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Abstract: We introduce in this paper a new type of feature points of 3D
surfaces, based on geometric invariants. We call this new type of feature
points the extremal points of the 3D surfaces, and we show that the relative
positions of those 3D points are invariant according to 3D rigid transforms
(rotation and translation). We show also how to extract those points from
3D images, such as Magnetic Resonance images (MRI) or Cat-Scan images,
and also how to use them to perform precise 3D registration. Previously, we
described a method, called the Marching Lines algorithm, which allow us to
extract the extremal lines, which are geometric invariant 3D curves, as the
intersection of two implicit surfaces : the extremal points are the intersection
of the extremal lines with a third implicit surface. We show an application of
the extremal points extraction to the fully automatic registration of two 3D
images of the same patient, taken in two different positions, which exhibits
the remarkable accuracy and robustness of the extracted extremal points.
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De nouveaux points caractéristiques basés
sur ’utilisation d’invariants géométriques
pour le recalage d’images 3D

Résumé :

Nous décrivons ici un nouveau type de points caractéristiques, définis
a l'aide d’invariants géométriques, et que l'on peut extraire d’images tri-
dimensionnelles telles que celles fournies par la Résonance Magnétique (IRM),
ou le scanner a rayons X. Nous appelons ces nouveaux points les Points Ex-
trémauzr des images 3D, et nous montrons que la position relative de ces
points 3D est invariante par transformation géométrique rigide (rotations et
translations). Nous montrons comment extraire ces points, et comment les
utiliser pour le recalage précis d’images 3D. Précédemment, nous avions dé-
crit un algorithme, le “Marching Lines”, nous permettant d’extraire les lignes
de crétes, qui sont des lignes invariantes par transformation rigide, en tant
qu’intersection de deux surfaces implicites. Les Points Extrémaux sont les
intersections de ces lignes de crétes avec une troisieme surface implicite que
nous décrivons ici. Enfin, nous montrons une application de I’extraction des
Points Extrémaux au recalage de deux images 3D du méme patient, prises
dans deux positions différentes, et qui montre la tres grande précision et
robustesse de notre méthode.

Mots-clé : image 3D, géométrie différentielle, invariant géométrique, iso-
surface, ligne de créte, Marching Lines.
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1 Introduction

Our work takes its origin in the search of stable features to perform the
automatic registration of three-dimensional images. We were looking for a
method which would have been as much as possible independent from the
subject scanned. For example, for the case of 3D medical images, methods
based on anatomical invariants were prohibited, because we would have desi-
gned then a registration software which would have worked for, say, the head
examination, but not for the liver.

We found the solution of our problem in the use of the geometric invariants
of 3D surfaces. We get very good results for the automatic registration of
high quality 3D images of the same subject, taken in two different positions
and with the same acquisition device. However there is still more work to
do to perform reliably the registration with 3D images coming from two
different devices (inter-modality registration), such as for example between a
Magnetic Resonance Image (MRI), and a Single Photon Emission Computed
Tomography (SPECT) Image. This is true also for the registration of two
different patients (inter-patient registration).

We present here a fully automatic method of registration based on a new
set of invariant feature points, that we call the extremal points of 3D images,
and we present experiments for the mono-modality, mono-patient registration
case.

For the majority of previously proposed methods, the first step is to
extract the surface of the scanned object, and then to use this surface for the
matching. The goal is to reduce the total amount of information to process
to a 2D variety of point : the surface. These kind of approaches can be found
in [14], [2], [1], [10], [7].

On the contrary of those approaches, based on surface matching, we have
concentrated our work on the extraction of characteristic lines and feature
points. In previous works (see [15], [16]), we have shown how to extract auto-
matically the crest lines from 3D images, and how to use them to perform the
automatic registration (see [6]). The crest lines are a more compact represen-
tation of the information of a 3D image than the surface, because they form
a 1D variety of points. This lessens many of the ambiguities of the surface
matching, ensuring a more stable solution, and also, by reducing the amount
of information to process, it allows the study of more evolved registration
algorithms (for example, Geometric Hashing, see [6]). Since then, we have



2 J-P Thirion

used this method to perform the automatic registration of a wide panel of
3D images (MRI or Cat-Scan).

The present paper is another step in our quest of stable features, and we go
now from the crest lines (a 1D variety of points), to the extremal points (a 0D
variety). The extremal points are a scattered set of stable points throughout
the 3D image.

In the next sections, we first define the extremal points, and explain why
they are geometric invariant points. We show then how to extract those points
from 3D images with a modified version of the Marching Lines algorithm.
Once that the extremal points are extracted, from two different images of
the same subject, we present briefly a registration method which is simple,
fast and reliable, to match the two sets of points. This registration method
makes also use of the geometric invariants associated to the extremal points.
We show then experimental results with the registration of two real images,
which exhibits the high precision of both the extracted feature points and
the registration method.

