —elim if C = —A
% lelimif B=1
% (x, A) V-intro if  not free in T', B = (Vx A)
?t—g (, A, ) Veelim if B = (Yz A), C = {t/z}A
% (z, A, ¢) Jintro if B= (Iz A), C = {t/z}A
ERC TATE (5 4) Selim if 2 not free in TB, €' = (Ir 4)

TFB excluded middle if B= AV -4

Figure 1: Natural deduction modulo
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Proposition 2.1 The @n-reduction is confluent and terminating. The unique normal form of a
term a is written a |.

The deduction rules are given in figure 2 where all propositions are supposed to be normal. An
alternative presentation does not normalize the propositions after the quantifier rules but takes 3
and 7 as axioms.

This system is well-known to be consistent and to enjoy cut elimination [Gir70, Gir72].

3 HOL-C

Higher-order logic can be expressed as a many-sorted first-order theory whose sorts are all simple
types. In such a presentation, when t is a term of type T' — U and u a term of type T" we cannot
write the application of the term ¢ to the term u as (¢ u), but we need to introduce a function
symbol ar and write this term a7,y (¢, u). The rank of the function symbol ary is (T — U, T)U.
Of course, in examples, we shall continue to write (¢ u) for the term ar (¢, u).

To express function terms and predicate terms, instead of using A-calculus, we introduce for each
applicative term ¢ whose variables are among z1,. .. , z, an individual symbol written z1,... ,z, —>
t and an axiom

(1, yZp—t) 1 ... zy) =1t

Such individual symbols are called combinators.

At last, we need to introduce a distinction between the terms of type o and the propositions.
Hence, we introduce a predicate symbol € of rank (0) and if ¢ is a term of type o we write £(t) for
the corresponding proposition. We introduce axioms that relate the connectors and quantifiers (e.g.
A) and their replication as individual symbols (e.g. A):

e(Azy) & (e(z) Ne(y))
Thus, the language contains:

e for each applicative term ¢ of type U whose variables are among x1, ... ,z, of type 11, ... , T},
an individual symbol z1,... ,z, —> t of type T} — ... > T, = U,

e individual symbols =, A and V of sort 0 = 0 — 0, = of type 0 — o, 1 of type o, for each type
T individual symbols of type Vr and 37 of type (T — 0) — o,

e for each pair of types (T',U), a binary function symbol o of rank (T' — U,T) U,
e a unary predicate symbol ¢ of rank (o).

The axioms are
e(((z1, ... ,op—>t

~—
8
—
8
S
~
I
~
N

e(=zy) & (e
e(Azy) & (e(z) Ne(y
e(V z y) & (e
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maxiom
TA+FB
IT'F= AB

'-=AB THFHA
I'tB

'tA T'+B .
71”_/-\143 A-intro

=-intro

=-elim

TFAAB .
TF A /\—ehm

TFAAB .
TFRB /\—ehm
THA .

P|_\'/ABV—1ntI‘O
T-B ..

7F|_\-/ABV—1ntro

'-~VAB TA+-C TBFC . _
PI_C V—ehm
TAF L
'k-A
'--4 THA . .
- “-elim
'L

Tk .
TFA 1-elim

=-intro

PFAo) e, b
TFVvA V-intro if z not free in T’
rrva oo
TF (A t) \LV—ehm
T+ EI A -intro

T34 T(Az)|FB. | ‘
TFB J-elim if z not free in I'B

TFAV-A excluded middle

Figure 2: HOL-A: The deduction rules of HOL-A
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e(L)ye L
e(V z) & Yy e(z y)
(@ z) & Ty e(z y)

These axioms can be dropped if we work modulo the congruence defined by the rewrite system
R:
(1y.e yZp—t) T ... Tp) —> 1
e(=zy) — e(z) = e(y)
e(Azy) —e(x)Ae

Ne(y)
e(Vzy)— elx)Ve(y)

e(+ x) — —e(x)

e(L) — L
e(V z) — Vy e(z y)
E(EI z) — Jy e(z y)

Translation from A-terms to combinators is usualy called A-lifting. A term of the form Az ¢ is
translated as follows. We first translate ¢ yielding a term t'. We let y1,...,y, be the variables
of ' minus z, then we replace in ¢’ all the occurrences of a combinator ¢; by a fresh variable z;
yielding a term t”. The term Az ¢ is then translated as the term ((yi,...,Yn,21,--.,2p, & —
t") y1 ... yn 1 ... ¢p). Applications, variables and constants are translated in an obvious way.
This translation can be modified in order to use only two combinators S = z,y, 2z — ((z 2) (y 2))
and K =z,y — z.

