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Abstract: Monitoring or diagnosis of large scale distributed Discrete Event Systems with
asynchronous communication is a demanding task. Ensuring that the methods developed
for Discrete Event Systems properly scale up to such systems is a challenge. In this paper
we explain why the use of partial orders cannot be avoided in order to achieve this objective.
To support this claim, we try to push classical techniques (parallel composition of automata
and languages) to their limits and we eventually discover that partial order models pop up
at some point.

We focus on on-line techniques, where a key difficulty is the choice of proper data struc-
tures to represent the set of all runs of a distributed system, in a modular way. We discuss
the use of previously known structures such as execution trees and unfoldings. We propose
a novel and more compact data structure called “trellis”. Then, we show how all the above
data structures can be used in performing distributed monitoring and diagnosis.

The techniques reported here were used in an industrial context for fault management
and alarm correlation in telecommunications networks.
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Techniques d’ordres partiels pour les systéemes a
événements discrets répartis: pourquoi ne peut-on s’y
soustraire

Résumé : Ce document explique pourquoi ’on ne peut échapper au recours aux modeles
d’ordres partiels pour ’algorithmique des systemes a événements discrets répartis. Dans le
présent document nous nous en tenons a la surveillance et ne traitons pas du controle. Les
techniques présentées ont été utilisées dans un contexte industriel, pour la gestion répartie
d’alarmes dans les réseaux de télécommunications.

Mots-clés : systemes a événements discrets, systemes répartis, diagnostic, ordres partiels,
dépliages, gestion d’alarmes
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1 Introduction

Since the pioneering work by Ramadge and Wonham, the Discrete Event Systems (DES)
community has developed a rich body of frameworks, techniques, and algorithms for the su-
pervision of DES. While most authors have considered supervision of a monolithic automaton
or language, decentralized frameworks have been more recently considered [5], [7]-[11] and
[23, 24], [39]-]41], and [50].

While different architectures have been studied by these authors, the typical situation
is the following: The system considered is observed by a finite set of agents, indexed by
some finite index set I. Agent i can observe events labeled by some subalphabet L; C L
of the message alphabet. Local decisions performed by the local agents are then forwarded
to some central supervisor, which takes the final decision regarding observation; decisions
mechanisms available to the supervisor are simple policies to combine the decisions forwarded
by the local agents, e.g., conjunction, disjunction, etc [50, 27]. Of course, there is no reason
why such decentralized setting should be equivalent to the centralized one. Therefore, various
notions of decentralized observability, controllability, and diagnosability have been proposed
for each particular architecture, see e.g., [50]. Deciding upon such properties can then
become infeasible [49].

Whereas these are important results, they fail to address the issue of large systems, where
global model, global state, and sometimes even global time, should be avoided.

1.1 The problem considered

In this paper, we consider a distributed system 4 with subsystems A;,i € I and a set of
sensing systems O;, i € I attached to each subsystem. The goal is to perform the monitoring
of A under the following constraints:

e a supervisor D; is attached to each subsystem:;

e supervisor D; does not know the global system model A; it only knows a local view of
A, consisting of A; plus some interface information relating A; to its neighbors;

e supervisor D; accesses observations made by O;;

e the different supervisors act as peers; they can exchange messages with their neigh-
boring supervisors; they concur at performing system monitoring;

e 1o global clock is available, and the communication infrastructure is asynchronous.

The next issue is to define what we mean by monitoring. Usually, the DES and TA commu-
nities focus on the problem of diagnosis. Diagnosis consists in detecting and isolating certain
failures the considered system may be subject to. A failure may be specified as a subset
of states, or as the fact of having seen certain events in the history of the system. More
generally, a failure can be specified by using appropriate logic formulas that characterize
a given set of behaviours, see [26]. The important point in this context is that this set of
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6 Eric Fabre , Albert Benveniste

failures is typically given in advance. Accordingly, key issues are the algorithm for failure
detection and isolation (or diagnosis), as well as diagnosability.

While this is the most commonly addressed problem, it may not be the most relevant one
in practice. In appendix B, we describe our experience in terms of industrial collaboration.
This reveals that the primary problem was not that of tracking “failures” in the system. The
main problem was that of “sorting out” what happened in the system, by using recorded
logs, off-line or on-line. When large distributed systems are designed, they typically come up
with a distributed pre-defined sensing equipment, be it hardware or software. This sensing
equipment typically produces a huge number of low level events. Each event is caused by
a certain combination of things that happened here or there to the system. Thus events
are very frequently “correlated”, meaning that they carry redundant information. Sorting
out this mass of information is what the operator expects. Interpretation is then a derived
service that may either be left to the human, or be partly or fully automated.

Sorting out information from distributed logs can be performed in many ways. In this
tutorial we consider a model based approach and the problem we solve is the following, we
call it distributed monitoring in the sequel:

Distributed monitoring: given logs independently recorded by a distributed set
of sensors, what are the possible hidden state histories that are compatible with
these logs? (Call these histories the solutions of the monitoring problem in the
sequel.)