2 Definitions

Let us first recall briefly some results of differential geometry about surface
curvatures (a good introduction to those notions can be found in Do Carmo
[3] or in Koenderink [9]).

2.1 Basic notions

At any point P of a 3D surface, an infinite set of curvatures can be defined.
More precisely, associated with any direction ¢ in the tangent plane of the
surface, one can define a directional curvature k; This curvature is in fact
the curvature of the 3D curve defined by the intersection of the plane (P, i, )
where 77 is normal to the surface, with the surface.

Except for the points where this curvature k; is the same for all the
directions ¢, which are called umbilic points, the total set of curvatures can be
described with only two privileged directions, ¢; and 3, and two associated
curvature values, ky = k; and ko = kg, which are called respectively the
principal directions and associated principal curvatures of the surface at point
P, as shown in figure 1. Those two principal curvatures are the extrema of all
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Figure 1: Differential geometry of surfaces

the surface curvatures defined at point P, and (except for umbilic points) one
of those two is maximal in absolute value : we call it the largest curvature,
in order not to be mistaken with the maximal curvature (let say that it is
k1). We simply call second (principal) curvature the other principal curvature

(k2).

2.2 Extremal lines

The crest lines are intuitively the loci of the surface where the “curvature”
is locally maximal. More precisely, we define them as the loci of the surface
where the largest curvature, k1, is locally maximal (in absolute value), in the
associated principal direction ¢;. O. Monga et al. (see [12]) have shown that
these points can be defined as the zero-crossing of an extremality function e,
which is the directional derivative of k; in the direction ¢, and have proposed
a way to characterize them, directly from the voxel values of the 3D image.

We have proposed another method to compute them in [16], for the case of
iso-intensity surfaces. Our method is based on the use of the implicit functions
theorem. Basically, we have shown that the crest lines can be extracted as the
intersection of two implicit surfaces f = I and e = 0, where f represents the
intensity value of the image, I an iso-intensity threshold, and e = Vk, -1, is
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Crest surface el(x,y,z2)=0

Iso-surfaces f(x,y,z)= 1

1=200 Successive crest line positions

1=150

1=100

Figure 2: Crest lines as intersection of two implicit surfaces

the extremality function (see figure 2). We have proposed also an algorithm,
called the Marching Lines, to automatically extract those crest lines. This
algorithm can be used also to overcome some orientation problems (mainly
due to the fact that the principal directions are directions, and not oriented
vectors), by locally orienting the principal directions, along the extracted
lines.

In fact, for each point of the surface, two different extremality coefficients
can be defined, corresponding to the two principal curvatures :

81:?]{51'{;[ (1)
€y = ngl?

[\

Furthermore, we are able, with orientation considerations, to distinguish
between the zero-crossings of e; and e; corresponding to the maxima of the
absolute value of the curvature from those corresponding to the minima, by
considering the signs of the derivatives of the extremality Ve, - t;, or more
simply, the signs of the extremality for each sides of the zero-crossing. We
found experimentally that the maxima (in absolute values) are more stable
landmarks than the minima : crests or rifts (maxima) are stable, whereas
the loci in a valley where the ground floor is the flattest (minima) are very
sensitive to a small perturbation of the data (see figure 9).
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We call extremal lines all the lines defined as the zero-crossings of either e;
or ey. There is therefore 4 major different types of extremal lines, depending
of whether the corresponding curvature is the largest or the second one, and
whether it is a local maximum or minimum. Furthermore, the signs of the
largest and second curvatures help to distinguish between 4 more sub-types
of extremal lines, leading to a classification into 16 types. The crest lines are
two of them : positive largest curvature maxima (k; > 0 and 661 < 0)
and negative largest curvature minima (k; < 0 and 661 > 0).

2.3 Extremal points

We define now the extremal points as the intersection of three implicit sur-
faces: f =1, e =0 and e; = 0, as shown in figure 3.

As we can see with the figure 3, the loci of the extremal points when
the iso-value I is changed continuously, are 3D curves (the intersection of
the two extremal surfaces e; = 0 and ey = 0), which are intrinsic to the 3D
image, just as the extremal surfaces are. We call extremal points lines those
3D curves, whose intersection with a given iso-surface gives the extremal
points. The notions of extremal lines and extremal points are closely related
to the notion of corner points, in 2D images, as defined in [8], [13], [5]. A
remarkable study of the evolution in 2D of those corner points with respect
to the scale can be found in [4], chapter 5. We have started similar studies
about the influence of the scale on the extremal lines and points in the case
of 3D images.

e; and ey are geometric invariants of the implicit surface f = I, that is,
are preserved with rigid transforms (rotations and translations of the object).
Therefore, the relative positions of the extremal points are also invariants to
a rigid transform, i.e. for two different acquisitions of the same subject.