This presentation of higher-order logic can be shown to be equivalent to the presentation with
A-calculus if we take the extensionality axioms

Vfvg (Vo (fz) = (92)) = [ = g)
Vz Vy (e(z&y) = = = y)!

in both cases, i.e. a proposition P is provable in the presentation of higher-order logic with A-calculus
if and only if the proposition £(P’) is provable in the first-order theory above.
But, if we drop the extensionality axioms, then the two presentations are not equivalent anymore.

For instance, the proposition
((Az Ay z) (uv)) = Ay (uv)

is provable in presentation with A-calculus while its translation

((fszr— (f 2)) (z,y — z) (uv)) = (v, 0,y — (uv)) uv)

requires extensionality. Even when the extensionality axioms are taken, the formulations with A-
calculus and combinators are only weakly equivalent: provable propositions are the same, but the
proofs are very different, some proofs requiring only conversion when expressed with A-calculus and
the use of extensionality when expressed with combinators.

"Here, equality is Leibniz’ equality, i.e. Az Ay VAp (p )= y))
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4 HOL-Mo

In order to stay in a first-order setting but to avoid the previously mentioned drawbacks of com-
binators, we present in this section another first-order formulation of higher-order logic that is not
based on combinators, but on de Bruijn indices and explicit substitutions.

4.1 The theory

In A-calculus with de Bruijn indices, bound variables are replaced by an index indicating the binding
height of this variable, i.e. the number of A\’s between this occurrence and its binder. For instance
the term Az (z (\y z)) is written A (1 (A 2)). This notation is also a first-order language with
a binary function symbol «, a unary function symbol A and individual symbols 1,2,3.... Simple
sorts are not sufficient anymore with de Bruijn indices. Indeed, we need to give a sort not only to
terms like (A4 1) (that gets the sort A — A), but also to terms of the form 1. Thus, as detailed in
[DHK95], we have to consider sorts of the form I' - T" where T' is a simple type and I' a context,
i.e. a list of simple types.

With de Bruijn indices conversion axioms use an external definition for substitution. Moreover
this substitution is not well-defined on open terms of this first-order language. This is solved by
considering an extension of this calculus: the calculus of explicit substitutions [ACCL91] called
Ao-calculus. This calculus introduced more sorts of the form I' = A for substitutions that are lists
of terms and symbols to build such substitutions id, ., 1T and o. Then a new term constructor is
introduced _[_] that permits to apply an explicit substitution to a term. The rewrite rules describing
the evaluation of the Ao-calculus are given in figure 3.

HOL-Ao is a many-sorted first-order theory with sorts of the form I' - T and I = A where T’
and A are sequences of simple types and T' is a simple type.

Definition 4.1 (Language) The language contains the following function symbols:

14 constant of sort ATFA
ai_)B,A binary function of rank (' - A— B,I'FAI'+ B
)‘E,B unary function of rank (AT'+B)I'FA— B

[ ]i’rl binary function of rank (" A THT)T'HA

id" constant of sort rer

T constant of sort ATHT

.E’F’ binary function of rank (U'F A,THT)I'F AT
ol binary function of rank (T +T", T +T)\T TV
= constant of sort Fo—so0o—o0

A constant of sort Fo—o0o—o0

v constant of sort Fo—o0o—o0

= constant of sort Fo—o

L constant of sort Fo

Va constant of sort F(A—o0)—o

EN constant of sort F(A—o0) —o

and a single unary predicate symbol:
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[B-reduction and n-reduction:
(Aa)b — a[b.id]

Aa 1) — bif a =, b[1]

o-reduction:

(a b)[s] — (als] b[s])
1la.s] — a
afid] — a

(Aa)[s] — Aalt.(s o 1))
(a[s)[t] — a[s o]
tdos — s
1o (a.s) — s
(s1089) 083 —> 810 (890 83)