By “independently”, we mean here that the logs are recorded asynchronously, with no central
coordination. The above mentioned problem of correlating events or alarms is easily solved
once monitoring in the above sense has been performed. Also, failure diagnosis can be seen
as a second (although not fully trivial) step following monitoring. Distributed monitoring
is in fact the very basis of most distributed tasks related to system observation.

Now, distributed monitoring as defined above is not quite what is needed for very large
distributed systems. Such systems are generally decomposed into different domains and
each domain is managed by its own supervisor. The different supervisors act as peers and
concur at managing the entire system in a distributed, unsupervised way. Each supervisor
is thus only interested in what is happening within its own domain, it is not concerned with
the other domains. Thus, in this case, distributed monitoring should be replaced by modular
distributed monitoring;:

Modular distributed monitoring: given logs independently recorded by each su-
pervisor through its local sensors, compute, for each supervision domain, a local
view of (global) monitoring.

Finally, in contrast with most DES studies, we shall not pre-compute the set of all candidate
solutions as it is, e.g., , performed in the diagnoser approach [45] to DES diagnosis. We are
indeed interested in the set of histories compatible with a given set of logs. This cannot be
pre-computed prior to collecting these logs.

INRIA
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1.2 Objectives of this tutorial

While centralized and decentralized diagnosis under synchronous communication are handled
in a nice algebraic framework [50, 27], the situation is much less satisfactory when distributed
diagnosis under asynchronous communications is considered. We believe that this is mostly
due to the lack of a proper algebraic setting to deal with both distribution and asynchrony.
Relying on our previous experience in failure diagnosis for telecommunication networks, we
have converged to a quite general algebraic framework for these problems, that turns out
to share some features with other contributions to the topic [46, 47]. In particular, we have
identified three essential features of such a framework:

1. Factorization issues. The notion of product is central to express that a large system
is obtained by assembling components. For example a distributed system can be
expressed as the parallel composition of automata. The parallel composition is also
useful to represent the operation of constraining a component to produce the collected
observations. Therefore, the parallel composition of automata plays a central role in
diagnosis. It is also essential that the solutions to the diagnosis problem be themselves
expressible as a product of local solutions: this is the key to modular computations.

2. Projection issues. Projecting on a given component the global solutions to the di-
agnosis problem gives the so-called local view of the diagnosis. A key feature of
decentralized approaches is to compute these local views directly, without computing
the possibly huge global solutions. This is done by suitable combinations of products
and projections, provided these two operations jointly satisfy a few axioms. Therefore
projections must be designed with care.

3. Efficient data structures. Distributed computations must handle sets of trajectories.
Most DES approaches represent, them as languages. But these data structures do not
scale up, even under their factorized form (based on the shuffle product). So a crucial
issue is to represent sets of runs in the most efficient way, while preserving factorization
properties, and ensuring the existence of adequate projections.

If these three issues are not properly handled, distributed diagnosis algorithms become
rapidly intractable and have little chance to scale up. In this tutorial we study these three
aspects: Section 3 is devoted to issue 1, whereas Section 4 focuses on issues 2 and 3.

Interestingly enough, although basing all developments on the usual sequential semantics
of DES, we will show that partial order models will inevitably pop up, under the form of
a distributed notion of time. This strongly suggests that the adequate manner to handle
distributed systems is to take explicitly into account the concurrency of events. Section 5 is
devoted to this important issue.

RR n° 5916
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2 Formal problem setting: monitoring in terms of runs

In this section we formalize distributed monitoring. Our basic setting is classical and uses
automata and their languages. Our system for monitoring is modelled as an automaton

A=(S,L,—,So),

where S is the set of states, L is the set of labels, =C S x L x S is the transition relation,
and Sy C S is the set of initial states. Write s —£= s’ to mean that (s,/,s') €—. Call run
a finite or infinite sequence of successive transitions:

4y ls

> S1

o : S >S5 ..., where sg € Sp, (1)

and denote by Y 4 the set of all runs of A. Recall the weakly synchronous product of
automata, also called “parallel composition” in DES litterature:

A x Ay = (Sl X SQ,Ll U Lz, —),5071 X 50’2) (2)

where (s1,52) —= (s}, s5) iff the automata progress either locally (cases (i) and (iii)) or

jointly (case (ii)):

(i) Le€Li\Ly A s1—ts188 A sh=sy
ii felonNL; AN 81 £, shOA So £, sh
1 2
(i) €els\L1 A s) =81 A s —Lss sh

Product (2) is commutative and associative.

For A = (S,L,—,Sp) an automaton, its language £ 4 is the set of words over alphabet
L that its set of runs ¥ 4 generates; note that £ 4 is prefix closed.

If £ is a language over alphabet L, let proj;, . (£) denote the projection of £ over L',
obtained by erasing, in any word of £, all labels not belonging to L' (we do not require
L' C L). For L' a language over L', the inverse projection pron}L, (L") is the set of words
w over L such that proj ;. (w) € £'. When no confusion can occur, we shall feel free to
write

proj; (L) for short instead of proj; ;. (L),
and proj; ' (£') for short instead of proji,lL, (£").