The intuitive interpretation of extremal points is however not straightfor-
ward. The extremal lines are 3D curves, for which we are able to compute the
curvature (curvature of the 3D lines), but the extremal points are generally
not the points of the extremal lines whose curvature is locally maximal. Even
if they are not extremal curvature points, the extremal points are very well
defined, and there is no reason for their locations along the extremal lines to
be less precise that the lines positions themselves, because the precision of
the computation of k; and ko is the same (although the fact that %k is the
largest curvature gives some privileges to this one).
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Extremal pointsline

Extremal surface el(x,y,z)=0

Iso-surfaces f(x,y,z)=1

1=200 Successive extremal line positions

1=150

1=100
Second extremal surface €2(x,y,z)=0

Extremal point for =200

Figure 3: Definition of the extremal points

2.4 Different types of extremal points

The extremal points are the intersections of couples of extremal lines. As
there are 16 types of extremal lines, there are also 16 different types of
extremal points, depending on the type of extremality (local minimum or
maximum) of the extremalities e; and e;, and depending on the signs of k4
and ko (there is unfortunately not 16 X 16 extremal point types, because one
of the two extremal lines corresponds to the largest curvature, and the other
one to the second, and the two lines have the same k; and k, at the extremal
point, hence the reduction to only 16 different types).

We use this classification to reduce seriously the complexity of the mat-
ching algorithm.
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3 The automatic extraction of the extremal
points

In practical cases, e; and e; can be computed for each points of the 3D
images with the equations described in the appendix (see also [16]), directly
from the differentials of the intensity function of the image f. For range data
images (2.5 D images) the computation of e; and ey is much simpler because
of the natural parametrization of the surface and also because the formulae
of the first and second fundamental forms of differential geometry, who give
the principal directions and curvatures, are generally given for a parametric
representation of the surface.

The major point in [16] was to show how to compute those fundamental
forms from the implicit representation of the surface. We have shown how to
compute those values from the differentials of the image function f, up to or-
der 2 for the fundamental forms, and 3 for the extremality coefficients e; and
ey (0f )0z, 0%f 020y, 8% f 0220z, etc ..., a total of 20 different differentials,
the formulae are recalled in the appendix).

We compute those differentials with linear filtering, using the convolution
of the discrete image with the differentials of the Gaussian function e=""/27",
with 72 = 2% + y? 4+ 22. The normalization of those filters is however not
straightforward, we use the responses to simple polynomials, as proposed by
O. Monga et al. We choose the Gaussian function because it is isotropic, a
pre-requisite if we are looking for geometric invariants. Different values of o
can be chosen, depending on the level of noise in the 3D images. Changing o
is somewhat equivalent to changing the scale at which we look for extremal
lines and points.

The hypothesis that the iso-surfaces are a good representation of the sur-
face of organs for the case of medical image is reasonable : sometimes, the iso-
surface can be extracted directly from the 3D image, such as the skin surface
in Magnetic Resonance Image (MRI), or the bones in X-ray scanner images.
For other soft tissues, such as for the brain surface, a pre-segmentation step
is required to isolate the brain from the rest of the data. This can be done
with a combination of mathematical morphological operators, filtering, and
the search of connected parts. In all cases, the final step of the segmentation
is performed with iso-surface techniques.
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3.1 Extensive computation of the extremal points

One solution to get the set of extremal points of the 3D image is to compute
ey and e, for all the voxels of the 3D image, and then to consider individually
each cubic cell, formed with 8 voxels (8-cell), as shown in figure 4. There are
therefore 3 values defined for each vertices of the cube : f, e; and e;. The
extremal points in that 8-cell are defined as the intersection of the three
implicit surfaces f = I, e; = 0 and e; = 0. The method varies according to
the type of interpolation or convolution function used to extend continuously
the three values at the vertices of the cubic cell to the entire cell. The tri-
linear interpolation is a good first order approximation.

We have shown in [16] how to extract an approximation based on segments
of the crest lines coming through each cell, with some warranties about the
topology and the orientation of those reconstructed 3D curves (only f and
e; were requested). We extend here this method to the computation of the
extremal points.

The different steps are summarized in figure 4, for a simple case where
the iso-surface of f in the 8-cell can be approximated with only one triangle.
The vertices of the triangle are the positions along the edges of the cubic
8-cell (composed with 8 voxel values), for which the linear interpolation of f
is I (black dots represent the points where f > I and white dots, the points
where f < I). In that case, we get 3 points : {Q1, @2, @3}, and our algorithm
produces one oriented triangle representing the intersection of the iso-surface
with the 8-cell.