(a.s) ot —> at].(s o t)
soid — s
1. t—id

1[s].(Tos) — s

Figure 3: The rewrite rules of Ao-calculus
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e(=zy e(z) = e(y)
e(z) Ne(y)
e(Vazy) —e(@) Vely)

g(- ) — —e(x)

) —
e(Azy) — A
\%
e(l) — L
e(Vy ) — Yy e(z y)
e(3r z) — y e(z y)

Figure 4: The L-rewrite rules

e of rank (F o)

We denote AL the rewrite rules of Ao-calculus together with the logical rules £ given in figure 4
and we write A = B when A and B are congruent modulo AcL.
4.2 Termination and confluence

Proposition 4.1 (Termination) The system Ao L is weakly terminating.

Proof. Since the £ and Ao rewrite systems share the application operator a, we cannot try to
apply the existing termination modularity results.

We define a translation of the terms and the propositions of HOL-Ac into the typed system Ao.
In each sort I' - T, we chose a variable zprp.

e ||z|| = zr, where z is a variable,

every symbol is mapped to itself but:
=2 =IAll = IV = (A1) 2o—0-s0),
=I5l = (A1),

= ||l = ((A1) 21),

= Vol = 1132[] = A z-r[1]),

o lle@Il = I12l],

o [[P=Ql=[PAQI=I[PVQI= (2o |IPIl [IQI),
e |[=P[l = [IPI],

o ||L]] = 2o,

IV P|| = |[3z P|| = || P|].
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In Ao L, we say that ¢ Ri-reduces to u if u is obtained by reducing a (-redex, a n-redex or a
logical redex and o-normalizing the term obtained. In Ao, we say that ¢ Rs-reduces to u if u is
obtained by reducing a S-redex or a n-redex and o-normalizing the term obtained. We check that
if P Ry-rewrites in one step to @, then ||P|| Re-rewrites in at least one step to ||Q||. Let Pi, Ps,...
be a Rj-reduction sequence in the system above, the sequence ||Pi]|,||P2],... is a Ry-reduction
sequence in Ao, thus it is finite [GL97, Mun97|. O

Proposition 4.2 (Confluence) This system is confluent on terms containing only term variables.

Proof. Since the £ and Ao rewrite systems share the application operator «, we cannot apply
Toyama’s modularity result.

The system L is linear and orthogonal, hence it is strongly confluent (i.e. if ¢ —)}C u and t —>’lc v
then there exists a term w such that u —% w and v —% w). Since Ao is confluent [ACCL91], the
rewrite system Ao* is strongly confluent. At last £ and Ao* strongly commute (i.e. if ¢ —)% u and
t =3, v then there exists a term w such that u —}  w and v — L w). Indeed if t —} u and ¢ e
then the L-redex in t is either disjoint from or higher than the Ao* redex. In both cases we can
reduce the Ao-redex in u and the £ redex in v getting the same term. Hence, by Hindley-Rosen
lemma [Hin64]|, the relation =z U(— o+ ), i.e. AoL is confluent. O

4.3 Consistency
Proposition 4.3 (Consistency) The theory HOL-)\o is consistent.

Proof. We construct a model as follows:

b ML = {0}7
L4 Mo = {07 1}7
L4 MT—)U = M/[}ATu

WMm
e D, . 1v = MyMmn ;

M ...MTI
® Dy, Tokth,..,u, = Moy X ..o x My, )M 7n
. . WMy i My, 0

If f is a function of (My, X ... x Mg, ) M7= and g a function of (My;, x ... x My, )"V

Mr,
we write g o f for the function of (My, x ... X MVq)MTn'“ !

where (t1,...,tp) = f(z1) ... (zn)
Then we interpret the symbols of the language as follows.

mapping i,... ,Zn to g(t1) ... (tp)

. ﬁ is the function mapping a1, ... ,a, to ai.

. O‘E—)B,A is the function mapping a and b to the function mapping c¢y,... ,c, to
a(ciy ... ycn)(ber, ... ,ep))-

° )\5, g 1s the identity function.
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[

A is the function mapping a and b to bo a.

id" is the identity function.