The shuffle product of two languages £; and Ls defined over alphabets L; and L is the
following language defined over L = L1 U Ls:

L1 x, Ly = proj;* (L1)Nproj;* (Ls). (3)
It satisfies:

£A1 xA2 = £A1 Xy £A2' (4)

INRIA
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Let A = (S,L,—,Sy) be an automaton. Partition L as L = L, U L,,, where L, and L,
are the subsets of observed and unobserved labels, respectively. Let

Lao =det Projy, (La)

be the observed language of A. Let proj, j : ¥4+ L4, be the map associating, to each
run o € ¥ 4, the observation w € £ 4,, it generates. Call monitor of A the reverse map:

Laodw +— Projip, (w) CTa. (5)

In words, the monitor of A is any algorithm that computes, for every observation w € £ 4 ,,
the set of runs compatible with w, we call them also the set of runs explaining w. Note that
this set is not empty, since we assume that w itself was generated by some actual run of
A. Map (5) extends to observations that are themselves sets of observations: 254.c s 254,
Sets of observations will be generically denoted by 2. Hence our extended definition for the
monitor:

Definition 1 The monitor of A is the map:
La029Q +— PTOj,p () CTa. (6)

Returning to our requirements of Section 1.1, we assume that the automaton for monitoring,
as well as its corresponding observations, decompose as

A = XierA; (7)
L
Q = Xigrwi (8)
where
Ai = (Si,Li,—4,5i0), Li = Lo; U Ly,
L = L,UL,, with L, = U Lo,

iel
and w; € L4, , is a singleton (local) observation for A;.

In formula (8), the shuffle product makes the resulting global observation a language, not a
singleton. In particular, when the observed alphabets for the different sites i are pairwise
disjoint, €2 is the set of all possible interleavings of the local observations — this reflects the
independence and asynchrony of the distributed sensors. To summarize, our problem is the
following:

Problem 1 (distributed monitoring) Find a distributed monitoring algorithm for sys-
tem (7) and (8), where supervisors D;, respectively attached to each site i € I, concur at
computing the monitor (6), by exchanging messages, asynchronously and in an unsupervised
way.

RR n° 5916
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3 Distributed monitoring in terms of languages

3.1 Weakened formulation: monitoring in terms of languages

In order to present the essential techniques of distributed monitoring algorithms, we shall
first consider a weakened formulation of Problem 1. Instead of asking for the reconstruc-
tion of all runs explaining an observation, we shall only ask for the reconstruction of the
sublanguage of £ 4 that can explain the observations (this is a weaker problem unless A
is a deterministic automaton). This problem was first considered by Su and Wonham and
extensively studied in [46, 47, 48]. The approach we present here aims at preparing for other
data structures to encode solutions.

Definition 2 (monitor) The language monitor of A is the map:
Lao20Q +— proj,'(Q)C La. 9)

Note that we do not assume that  is prefix closed. So, neither is the solution projz1 (Q)
of language monitoring. This expresses the fact that the solutions must explain the entire
observation, not just a prefix of it.

What makes Definition 2 simpler to handle than Definition 1 is the fact that the language
monitor maps languages to languages, instead of languages to sets of runs (traversed states
are omitted). This will allow for a more algebraic reformulation of the language monitoring
problem. In particular, for € a set of observations, we have

projzl (Q) = Ly Xy Q

Now, considering again our distributed setting (7) and (8), language monitoring consists in
computing

Lixierdn %o (Xfa ‘*’i)
By (4), we have
Lixieran e (XlilEI wi) = X?el (La; ¥, wi)
and, therefore, Problem 1 is replaced by the following weaker problem:

Problem 2 Compute the map
L
(wWi)ier = M =get Xier (La; x, wi) (10)
in a distributed, asynchronous, and unsupervised way.

In this section we address Problem 2 for the following two cases: off-line monitoring with
finite observations, and on-line monitoring for non terminating observations. At this point,
note that Problem 2 still involves computing the global solution to monitoring, not the local
views for it. We come to the latter in the following section.

INRIA
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3.2 A factorization result; application to modular monitoring

In this section we collect some results on the relations between automata, their languages,
and compositions and projections thereof. Even though these results may seem really trivial
and routine, we insist listing them. The reason is that these will also constitute the key steps
in getting distributed monitoring algorithms when using more efficient data structures. In
the latter case, however, those trivial facts will not be trivial any more.

Recall the following standard operations on languages that we shall consistently use in
the sequel: 1/ the intersection LNL', for £ and L' two languages over the same alphabet L;
2/ the projection proj;, (E), for £ alanguage over alphabet L and L' another alphabet; and,
3/ the product L x, L' (the shuffle product of languages). The following (trivial looking)
result will be instrumental in getting our distributed asynchronous monitoring algorithms:

Theorem 1 (factorization) We are given a product A = X,;cr A; of automata. For each
i €1, let L; be a sublanguage of La,, and let L =qer X?el L; be their product. Then:
1. We have L4 = XfeIEAi.
2. L is a sublanguage of L4 and, for all i € I, projy, (ﬁ) is a (generally strict) sublan-
guage of L;.

3. We have L = Xfel pProj,, (E) Furthermore, L =ger Projy, (E) yields the minimal
decomposition of L in that, for any decomposition L = ng L, where L) is a
sublanguage of L,, then L} is a sublanguage of L.