In the second cube, we show how the extremal line is extracted : we
compute the values of e; for {Q1, @2, @3}, by linear interpolation of e; along
the edges of the cubic 8-cell. Black dots represent points where e; > 0 and
white dots points where e; < 0. We compute then the points along the edges
of the triangle for which the linearly interpolated value of e; along the edge
is 0, which gives in that case two points {P;, P»} which forms an oriented
segment. This segment [Py, P| is an approximation of the intersection of the
extremal line with the 8-cell.

In [17], we have shown how to perform this operation for any configura-
tions of the values of f and ey, and in a way that ensures that all the orien-
ted segments produced by this algorithm form 3D oriented curves which are
continuous and closed (except for the voxels where f or e; are not defined).
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Figure 4: Extraction of the extremal points
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The last cube shows how to extract the extremal points from the oriented
segments produced by the Marching Lines algorithm. As P, and FP; lie on the
faces of the 8-cell, we can compute the value of ey for those two points with
a bi-linear interpolation of e; in those faces. The labels associated to those
points are 4+ or “black” if e; > 0 and — or “white” if e5 < 0. If the labels
are the same, then we say that there is no extremal point in that segment
[P1, P>]. Otherwise, as it is shown in our particular case, we compute (an
approximation of) the extremal point P, being the point along the oriented
segment [Py, P] for which the linear interpolation of e (based on ex(P;) and
es(Ps)) is 0.

We give a label L to that extremal point P, which is the label of P, the
end point of the oriented segment. In our case L = + : this label is used to
distinguish between minimum and maximum points.

We can do the same for each of the cells where the values e; and ey can
be computed (i.e when the gradient is not 0 and the point is not an umbi-
lic point), which generates the total set of extremal points. This constitutes
the extensive version of the computation of the extremal points. However, the
computation of those values is expensive, and we describe now a “randomize-
d” implementation of this method, based on the randomized implementation
of the Marching Lines.

3.2 Randomized implementation of extremal points
extraction

We start with “seeds”, that is, cubic cells of the 3D grid, randomly chosen
in the 3D image. A very simple test discards the cells which are not crossed
by an iso-surface (the sign of f — I is the same for all the vertices).

Then we compute the values of e; for the 8 vertices of the cell. Once
again, a simple test discards the cells which are not crossed by a k; extremal
line (the signs of e; is the same for the 8 vertices). If there is an extremal
line, we extract it from end to end, using the Marching Lines algorithm (we
follow the extremal line “marching” from one cubic cell to the next).

For each cell which is visited, we compute the 8 values of the other ex-
tremality es (in fact only the 4 which are missing, because we come from an
adjacent cell), and a test on the sign of e, for the 8 vertices determines if
there can be at least one extremal point in the cell. At last, if this is possible,
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we compute the extremal point on the segment of the extremal line that we
are currently following, if it exists (i.e. the label associated to the end points
of the segment are opposite), with linear interpolation.

The randomized implementation of the Marching Lines allows to extract
the main extremal lines (i.e. the longest ones, which appeared experimen-
tally to be the most reliable ones) of the 3D image, with only very few seeds
(with respect to the total number of voxels), randomly distributed in the 3D
images. The probability of missing an extremal line that way is approxima-
tely proportional to the inverse of its length. This method reduces drastically
the number of computations to perform, compared with the extensive imple-
mentation. Even if the set of generated extremal points is not complete, it
generally suffices to perform reliably the 3D registration.

We have implemented both methods (extensive and randomized), and we
present in figure 12 the extremal lines extracted with the randomized version
of the Marching Lines, from two 3D images of the same skull. Those segments
are colored with the sign of second extremality e;. The points where the color
of the extremal lines is changed are the extremal points.

4 Geometric invariants associated with the
extremal points

There are several geometric invariant values which can be associated with the
points of the crest lines, and which can be used efficiently to perform the 3D
registration, as it has been already shown in [6], for the case of the extremal
lines registration. The geometric invariants are the values associated to the
object which are invariant with respect to rigid transforms.

Mainly, for a point P, we can use the geometric invariants of the iso-
surface and the geometric invariants of the extremal lines at point P, plus
geometric invariants corresponding to the relative position of the extremal
lines with respect to the underlying surface.

For the surface (see figure 5), we can compute the trihedron (7,%y, ;)
of the principal directions at point P, and we have also the two principal
curvatures k; and ky;. We can transform those two values into two other
equivalent values, K = kiky and H = (k; + k2)/2; the Gaussian and mean
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Figure 5: Invariants associated to crest line points

curvature of the surface, whose expressions are simpler than those of k; and
kg.