4 is the function mapping ai,... ,a, to (az,... ,an,).
.B’F’ is the function mapping a, b to the function mapping cy, ... , ¢, to (a(c1,--- ,cn), b(c, - - -

o’ I",I" is the function mapping a and b to bo a.

= is the function mapping a and b to 1 if @ = 0 or b = 1 and to 0 otherwise.

is the function mapping @ and b to 1 if a = 1 and b =1 and to 0 otherwise.

is the function mapping @ and bto 1 if a =1 or b =1 and to 0 otherwise.

A

v

= is the function mapping a to 1 if @ = 0 and to 0 otherwise.
i=o0

E is the function mapping a to 1 if @ maps every object of M 4 to 1 and to 0 otherwise.

3,4 is the function mapping a to 1 if a maps some object of M 4 to 1 and to 0 otherwise.

Z is the identity function.

We check that if A = B then A and B have the same denotation. Then we check that every provable
proposition has for denotation the truth value 1 and hence that | is not derivable. O

4.4 Cut elimination

Proposition 4.4 (Proof normalization) Proofs modulo Ao L normalize.

above.
We recall that proofs-terms are inductively defined as follows.

Proof. Following the method developed in [DW98] we construct a pre-model of the rewrite system

And on these proof terms reduction rules are

(A 71 mo) D> [mo/a]my

fst(my,m) > m
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snd(my,mg) D> Ty
(6 i(m1), amy, Brs) D> [m1 /]
(6 j(m1), amg, Brs) > [m1/ Bms
Az m t) > [t/z]7

(exelim (t,m1) azmo) > [t/z,m/a]my

(6 ™1 amy Bm3) D> m
((5 T Q7Y ,67!'3) > 73
(exelim m zam) > mo

We recall that a proof term is said to be neutral if it is a proof variable or an elimination (i.e.
of the form (m #'), fst(w), snd(w), (6 m1 ame Brs), (botelim ), (7 t), (exelim 7 zax'), but not an
introduction) and that a set R of proofs is a reducibility candidate if

e if m € R, then 7 is strongly normalizable,

e if r€ Rand w > 7' then ' € R,

e if 7 is neutral and if for every 7’ such that 7 >' 7/, 7/ € R then 7 € R.

We write C for the set of all reducibility candidates. A pre-model for a language L is given by:

e for each sort T" a set M,

e for each function symbol f (of rank (T1,...,Ty,U)) a function f of MéATl X"'XMT",

e for each predicate symbol P (of rank (T1,...,T})) a function P of CMT1X->XMn,

Let t be a term and ¢ an assignment mapping all the free variables of ¢ of sort T" to elements of
M. We define the object |t|, by induction over the structure of ¢.

L ‘-77|<p = (p(.’l?),
o ‘f(tla"' atn)|<p :7(“1‘@’“' ’|tn|<ﬂ)-

Let A be a proposition and ¢ an assignment mapping all the free variables of A of sort T to
elements of Mr. We define the set |A|, of proofs by induction over the structure of A.

e A proof 7 is an element of |P(t1,... ,t,)|, if it is an element of P(|t1]y,- .. , [ta]s)-

e A proof 7 is element of |A = B], if it is strongly normalizable and when 7 reduces to a proof
of the form Aam; then for every 7' in |A|,, [#'/a]m; is an element of |B|,.

A proof 7 is an element of |A A B|, if it is strongly normalizable and when 7 reduces to a
proof of the form (71, 72) then 7 and 79 are elements of |A|, and |B|,.

A proof 7 is an element of |A V Bj, if it is strongly normalizable and when 7 reduces to a
proof of the form i(m1) (resp. j(m2)) then 7 (resp. my) is an element of |A|, (resp. |B|,).
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e A proof 7 is an element of | L|, if it is strongly normalizable.

e A proof 7 is an element of |Vz A|, if it is strongly normalizable and when 7 reduces to a proof
of the form Az 71 then for every term ¢ of sort T (where T is the sort of ) and every element
E of Mr [t/x]m is an element of |Al, (4 g)-

e A proof 7 is an element of |3z A|, if it is strongly normalizable and when 7 reduces to a proof
of the form (t,71) then for every element E of My (where T is the sort of ¢) then 7 is an
element of |A[, 1 (; g)-

A pre-model is a pre-model of = if when A = B then for every assignment ¢, |A|, = |B|,.