Using Theorem 1, Problem 2 is subsumed by the following one:

Problem 3 Let L;,i € I be a finite set of languages defined over alphabets L; = L, ;¥ Ly, ;.
Compute the map

L .
(wi)ier +— M =qer Xiel projy,. (ﬁA X, Q)a (11)

L .
where ) = X ;c;w; and w; ranges over projy, . (El)

Now, as discussed in Section 1.1, we are not really interested in computing global monitoring,
as performed by formula (11). We are rather only interested in computing consistent local
views of global monitoring, i.e., for each i € I, the local projection proj;, (EA X, Q). This
was referred to as modular distributed monitoring in Section 1.1. Consequently, we can
further subsume Problem 3 by the following problem, called modular language monitoring:

Problem 4 (modular language monitoring) Let £;,i € I be a finite set of languages
defined over alphabets L; = L, ; W L,, ;. Compute the map

(wi)ier > Mmod =der (Projp, (LA X, Q))iel, (12)

where Q0 = X?el w; and w; ranges over projy . (E,)

We shall focus on solving Problem 4 and its variants in the sequel.

RR n° 5916



12 Eric Fabre , Albert Benveniste

3.3 Four basic objectives
The following basic objectives must be addressed, we shall do this in the sequel:

Objective 1 Address asynchronous distributed systems with unsupervised supervising peers.
This requires computing computing Muyoqa without computing M, by attaching a supervising
peer to each site.

Objective 2 Compute Mpoq on-line and on the fly.

Objective 3 Awvoid state explosion due to the concurrency between and possibly within the
different components.

Objective 4 Address changes in the systems dynamics.

3.4 Distributed modular monitoring — Objective 1

Getting distributed algorithms for modular monitoring relies on the following fundamental
result, which shows how to compute modular monitoring locally, for simple basic cases:

Theorem 2 Let (L;)i=1,2,3 be three languages such that
(LyNL3) C Ly (Ly separates Ly from Ls)

Write proji(.) for short instead of proj, () Then, the following formulas hold:

proj, (L1 %, L3 x, L3) = proj,(L1) N Ly N proj,(Ls) (13)
———— ———
R local to 1 local to 3 |,
loca‘lrto 2
projl(ﬁl x, Lo X, £3) = LN pr0j1(£2 N proj, (53)) (14)
%’_/
. local to 3
R locazrto 2 |,
loca‘lfto 1

Note that the intersections in formulas (13) and (14) are in fact products, since the involved
alphabets are identical. A direct induction reasoning regarding the cardinal of index set .J
allows us to extend formula (13) to an arbitrary number of languages as follows:

Corollary 1 Let (L;);cs be any family of languages such that there exists j, € J such that:

V(j,jyeIxJ : jo#i#j #jo = LjNLjy CLj, (15)
Then,
. L .
proj; (Xic L) = Li,n( () proj; (£;)) (16)
JE€Jj#To

INRIA
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Regarding Theorem 2, a direct proof is easily obtained if we remember that the words of
L x, L' are obtained by synchronizing the words of £ and the words of £'. However, such
a direct proof would not easily generalize to the stronger monitoring problem of Section 2,
and would not generalize either to more efficient data structures. To prepare

for such a generalization, we shall base the proof of Theorem 2 on the following lemma.

Lemma 1 For L' any alphabet, L any language over arbitrary alphabet L, and L; any
language over arbitrary alphabet L;, the following properties hold:

proj, o proj, (L) = proj, .. (L) (17)
proj, (L) = L (18)

L3 D (LiNLy) = projg, (ﬁl X, ﬁg) = projg, (ﬁl) X, Projr,, (ﬁg)
= projp,(£1) N projg, (Ls) (19)

In (17), symbol o stands for the composition of maps; thus we have: proj;, o projy, (£) =
proj;, (projy, (£)). Also, (19) generalizes to more than two languages, in a similar way as
we did in Corollary 1.

Proof: We only need to prove (19) as the other properties are trivial. Set L = Ly U Ly and
pick a pair (wi,ws) € L1 x Lo. Then, there exists w € £ such that w; = proj,, (w) for
i = 1,2, if and only if proj, ~;, (wl) = Projr,nr, (wQ). But, since Ly O Ly N Lo, this
condition rewrites:

Proj;, g, (Projy, (w1)) = projp, g, (projp, (ws)) (20)
For i = 1,2, set w} = projy, (w;). Then, (20) holds if and only if the pair (w},w}) yields a
word w' € proj;, (L1) x, projr, (£2) such that w; = proj;, (w'). This shows (19). o
Proof of Theorem 2: We first prove (13). Since Ls D (L N L3), we have
. by (19) . .
proj, (El x, Lo X, £3) = proj, (El) N proj, (E2 X, E3)
by (19,18 . .
¥ (12,18) proj,(£1) N Ly N proj,(Ls)
To prove (14), note that Ly D (L N L) implies Ly U Ly O Ly N (L2 U L3), hence

by (19)

proj, (L1 x, L x, L3) = proj; (projr,ur, (£1) X, Projr,ur, (L2 x; Ls))
by (19) proj, (proj.,, (£1) %, projr,,r,(L2) %, projy, 1, (L3))
WL broj, (L1 %, La %, proj,(£s))
YD LA proj, (L2 N projy(£s))
which proves the theorem. The key point is that only Lemma 1 was used in its proof. o