For the extremal line, we can compute the Frénet trihedron (g, £, Z;), where
tis the tangent, § is the normal, and b the bi-normal to the 3D curve. Those
values can be computed with the approximation of the extremal line with a
3D spline, as in [6], or with the tensor product of the convolution of the 3D
coordinates of the points with a filtering function (for example a Gaussian
function), along the 3D curve. We can also compute the curvature ¢ and
torsion 7 of the 3D curve at point P that way.

At last, we can compute two angles § and ¢ between the two trihedrons
(72,1,12) and (3,1, l_;), which are also geometric invariants. There are only two
angles, because £ is (should be) in the plane (f1,%2). We have cos(d) = 7 - g,
and cos(¢) = t-t5. Other equivalent values can be computed from those ones,
which are the normal and geodesic curvatures, and also the geodesic torsion
of the 3D extremal line with respect to the surface (see for example [3]).

To summarize, for each extremal point P, we are able to compute K,
H, c1, 11, 01, ¢1, c2, T2, 02, ¢ which are geometric invariants characterizing
this particular extremal point. We know that those invariants are not all
independent (for example, ¢ can be computed from H, K, 6, ¢).
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The stability of those values may differ, for example : the curvature c is
more reliable than the torsion 7, because it takes into account lower order
derivatives. We do not know yet how to classify the geometric invariants from
the more stable one to the less stable one.

5 Registration of two sets of extremal points

We describe now only briefly the registration method that we use to perform
the automatic registration (included here for completeness). In fact, the most
difficult part is to extract stable and invariant 3D points, the extremal points,
with stable and invariant attributes, the geometric invariants. Due to the high
precision of the computation of those features, the registration part is simple,
fast and reliable, and can be achieved in many different ways than the one
exposed here.

The method that we use is a prediction-verification scheme, with an ite-
rative improvement of the final transform based on a least square fit, relying
on the quaternion representation of the rigid transform, a method close to
the one proposed by Besl in [1].

5.1 Objective measurements

The results of our experiments, however, are objective measurements which
are relatively independent from the registration method, as we explain now :

In the following, we consider that we have n 3D points for the two models
M; and M, to match, with m attributes attached to each point. The goal is
to find the 3D rigid transform 7" that “makes the maximum number of points
of the two models correspond the most”.

Hence there are two simultaneous maximization to perform : the number
of points matched, and the quality of the match.

First, we have to define when two points are said to be matched. We call
M the result of the application of the transform 7" to M; (M, is therefore
very close to M5). Two points P; and P, of the models M; and M, are said
to match when the distance between the transformed point P; = T'P; and
P; is less than a maximum distance d. The quality of the transform 7' is
the distribution n'(d) of the number of points which are matched, up to a
maximum distance d. We can say that the matching is successful, when the
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number of points matched is greater than a given percentage p of the original
number of points, that is, when n'(d) > p - n. The advantage of defining the
quality of the transform with only a subset of the points is to allow the finding
of transforms, even when the two 3D images overlap only partially.

Hence, our criterion of success depends on two arbitrary values : p, the
percentage of point matched, and d, the maximum distance of matching.
From now, we will suppose that those two values are given by the user, or
have been set for a given class of images. We have verified experimentally that
for our types of images (MRI and Cat-scan) the result is not too sensitive to
those two values, because, when a valid transform is found, the number n'(d)
of points matched is large, even when the distance d is small (this is due to
the high quality of the extracted features, i.e. the extremal points).

As we can see, we could have also an evaluation criterion of the transform
based on the attributes associated to the points (curvatures, torsions, ...)
: two points match when both their position after geometric transform and
their geometric invariant attributes are similar. We think that the invariant
attributes are less discriminant than the positions of the extremal points, we
do not use them in the matching quality criterion. As we will see, we use
them only to reduce the complexity of the registration method.

5.2 Description of the registration method

e The first step (prediction) is to look for triplets of points from the two
models M; and M, which can be put into correspondence, up to the
distance d (we use the attribute values to reduce the complexity of this

part).

e The second step (verification) is to consider the associated 3D transform
for each couple of triplets which can correspond, and to verify if the
associated transform is valid.

e The last step is to improve the transform with a least square fit, in
order to match more points .

The theoretical number of possible triplets is n3, and we should have the-

6

refore n® verifications to perform, for an exhaustive search : we need therefore

a way to reduce the number of possible solutions.
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5.3 Complexity reduction

We detail now the properties that we use to reduce the complexity, without
going into the details of the implementation. These properties comes from
the invariance of k; and k5, and from the relative invariance of t; and t5 (in
our implementation, we have not used the invariants of lines : Frénet trihe-
dron, line curvature and torsions). In order to use efficiently those invariants,
we have established statistics between the two sets of extremal points after
matching (see figures 7).