It is proved in [DW98] that the cut elimination property holds for intuitionistic natural deduction
and sequent calculus modulo a congruence if we can build a pre-model of this congruence.

We let

® ML = {0}7
e M, =0C, i.e. the set of all reducibility candidates.

M
L MT—)U = MU T,

M ...MTl
o Dpy,.. T,ru = My~ ;

My
o M 1
® Dy, Tokth,..,u, = Moy X ..o x My, )M 7n

Then we interpret the symbols of the language as follows.

° 15 is the function mapping ai,... ,an to a;.

. aE]—)B,A is the function mapping a and b to the function mapping c1, ... ,c, to a(er, ... ,cn)(b(ct, - -

e N}, p is the identity function.

[]1;4,1“' is the function mapping @ and b to bo a.

e id is the identity function.

. E is the function mapping aq, ... ,a, to (as,... ,a,)
. .E’F’ is the function mapping a, b to the function mapping c1, ... , ¢, to (a(c1,--. ,¢n),b(c1, ... ,cn)).

e ol'T".I" is the function mapping a and b to bo a.

e = is the function mapping a and b to the set of proofs 7 such that 7 is strongly normalizable
and when 7 reduces to a proof of the form Aam; then for every ' in a, {7'/a}m; is an element
of b.

e A is the function mapping a and b to the set of proofs m such that 7 is strongly normalizable
and when 7 reduces to a proof of the form (71, 79) then m; is an element of @ and 79 is an
element of b.
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V is the function mapping a and b to the set of proofs 7 such that 7 is strongly normalizable
and when 7 reduces to a proof of the form i(m) then 7 is an element of @ and when 7 reduces
to a proof of the form j(my) then 7y is an element of b.

e S is the function mapping a to the set of proofs 7 such that = is strongly normalizable and
when 7 reduces to a proof of the form Aam; then for every «' in a, {n'/a}m is strongly
normalizable.

e 1 if the set of strongly normalizable proofs.

e V is the function mapping a to the set of proofs 7 such that « is strongly normalizable and
when 7 reduces to a proof of the form Az 7 then for every term ¢ of sort T' (where T is the
sort of z) and every element E of Mt {t/z}m is an element of (a E),

e 3, is the function mapping a to the set of proofs 7w such that « is strongly normalizable and
when 7 reduces to a proof of the form (¢, 71) then for every element E of My (where T is the
sort of x) {t/x}m is an element of (a E).

e £ is the identity function.

And we check that the rewrite rules are valid in this pre-model, hence the rewrite system has a
pre-model and proof modulo this rewrite system normalize. O

Following the techniques introduced in [DW98| we can prove also that the classical sequent
calculus has the cut elimination property.

5 Embedding HOL-) into HOL-\o

We now want to prove that HOL- Ao is intentionally equivalent to the usual presentation of higher-
order logic HOL- .

Following [DHK95]|, we define a translation from A-calculus to Ao-calculus called pre-cooking.
This translation replaces the bound variables by the appropriate indices and adds an appropriate
[t"] operator to free variables and constants according to the context in which they occur.

To each variable z of type T', we associate the sort - T" in Ao-calculus.

Definition 5.1 Let a be a A\-term. The pre-cooking of a is the Ao-term defined by ap = F(a,][ ])
where F'(a,l) is defined using the list of variable | ([ ] being the empty list) by:

e F((Az.a),l) = A(F(a,z.l)),

e F((ab),l) = F(a,l)F(b,1),

o F(x,l) = 1[t*71], if x is the k-th variable of |

e F(x,l) = z[1"] where n is the length of | if x is a variable not occurring in l or a constant.

Theorem 5.1 Ifpi,...,pn,q are propositions in HOL-X then p1,... ,p, - q is provable in HOL-)\
if and only if e(p1F),... ,e(pnr) b e(qr) is provable in HOL-\o.

The proof of this result relies on the propositions that we are now introducing and proving.
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Proposition 5.1 Ift has the type T then tr has the sort - T.
Proof. By induction on the structure of ¢t. O

Proposition 5.2
e ({a/z}b)F = {z — ar}br,
e a =g, b in A-calculus if and only if ap =), bp in Ao-calculus.