RR n° 5916



14 Eric Fabre , Albert Benveniste

Building blocks for the distributed algorithms. Define the following operators, at-
tached to the pair of sites (,7) and site 7, respectively:

Msg; ,; (Vi) =daef compute proj;(V;) at site i and send the result to site j (21)
Fuse[V;,V]] =det compute V; N V] at site i (22)

As a result of performing Msg,_,; (V;), the projection proj; (V,) can be used by site j for
subsequent operations, see Algorithm 1 below. Notice that the Fuse operator generalizes to
any number of messages. Using these operators, rules (13) and (14) respectively rewrite as

pr0j2 (Vl XL Vo XL V3) = Fuse [Msg 12 (Vl)v V>, Msg 32 (V3)] (23)
proj, (V1 X, Vo X, V3) = Fuse[V;,Msg, ,, (Fuse[Vy,Msg, ., (V3)])] (24)

The following obvious lemma will be instrumental in developing our distributed, unsuper-
vised, and asynchronous algorithms:

Lemma 2 The two maps

Vi = Msgi_ﬁ(Vi)
(VZ,VZI) — P‘use[vi,vﬂ

where j € I is arbitrary, are increasing w.r.t. all their arguments, for the order of language
inclusion. Furthermore, Fuse[V;,V/] C V.

Message passing algorithm with chaotic iterations. Let (£;);c;r be a collection of
languages. We wish to design a distributed algorithm for

computing proj; (L) for each j € I, where £ = X?el L;.

We shall propose a distributed algorithm, in which supervisors act as peers, by exchanging
messages asynchronously. Since this algorithm is by message passing, the topology of the
communications graph between the peers plays a role. Thus we formalize this now. Define
the interaction graph Gy of (L;)icr as the following non directed graph:

vertices of Gr are labeled with the indices ¢ € I, and
(i,7) is a branch of Gy if and only if ¢ # j and L; N L; # 0.

Say that node j separates two nodes i,k on the graph Gy if every path leading ¢ to k& must
include node j. In particular, if j separates nodes ¢, k, then L;, separates L; from L; in the
sense of Theorem 2. Fig. 1 shows an example where the interaction graph is a tree.

We are now ready to state our first algorithm. In this algorithm, the different supervisors
act as peers exchanging messages asynchronously. For this, we assume that buffers are
available in the two directions, for each branch of the interaction graph. Each supervisor
i writes its successive messages to its neighbour j in its outgoing buffer toward j, and
reads its messages from neighbour j from its incoming buffer from j. Reads and writes are
asynchronous.
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Figure 1: An example of system where the interaction graph Gy is a tree.

Algorithm 1 (chaotic message passing) The different supervising peers, respectively at-
tached to each site i € I, maintain and exchange messages M;_,; with their neighbours j,
where (4,7) € Gr, by performing, independently and in a chaotic way:

e Initialization: each peer i € I initializes its set of messages as follows:
V(i,5) € Gr M= (L;NL;)" (25)
e Chaotic iteration step: each peer i € I performs:
1. pick (i,7) € Gr, define J;j =aet {k € I | (i,k) € Gr, k # j};

2. read the current value of My_s;, for k € Jy;;

3. update message to peer j by performing the following two operations, in sequence:
Mis; = Msg, ;o Fuse[L; X, wi, {Mpi| k€ Jij}] (26)

4. read the current value of My_;, for (i,1) € Gr,1 # i and update
L, := Fuse[L; x, wi, {Mi5i| (i,1) € Gr,1 #i}] (27)

The above steps 1—4 are performed chaotically by each supervisor, acting as a peer. They do
not need to be performed in an atomic way, i.e., while performing them, the different peers
do not block each other. In fact, we shall later see that update (27) need not be performed
for each step of the chaotic algorithm, but only at its termination (see the discussion on
termination following the proof of Theorem 3). The resulting chaotic message passing algo-
rithm is thus completely distributed, unsupervised, and asynchronous. Note that Algorithm
1 is non terminating in the sense that no stopping criterion is formulated for it.

Definition 3 Say that the branch (i,j) € Gy is fairly visited by Algorithm 1 if it is selected
infinitely many times while performing (26). Say that chaotic Algorithm 1 is fairly executed
if each branch (i,7) € Gr is fairly visited.

Theorem 3 Assume that the interaction graph Gy is a tree. Then, chaotic message passing
Algorithm 1 converges in the following sense: if the algorithm is fairly executed, then the
sequence of successive updates of L} by (27) is decreasing (for the sublanguage order) and
converges to the desired solution proji(ﬁ X, Q)
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Proof: To simplify notations for this proof, we shall rename £; X, w; as £; and £ x, @ as L;
thus we want to prove that the sequence of successive updates of £} converges to proj; (E)
The key idea for the proof consists in marking the messages M;_,; with the subset of sites
K;; that this message takes into account:

M, ,; = (Mis;,Kij).