For the example of the skull, the standard deviation of the position error
is 0.42 voxel, the orientation error is about 7 degrees, and the curvature error
is about 0.1 vozel~'. We detail now how we have used those invariants :

e As we saw, there are 16 different types of extremal points. A point
of one type can be put into correspondence with only a point of the
same type from the other model. Hence an important reduction of the
complexity ( n® to 16(n/16)° but still o(n®) ).

e k; and ky are geometric invariants. Two points having too unsimilar
principal curvatures are not matched (which can be quantified with
the standard deviation of the curvature of figure 7).

e Distance for pairs of points. There are extra invariants which can be
used to state if two pairs of points (P, P») and (Pj, P;) are compa-
tible. ||P1:P2|| is a new invariant and as the standard deviation of the
points position is known, a bound can be set for the difference between

|| Py, Py|| and ||P{:P2'||-

e Orientations for pairs. In the same way, the projections of ¢; and 5
on the axis Pl-Pz gives 4 more invariants, which are t_i(Pl) . Pl-Pg and
tg(Pl) . Pﬁ:’g, and the same for Ps. t;(Pl) 't—i(Pg) and t;(Pl) 't;(Pg) are
two more invariants (but the six are not independent). The bounds are
set from the standard deviation of the orientations.

e Distances for triplets. To state if two triplets are compatible, we have
3 invariant distances, which can be ordered from the smallest to the
largest one if we want an invariant vector.
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e Orientations for triplets. 3 points define a base in 3D, ¢; and ¢; become
then true invariants, which gives 3 more invariants for each point (only
3 because (7, 11,t2) are orthonormal vectors).

To summarize, we can compute 2 invariants for points, 8 invariants for
pairs of points, and 18 invariants for triplets of points (bases).

With 18 invariants, with the measured standard deviations of the po-
sitions, directions and curvatures, and for a given triplet of points of Mj,
the average number of compatible triplets in M; is very close to 1 ! As all
those invariants can be computed and stored into hash tables, their retrieval
is performed in constant time, which reduces the number of predicted asso-
ciated bases to verify to less than 16(n/16)3. In fact, we compute first the
compatible points, then the compatibles pairs of points, and only then the
compatible triplets, which also reduces the number of predictions to verify.

At last, we use some heuristics in order to process the most interesting
bases first (for example by considering the pairs and triplets with the farthest
points first, and by processing points with higher curvature first). As we stop
the search as soon as a given proportion of the points are matched, only a
few predictions are verified before an acceptable solution is given (one or two
in practice).

5.4 The verification part

This part is easier to explain. The previous step generates a set of possible
transforms {7'}. We build then a 3D hashing table with the 3D spatial coor-
dinates of the points of model M;, and with a bucket size of d.

We can consider each of those transforms 7'. Let’s take one of them, and
call it T, from now, only 3 points are matched (the two triangles). We apply
T° to each point P; of My, which gives P}, and we check in the hash table (in
8 adjacent buckets) if there exists a point P, in M, whose distance to PJ is
less than d. This gives the number of points matched n'’(d), i.e. the quality
of this transform.

If n'°(d) > 3, we compute a new transform 7T, using a least square fit
and the quaternion representation of the transform, such as described in [1],
and we compute also the new quality of the matching n'!(d).

We iteratively repeat this operation, as long as the number of points
matched n' strictly increases, otherwise, we stop the process : we have then a
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final transform 7', and a final quality n'(d). In practice, this iterative process
stops at once when 7' is a “bad” transform, because of the very low density
of extremal points (less than 1/1000%").

If n'(d) is greater than n - p, we say that transform is valid, and we stop
the process, which reduces the computation time. Even if no transform has
the required quality n - p, we can keep track of the best transform found
T (according to n'), and give it as a result. This shows that the whole me-
thod depends mainly on one single arbitrary value, d, the maximum distance
between two matched points.

5.5 Statistical analyses

Developing an exact statistical analysis of our algorithm is very difficult,
because it is very dependent on the feature points quality (the measured
standard deviations, which are a-posteriori measurements), and because the
number of parameters is important (up to 18 invariants for 3D bases). But
it would be a shame not to use the associated invariants simply because we
have no exact theoretical results about them.

We prefer therefore the global a-posteriori analysis of the registration
algorithm performances, which is to measure the total number of generated
hypotheses Nj, the number of hypotheses N, which lead to good matches,
and the hypothesis which gave the first good match (see figure 8).