Proof. See [DHK95]. O

The purpose of the following definition and proposition is to characterize the image of the pre-
cooking mapping.

Definition 5.2 A F-term is a Ao-term containing only variables which sort has an empty context.
A F-proposition is a proposition of the form e(P) where P is a F-term.

Proposition 5.3 If t is a A\oL-normal F-term well-typed in the empty context then there is a
A-term u such that t = up.

Proof. We prove by induction on the structure of ¢ that if ¢ is a Ao L-normal F-term well-typed
in a context I', then there is a term w and a sequence [ of variables of the same length than I' such
that t = F'(u,l).

The only interesting case is when ¢ = z[s]. This term is well-typed in a context I' of length n
thus s has type I' - and it is normal, thus s =t". O

Proposition 5.4 If T is a set of F-propositions and P a F-proposition, and the proposition P has
a proof under the assumptions T, then it also has a proof where all propositions are F-propositions
and all the witnesses F-terms.

Proof. By induction on the size of a cut free proof of T+ P.
e If the last rule is an axiom then the result is obvious.

o If the last rule is an introduction rule, we apply the induction hypothesis to the subproofs.
The only non trivial case is the introduction of the existential quantifier. The proof has the

form
™
THR .
m (.’L', P, t) J-intro
Where e(q) = 3z P and R = {t/z}P. Hence ¢ = (3 p), P=¢e(p z) and R=¢(p t). Call o
the substitution mapping each variable z of ¢ of sort Ay,... , A, F B to the term z'[1"] where

7' is a fresh variable of sort - B. By induction on the structure of 7, the proof o is a proof
of T+ oR,ie Tt e(p ot). We apply the induction hypothesis to the proof ow. Hence, there
is a proof 7' of T' - ¢(p ot) where all propositions are F-propositions and all the witnesses
F-terms.

We build the proof

!
T

T+ e(p ot)

W (.’E, S(p .’E), O't) J-intro
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e If the proof ends with an elimination rule, then it is a non empty sequence of eliminations,
followed by an axiom on a proposition £(p) of T. We reason by cases on the first elimination
rule after this axiom. We apply the induction hypothesis to the subproofs.

For instance, if this rule is an elimination of an implication, the proof has the form

o _pP
TFelp) ™™ THQ

TFR

™

Tk e(s)

where e(p) = Q = R. Hence, p= (= q 1), Q@ =¢c(q), and R = ().

Form the proof @ we can build a proof m; of Te(r) I €(s) by adding the proposition &(r) to
all the contexts and adding an axiom rule on the top. We apply the induction hypothesis
to the proofs p and 7. Hence we have proof p' and 7} of T'F e(q) and Te(r) I (s) where
all the propositions are F-propositions and all the witnesses F-terms. From the proof 7} we
build a proof 7’ of T F &(s) under the hypothesis T' F e(r) where all the propositions are
F-propositions and all the witnesses F-terms. We build the proof

/

: p
T+ e(p) ™ T+ e(g)
Tk e(r)
7TI
T e(s)

If this rule in an elimination of the universal quantifier then the proof has the form

W ax10m

) )
Tro (z, R,t) V-elim

T I—ﬂs(s)

Qs

where e(p) = Vz R and Q = {t/z}R. Hence p = (Y r), R = ¢(r z), and Q = e(r t). Call
o the substitution mapping each variable z of ¢ of sort Ai,...,A, F B to the term z'[1"]
where z' is a fresh variable of sort - B. By induction on the structure of m, the proof o is
a proof of T I ¢(s) under the hypothesis T' F oQ. From this proof, we can build a proof m;
of Te(r ot) F (s) by adding the proposition e(r ot) to all the contexts and adding an axiom
rule on the top. We apply the induction hypothesis to this proof. Hence there is a proof 7} of
Te(r ot) - e(s) where all the propositions are F-propositions and all the witnesses F-terms.
From this proof we can build a proof 7’ of T+ €(s) under the hypothesis T &(r ot) where
all propositions are F-propositions and all the witnesses F'-terms. We build the proof

E(p)axiom .
TF ey o) €0 ) 0t) Veelim

!
™

Tk e(s)



20 Gilles Dowek, Thérése Hardin, and Claude Kirchner

The other cases are similar.