To this end, enhance the Msg and Fuse operations with additional marks K, K’ C I as
follows:

Msg,; ,; (L,K) =aer send to site j the pair : (projj (£),K)
Fuse [(L,K),(L',K")] =aet (Fuse[L,L'], KUK')

and rewrite Algorithm 1 as follows:

Algorithm 2 (chaotic message passing, with marks) The different supervising peers,
respectively attached to each site i € I, perform, independently and in a chaotic way:

o Initialization: each peer i € I initializes its set of messages as follows:
V(Z,]) egr : Mi%j = ((L, n Lj)*,@) (28)

e Chaotic iteration step: each peer i € I performs:

1. pick (i,j) € Gr and define J;j; C{k € I|(i,k) € Gr,k # j};
2. read the current value of My,_,;, for k € J;;;

3. update message to peer j:

M;.; = Msg,;,;o Fuse[(L;{i}),{ M|k € Jij}] (29)
4. read the current value of Mi_,;, for (i,1) € G1,1 # i and update

(Li, Ki) = Fuse[(L;,{i}),{ Misil (i,1) € Gr, 1 #i}] (30)

The proof of Theorem 3 is now based on Algorithm 2 with marks and proceeds by induction.
Assume that, at some point, the following holds, for each branch (i,7) € G;:

. L

where proj;; =det Projy,nr,- Fix a branch (i,j) and apply iteration step (29) with this
branch. This yields the update

Milaj = ;%jaKz{j)a
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where
M, = proj; (LN ﬂ M)
keJ;;
by (31) proj;; (£; N ﬂ Projki(X?EKki £1))
keJ;;
by 047) projy; (proj;(C;n () proji (Xicue,, £1))
keJ;j
byélﬁ) projij (proji (El n XﬁEUkEJij K El))
byéﬂ) pI‘Ojij ([’l n X?EUkEJij Ky [’l) (32)
and
K = {i}u U K (33)
keJ;;

Note that, in applying (16), we have used the fact that node i pairwise separates the subsets
Ky, for k € J;;, which in turn holds because Gr is a tree. Comparing (32) and (33) shows
that (31) holds for M ,;. This proves the induction step. On the other hand, (31) holds
after the first application of (30), with K;; = (. Thus, property (31) is an invariant of
Algorithm 2.

The proof of the theorem follows by noticing that, when updated as in (33),

{itu U K

(i,7)€Gr1

converges to the entire set I for each i € I, if and only if the algorithm is fairly executed. ¢

Algorithm 2 is illustrated in Fig. 2. We insist that the marking of the messages with the
K;’s is only for the purpose of the proof. It need not be implemented in practice, since
updating the £}’s makes no explicit use of the K;’s.

Termination of the algorithm. In fact, updating (30) need not to be performed at each
step, since £} is never used to update the messages that circulate. Strictly speaking, it is
enough to perform (30) when the algorithm has terminated, i.e., when the messages have
converged to a steady value.

The proof of Theorem 3 shows in passing that convergence occurs in finitely many steps.
A natural termination criterion for Algorithm 1 is precisely that

K; =1 holds for each i € T (34)
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kq

M, i = (Ly,{k1})
(£k2 ) {k2})

S
:
|

ko
M. .. = proj; (£; Nproj;(Ly,) Nproj;(L,))
o {1, bz, i}

Figure 2: Illustrating step (30) of Algorithm 2, for a simplification of the system depicted
in Fig. 1.

Now, (34) turns out to be an effective criterion for distributed termination if the Algorithm 2
with marks is used instead of the original Algorithm 1. Implementing (34), however, requires
that each peer knows the set I of all sites. Albeit minimal, this is a global information about
the system. It may require, e.g., the implementation of a distributed protocol for group
membership [43].

To summarize, if the set of all supervising peers has identified itself as a group, then
Algorithm 2 with marks allows using (34) as an effective criterion for distributed termination.
If supervisor ¢ only knows its local model £; and the interface L; N L; with each of its
neighbour j, then (34) cannot be effectively implemented.

Optimal scheduling. Fig. 3 shows an optimal scheduling of the different steps (30) of
the message passing algorithm, for our tree-shaped system. This scheduling implements
an inward seep followed by an outward sweep, where the thick node has been selected as
a center for the tree. The steps having same index can be performed in any order, or
even simultaneously. This scheme corresponds to the well known Rauch-Tung-Striebel two-
sweep algorithm for linear systems smoothing [42]. This rigid scheduling minimizes the total
number of messages exchanged by the sites. However, it requires global coordination and
thus cannot be implemented by unsupervised peers attached to the different sites.

What happens if the interaction graph possesses cycles? Knowing that Gy is a tree
is indeed a global information regarding the system. However, this is a milder information
than actually knowing the graph, which is requested in order to apply termination criterion
(34). Still, it makes sense investigating what happens when the interaction graph G; pos-
sesses cycles. In this case, the same Algorithm 1 can still be used. At the equilibrium, it
yields local consistency in the sense of [46, 47, 48], namely:
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Figure 3: An optimal scheduling for the different steps of the message passing algorithm.

Theorem 4 Without any assumption on Gr, Algorithm 1 converges to (L3°);cr satisfying
Y(i,j) € Gr proji(/j;?o) = proj; (L'fo) (35)
but L3 # proji(ﬁ) in general.