5.6 Conclusion about the registration method

Our method applies because we have been able to extract a set of extremely
reliable 3D points, with associated geometric invariant attributes, from the
two images. For any other kind of landmarks, surfaces or 3D curves, the so-
lution is much more ambiguous because the distance between the two models
is hard to define and compute (surface to surface or 3D curve to 3D curve
distances). In our case, we really have a point to point correspondence bet-
ween the two models, because the extremal points are very sparse : in the
skull experiments, there are about 3000 extremal points, extracted from a
5 million voxels image, which means an approximate “density” of 1/1500%"
extremal points per voxel. About 1/6" of the points are matched, thus there
is no ambiguity about the validity of the solution, when one is found. This is
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not the case for surface matching methods, which are subject to local minima
pitfalls.

The distribution of points matched according to a given distance, n(d),
is an objective way to measure the quality of the registration, and, because
the number of extremal points is small, the verification part is fast.

Furthermore, because we have also access to the geometric invariants
and are able to use them to reduce the set of possible transforms, we can
explore systematically all those transforms, with a complexity which is still
acceptable.

6 Experimental results in 3D

We have tried our registration method successfully with couples of MR images
and couples of XRay scanner images, of the same patient. So far, it has never
failed to find a good transform. The only parameters that we give now to
our registration software “EpiMatch”, which are image dependent, are the
iso-value thresholds, and the resolutions (the sizes of the voxel) of the two
images to register (we have arbitrarily fixed the maximum distance d to 0.6
voxel in all our experiments).

6.1 Quantitative results

The first example is the registration of two XRay scanner images of a skull, of
about 160 x 200 x 140 pixels each, with a spatial resolution of 1 X 1 X 1.5mm.
The extraction of the extremal points takes about the same time than
the extraction of the crest lines, that is, about 15’ for each 3D image, with
a Dec 5000 workstation (the bottleneck is a pre-filtering of the image, which
takes 10’ each). The registration part takes about 30 seconds CPU-time.

The second example is the registration of two MR images of the brain.
Figure 11 presents the two images after automatic registration. The resolution
is 1 x 1 x 3mm.

We display in figure 6 the statistics about the registration quality : Vozels
(total number of voxels), Modell and Model2 (number of extremal points in
each models) , Matched (number of registered points). Figure 7 is the stan-
dard deviations between the matched points, after registration : error for the
positions (in voxels), for the principal curvatures k; and k, (in vozel '), and
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Voxels Model 1 | Model 2 | Matched | perc.
skull (CAT-scan) || 5 million 2849 2928 551 19 %
brain (MRI) 3.5 million 1841 1625 233 14 %

Figure 6: Registration statistics

position | kq ks t_{ t;
skull (CAT-scan) 042 |0.16 [0.029.2|7.0
brain (MRI) 042 | 0.08 | 0.02 |65 | 6.2

Figure 7: Measured standard deviations between matched points

for the principal directions t; and 5, in degrees. This shows the remarkable
robustness of the measurements.

Figure 8 are statistics about the registration process : first (first accep-
table hypothesis), N}, (total number of generated hypotheses), N, (number
of good hypotheses), aver (average number of points matched for good hy-
potheses).

As we can see, the first good hypothesis is found at once (first or se-
cond hypothesis to be verified), and there is very few differences between the
different acceptable transforms found (aver is very close to Match).

The results are better with isotropic data (cubic voxels), with a higher
proportion of points matched (up to 50 %). We give in figure 9 the repartition
between the different types of extremal points, for the case of an isotropic
skull (903 voxels). M and m are for local maxima and minima (of the absolute

first | Np N, | aver | Matched
skull (CAT-scan) 2 | 4049 | 3506 | 535 551
brain (MRI) 1 1320 | 953 | 225 233

Figure 8: Registration process statistics
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Model 1 | Model 2 | Matched | perc. | stand
M1M2 322 307 178 55 % | 0.29
M1m2 433 419 188 43 % | 0.29
m1M2 128 121 45 35% | 0.25
mlm2 250 256 100 39 % | 0.30

Figure 9: Major types of extremal points

value). For example M1m?2 is for largest curvature maximum and second
curvature minimum. For each major type, we have summed up the statistics
of the four sub-types depending on the signs of the curvatures (the results
between sub-types are similar). As we can see, the more stable extremal
points are maxima of both principal curvatures (55% matched).

6.2 Qualitative results

Figure 12 presents the set of crest lines extracted from the 2 CAT-scan
images, where color changes indicate the position of the extremal points.
Figure 13 presents the superimposition of the two sets of registered crest
lines.