O

Now we can give the proof of our main result.

Proof. The direct sense is an easy induction on the structure of the proof in HOL-A. An an
example, we give the case of the last rule is an elimination of the universal quantifier. The proof

has the form
T

TrFp

Trg (r,t) V-elim

where p = (V r) and ¢ = (r t). Then e(pr) = (¥ ) = Vz e(rr z). By induction hypothesis, there
is a proof 7’ of the proposition e(pr). We build the proof

!
™

Tr - e(pr)

T+ elqr) (z,e(rr z),tr) V-elim

Conversely, by the proposition 5.4, we can build a proof of e(p1r),... ,e(pnr) F €(gr) where all
the propositions are F-propositions and all the witnesses F-terms. By induction on the structure
of this proof we can build a proof of p1,... ,p, F ¢ in HOL-A. As an example, we give the case of
the rule V-elim. The proof has the form

.
Tr - e(pr)

T F elgr) (z,e(rr),tr) V-elim

where ¢(pr) = Vz e(rp) and qp = {z — tp}rp Hence pp = (V sp) and rp = (sp z) and qp =

(sp tr) = (s t)p. By induction hypothesis, there exists a proof 7’ in HOL-A of T+ P. We build
the proof /
v

Tkp

TFq

(s,t) V-elim

a

6 Skolemization in HOL-)\o

Skolemization in higher-order logic is known to be more complicated than in first-order logic. Indeed,
the naive skolemization rule in higher-order logic permits to transform some unprovable formulations
of the axiom of choice into provable propositions. Thus the naive skolemization rule has to be
restricted in such a way that skolemizing a proposition of the form

Vai...Ve,y P(xy,... ,Zn,Y)

introduces a skolem symbol f™ that can only be used to be applied to n terms and moreover the
variables free in these terms cannot be bound higher in the term. For instance the term Ay (f! = y)
is correct, while the terms f!, (F f!) and Az (f! z y) are not (Miller’s conditions) [Mil83, Mil87].
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A motivation for expressing higher-order logic as a first-order theory is to reuse the usual first-
order skolemization rule. When we apply the first-order skolemization rule to the first-order presen-
tation of higher-order logic with combinators we get conditions on Skolem symbols that are related
to Miller’s conditions, but are different because the translation of A-calculus is not straightforward.
We show below that in HOL-Ao the conditions we get are exactly Miller’s conditions.

6.1 Miller’s theorem

The naive treatment of skolemization in higher-order logic, that skolemizes
Vz Iy (P z y)

as
Vo (P xz (f z))

is where f is a constant of type 7' — U (where T is the type of z and U that of y) is unsound.
Indeed the axiom of choice
Ve 3y (P zy) = g Vz (P z (g z))

is not provable in type theory [And72]. Thus from the proposition
Ve Jy (P z y)

we cannot deduce

dg Vz (P x (g z))

While naively skolemizing it yields
Vz (P (f z))

from which we can obviously deduce
dg Vz (P z (g z))
Miller [Mil83, Mil87] has proposed an alternative skolemization rule by adding two conditions:

e (necessary arguments) the symbol f can be used only applied to its arguments (e.g. (f z) is
a term, but f alone is not).

e (no bound variables in necessary arguments) the variables free in the necessary arguments
cannot be bound by a A higher in the term) (e.g. Az (f y) is a term, but Az (f z) is not).

Notice however that, if we consider as it is usual in higher-order logic that Vx P is a notation
for the term V (Az P) where V is a constant, then the skolemized proposition Vz (P z (f! ))
itself does not verify the conditions. Hence, we must either introduce quantifiers as new binders
or give a more restricted form to Skolem theorem. If we use skolemization to put a proposition
to be refuted in clausal form, then the universal quantifier also will be suppressed yielding the
proposition (P X (f! X)) where X is a free variable and we can state Skolem theorem as the
correctness of this transformation with respect to resolution (i.e. the clausal form of a proposition
can be refuted by resolution if and only if the proposition itself is provable in natural deduction). In
[Mil83, Mil87] Miller formulates his theorem as the correctness of this transformation with respect
to the connection method.
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6.2 Combinators

Skolem theorem applies to the first-order presentation of higher-order logic with combinators as it
applies to any first-order theory. A proposition of the form

Vz Jy (P z y)

is skolemized as

vz (P z f(z))

but then f is not a constant of type T'— U but a function symbol of rank (T")U. Hence f alone is
not a term (as + is not a term in first-order arithmetics) but f(z) is. We get this way Miller’s first
condition. As with combinators there is no bound variables, the second condition vanishes in this
presentation.