Sketch of proof: The idea of the proof consists in showing that Algorithm 1 can be modified
as follows, without changing its convergence behaviour. Instead of performing (26), perform

Mis; = Msg, ;o Fuse[L; x, wi, { M| (k,i) € Gr, k # i}] (36)

Note that, unlike in (26), the present message M;_,; bounces back the incoming message
M ;. The fact that this is a legal modification of Algorithm 1 follows from the following
property: for any two alphabets L and L', and £ any language over L:

L X, proj (E) = L, (37)

which E. Fabre calls involutivity [17, 21]. Note that (37) is not a consequence of the proper-
ties collected in Lemma 1. It is thus an additional feature of languages, equipped with their
projections and shuffle product. Having replaced (26) by (36) has the advantage that, now,
M;; € M, whence equality follows, which is precisely (35). o

We refer the reader to [17, 21] for an extensive discussion of this situation and the role
of involutivity in the design of message passing algorithms, for various contexts.

3.5 Distributed modular on-line monitoring — Objective 2

So far we addressed Objective 1. In this section, we consider Objective 2, namely on-line
monitoring. The situation is the following. In Section 3.4 we assumed that observation w;
was globally available at site i before the distributed algorithm could proceed. This mani-
fested itself by the fact that local observations w; keep constant throughtout the iteration
steps of Algorithm 1.
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On-line monitoring algorithm. In this section, we consider on-line monitoring algo-
rithms. Referring to Algorithm 1, this means that each supervisor collects its local observa-
tion w; incrementally, in successive packets of alarms. The growing of observation w; at each
site interleaves with the iteration steps of the message passing algorithm. We shall consider
both terminating and non terminating observations.

To model the process of collecting observations, consider the following operator attached
to site 4, where w; is the sequence of observations stored by this site up to the current instant:

Grow(w;, 0;) =der append to w; a new finite sequence o; of local alarms.  (38)

The following new problem occurs, due to the on-line nature of the algorithm combined with
its asynchrony. Consider the simple example of two supervisors collecting alarms from the
same sensor, with alphabet L = {a,b}. Since communication is asynchronous, it may be
that, at some instant, supervisor 1 has observed aabba, whereas the supervisor 2 has only
observed aab (note that this cannot happen with the off-line monitoring problem, which
assumes that all alarms have been collected before starting the algorithm). With these
two observations, the two supervisors won’t be in general able to agree on any explanation.
This situation may prevail for ever, assuming that supervisor 1 is always quicker at getting
observations than supervisor 2. The solution is clear: we must compensate for the possible
delay in using local observations (and exchanging messages). This is achieved by being
cautious: when receiving aabba, supervisor 1 will interpret this as aabba.{a,b}*, whereas
supervisor 2 will interpret aab as aab.{a,b}*. But, now, aabba.{a,b}* and aab.{a,b}* have a
non empty intersection, implying that the two supervisors will find a common set of agreable
explanations. This amounts to interpreting the increase of observations as a decrease in the
set of possible futures. Note that this is different from taking prefix closure.

Accordingly, for w a word over alphabet L and £ a language over L, define the completions

W —ger w.L* s L —ger L.L*. (39)

Note that, if w’ is a prefix of w, then @' D @. Using operator (38) and notation (39), the
on-line version of Algorithm 1 is as follows (note the use of completions in steps 3 and 4):

Algorithm 3 (on-line message passing algorithm) The different supervising peers, re-
spectively attached to each site i € I, perform, independently and in a chaotic way:

e Initialization: each peer i € I initializes its set of messages as follows:
V(Z,]) egr : Mi*}j = (Li N Lj)* (40)

e Chaotic iteration step: each peer i € I performs one of the following two alternatives:

— Collect local observations: perform w; := Grow(w;, 0; ), where o; are the newly
collected observations, at peer i.

— Update and propagate messages: using currently available local observations w;,
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1. pick (i,j) € Gr and define J;; C{k € I|(i,k) € Gr,k #j};
2. read the current value of My_;, for k € Ji;;
3. update message to peer j:

Mi;)j = Msgiﬁj o Fuse [ﬁl X, Wi, {Mk;g)l | ke JZJ}] (41)
4. read the current value of M;_;, for (i,7) € Gr,j # i and update
L; = Fuse[L;x, &, {Mjil| (i,5) € Gr,j #i}] (42)

If collecting on-line observations is a non terminating process, then so is this algorithm.
Thus “on-line” is performed in a non strict sense meaning that each supervisor decides at
will when to exploit freshly received alarms from its sensor, so that there may be several of
them (whence the definition for (38)).

Analysis of on-line monitoring Algorithm 3. For £ and £’ two languages over the
same alphabet L, defined the following partial order relation:

£ <c if T CL. (43)

Note that £’ C £ implies £ < £ but the converse is not true, as shown by the case of
L' ={w'} and £ = {w}, where w is a prefix of w'. Partial order < extends to languages
defined over different alphabets as usual, by taking inverse projections to equalize their
alphabets. Using the < order, Lemma 2 refines as follows:

Lemma 3 The two maps

(Vi,VZ{) — Fuse[Vi,Vl{]

where j € I is arbitrary, are increasing w.r.t. all their arguments, for the order < defined
in (43). Furthermore, Fuse[V;,V!] < V;, and, for any pair (w;,0;), we have

Grow(w;, 0;) = w;

The following result characterizes the behaviour of Algorithm 3. Note that it applies to a
possibly non terminating algorithm.