Let us see now to what extend this method is precise. Figure 14 presents
the two registered lines sets viewed from the bottom, we can perfectly see
the crest line of the foramen occipitale (the closed loop in the center), which
is the place where the skull articulates with the vertebral spine. Image 15 is
a zoom of the foramen occipitale, the perpendicular segments are one voxel
long (1mm), which helps to perceive the quality of both the extracted feature
points and of the registration method.

We have also pointed out a particular anatomic point, called the Opis-
thion, which has been distinguished as a very reliable anatomical landmark
by the physicians, and which is automatically extracted with our purely geo-
metric method.

Figure 11 presents the two automatically registered MR images of the
brain (right, registered image). We can see in this figure a horizontal black
line in the middle of the brain, which is an anatomical feature that exists
in both registered images. This line can never be seen complete in any slice
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of the second MR image before registration (figure 10, right), which shows
how a slight perturbation of the z axis orientation of the images can induce
very different aspects in the slices. This shows also the importance of the
precision of the registration, when we are to compare two images of the same
patient, taken at two different times, for example to evaluate the evolution
of a pathology.

7 Perspectives

The present MRI case is extracted from a 800 3D MR images study of the
brain, performed in the Brigham and Woman’s Hospital (Boston), to quantify
the evolution of the Multiple Sclerosis, and for which precise and automatic
registration is a crucial step (see [11]).

Another important thing is that the extremal points are invariants of 3D
surfaces, hence the scope of their applications is far larger than 3D image
processing. For example, they are defined also for 2.5D depth map, and can
be extracted more easely from them than from 3D images, because the sur-
face map z = f(z,y) is already parametrized, which makes the computation
of e; and ey easier : the classical formulae of differential geometry are ge-
nerally given for parametrized surfaces. We have experimented successfully
the registration of synthetic depth map images, but we do not possess yet
information about the stability of the extremal points for real data, in that
case.

8 Conclusion

We have presented a new class of geometric landmarks of 3D surfaces, the
extremal points. We have shown an algorithm to extract automatically those
extremal points from 3D images. We have also described a registration al-
gorithm, based on those points, which can be used to perform reliably the
registration of two 3D images, and to compute the stability of both the ex-
tremal points locations, and their associated geometric invariant attributes.
In the future, we hope to extend the use of extremal points to inter-patient
registration and determine the subset of those points which are also anato-
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mical points, that is, stable from patient to patient.
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Figure 10: Two 3D images (left and right) of the same patient before re-
gistration. There is one month between the two acquisitions (1x1x3mm,
256x256x54 slices). 3 slices are displayed.
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Figure 11: The two 3D images after automatic registration, with correspon-
ding points (white lines). Right is the second image, resampled in the geo-
metry of the first one (left). The horizontal black grove in the middle of the
brain, which is visible in both registered images can never be seen complete
in the other original image (previous figure, right) which shows the extreme
importance of precise 3D registration for diagnosis.
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Figure 12: The two sets of crest lines, extracted from two different 3D Xray
scanner images of the same skull (1x1x1.5mm) with the randomized version
of the Marching Lines
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Figure 13: The two sets of lines after automatic registration, exactly super-
imposed
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Figure 14: The two sets of lines after automatic registration, from the bottom,
the closed loop in the middle is the foramen occipitale, where the spine and
the skull articulate. The Opisthion point is emphasized.
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Figure 15: A zoom at the level of the Foramen Occipitale, to show the preci-
sion. The colors correspond to the sign of the second extremality. The black
segments materialize the extremal points positions. The length of those seg-
ments is one voxel (Imm).
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Appendix :

We recall here the equations, based on the use of the implicit functions
theorem, which give the differential characteristics of the iso-intensity surface
from the differentials of the image function f, up to order 2 (extracted from
[16]). These equations are symmetric in the z,y,z coordinates.

e K,S, Gaussian and mean curvatures

e ky,ko principal curvatures

e {1,t5 principal directions

K = hiQ[ ff(fyyfzz -
fyz(fzzfzz_
fzz(.fwmfyy_

5 = gnl

fa
Iy

fy2z)+ nyfz(fzzfzy - fzzfyz)+
fzzz)+ 2fmfz(fyzfzy - fyyfmz)+

fzzy)‘{‘ Q.ffnfy(f:nzfyz - fzzfmy)]

~(fyy + fzz)_ 2fyfzfyz+
(f'tz + fzz)_ 2fzfzfzz+

f,?(fmc + fyy)_ szfyfmy]

with :

h=fi+fj+f2

k; =S+ VA with A=5%-K.

ﬂ:d’:l:\/Zﬁ with Ez(fz_fyafm_fmfy_fw)

(4)

(5)
(6)

We give the z coordinate of &, the y and z coordinates are obtained with

circular permutation of z,y,z.
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