6.3 HOL-)o

Skolem theorem also applies to HOL-Ao as it applies to any first-order theory. A proposition of the
form
Vz Iy (P z y)

is skolemized as

Vz (P z f(z))

Again f is a unary function symbol and hence we get back Miller’s first condition, but its rank is
now (I' - T)A U which expresses Miller’s second condition.
For instance the proposition
Vz Jy e(P z y)

is skolemized as

Vz e(P z f(x))

where f has rank (- 7T') - U and this way the term A(f(1)) is not well-typed. Indeed, the argument
of f must be well-typed in the empty context and 1 is not.

7 Automated theorem proving in HOL-)\o

We are now able to wrap-up together the above ingredients to get a first-order presentation of
higher-order resolution. To this end, as with any first-order theory modulo, we can use the method
developed in [DHK98| to search proofs in HOL-Ao. This method is complete because HOL-Ao
enjoys the cut elimination property.

Working modulo a congruence introduces two new features with respect to first-order resolution.
First, unification is replaced by equational unification, and second, when the rewrite system contains
rules rewriting atomic propositions to non-atomic ones, the rule Extended Narrowing presented
in figure 5 instantiates appropriately the variables.

In [DHK98|, we have applied this method to a first-order expression of higher-order logic using
combinators and we have shown that the Extended Narrowing rule specializes exactly to the
Splitting rule of higher-order resolution. Unfortunately equational unification modulo the conver-
sion axioms of combinators is not higher-order unification.
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{A1,... , Ay, By,... ,Bp}[E1]l {=C1,...,~Cp,D1,... Dy} [Es]
{Bi,... ,Bm,D1,... , D} [By UB, U{A; =L Ay... =L A, =L C1 ... =L Cp}]

Resolution

CLE]
cl(Clrlp) [EU{C), ={ 1}]

Narrowing ifl >re€Rand C, ¢ X

Figure 5: Extended narrowing and resolution (ENAR)

If we apply this method to HOL-A\o, the Extended Narrowing rule still specializes to the
Splitting rule of higher-order resolution [Hue72, Hue73|, but the unification required is the unifi-
cation modulo the system Ao that we have shown to be equivalent to higher-order unification in
[DHK95]. Thus, the method obtained this way simulates higher-order resolution step by step.

Conclusion

In this paper we have given a first-order presentation of higher-order logic. This presentation is
intentionally equivalent to the presentation of higher-order logic based on A-calculus. Applying the
Extended Narrowing and Resolution method to this theory gives exactly higher-order resolution.
Hence we show this way that expressing higher-order logic as a first-order theory and applying a
first-order proof search method does not necessarily lead to inefficiencies, provided we take the good
first-order expression of higher-order logic and the good proof search method.

Expressing higher-order resolution in a first-order framework permits to clarify its features :
higher-order unification, the splitting rule and higher-order resolution. Higher-order resolution is
equational unification in an appropriate theory. The splitting rule is an instance of the extended
narrowing rule introduced in [DHK98|, it is needed because the rewrite system of higher-order logic
transforms atomic propositions into non atomic ones. The higher-order skolemization rule is an
instance of the first-order one. Its scoping particularities are consequences of the sort system of
higher-order logic.

As we stay in a first-order setting, we can also reuse optimizations of first-order theorem proving
such as redundancy criterias, subsumption, ...

As we stay in a first-order setting, extending the method to equational higher-order resolution
requires only to add more reduction rules to the rewrite system AcL, then narrowing provides
an equational higher-order unification algorithm [KR97] and the proof search method is complete
provided deduction modulo the extended theory verifies the cut elimination property.
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