Theorem 5 On-line chaotic message passing Algorithm 3 converges in the following sense:
1. The following property is maintained by this algorithm:
L = proj;(L x, Q), where Q= X?E[ wi, (44)

where L} is the current solution computed by peer i, and w; is the current observation
collected on-line at peer 1.
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2. If the algorithm is fairly executed in the sense of Definition 3, then the sequence of
successive updates of L} is decreasing and eventually satisfies:

L; =< proj; (£ x, Qstop) (45)
where Qsiop 15 any fixed prefix of the growing observation ().

3. If observation Q has bounded cardinality, and if the algorithm is fairly executed, then
Ll eventually converges to the desired solution proji(ﬁ X, Q).

Properties (44) and (45) characterize the kind of convergence the on-line chaotic Algorithm 3
satisfies. Property (44) expresses that the on-line message passing algorithm provides all
correct solutions to the monitoring problem as well as possibly additional spurious solutions;
the reason for this is that, being unsupervised and asynchronous, the algorithm may be “late”
at processing either recent observations or recent messages from the other supervisors. On
the other hand, property (45) expresses that, eventually, the algorithm will correctly explain
every fixed prefix of the observations. The corresponding delay is finite but not bounded
(unless quantitative assumptions are made on the duration of communications). Last but
not least, we insist that completions are only used for the purpose of the analysis, not in
the algorithms themselves.

Proof: We use the same technique as for the proof of the off-line algorithm, by enhancing
the on-line version with additional marks used only in the proof. The marks will be more
involved to account for the asynchrony in getting observations. In the off-line algorithm,
the mark K;; attached to message M;_,; indicated the set of sites taken into account by
this message. For the on-line algorithm, the information carried over each site k by message
M,_; will have a “date”, corresponding to the length of the observation at site k used in
message M ;.

Formally, for 7 € I, let w® be the entire observation at peer i — it can be either finite or
infinite. This observation is the concatenation of a finite or infinite sequence of successive
finite blocks of alarms: wf® = 0;(1).0;(2).0;(3) ... The observation collected by peer i at an
arbitrary instant of the on-line algorithm is generically denoted by w;; it is a prefix of w;®
and has the form w; = 0;(1).0;(2).0;(3) ... 0;(n), for some finite index n equal to the number
of successive reads performed by the site. For w; as above and m an integer, let w;/m be
the observation w; truncated at m, equal to

wi/m =aet 0i(1).0(2).0;(3)...0;(m) if m <n, and w; otherwise. (46)
The messages will thus be marked as follows:
M ; =qer (Misj,Tij)
where 7;; is a mark, i.e., an element

r e N
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where N = 0,1,2,3... is the set of nonnegative integers; 7;;(k) = m indicates that wy/m
has been taken into account in message M;_,;. For 7 € N’ a mark as above,

let K, be the set of 7 € I such that 7(i) > 0, (47)

i.e., K. is the support of 7. For w; = 0;(1).0;(2).0;(3) ... 0;(m) a finite local observation of
length m,

let 7, be the mark such that 7, (i) = m and 7, (k) = 0 for k # m.
Finally, the operators are enhanced as follows:

Msg; ,; (L,7) =der send to site j the pair : (proj;(£),7)
Fuse[(L,7),(L,7")] =aef (Fuse [£,L'], TV T')

where supremums are taken componentwise. With these notations, we are now ready to
state our enhanced on-line algorithm:

Algorithm 4 (chaotic on-line message passing, with marks) The different supervis-
ing peers, respectively attached to each site i € I, perform, independently and in a chaotic
way:

e Initialization: each peer i € I initializes its set of messages as follows:

V(i,j) € Gr M, ;= ((L; N Lj)*,()) (48)

e Chaotic iteration step: each peer i € I performs one of the following two alternatives:

— Collect local observations: perform w; := Grow(w;, 0; ), where o; are the fresh
observations collected at peer i;

— Update and propagate messages:

1. pick (i,j) € Gr and define J;j; C{k € 1| (i,k) € G,k #j};
2. read the current value of My_;, for k € Ji;;
3. update message to peer j:

Mi_”' = Msgi%j o Fuse [(El X, wi,Twi), {Mk—>z| k€ Jl]}]
4. read the current value of Mj_,;, for (i,j) € Gr,j # i and update
(L) = Fuse[(Lix, T 7w,), { M| (i,5) € Gr,j #i}] (49)

By reasoning as in (32), we prove that the following invariant is maintained by Algorithm 4:
for each branch (i, 7) € Gr:

Mi%j = (Miﬁj,Tij) = ./\/liﬁj = pI‘Ojij (XII;EKTU (,Ck XL wk/rij(k) )) 5 (50)
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where we recall that K., is the support of 7;; (see (47)), and proj;; =daer Projp,p,-
Invariant (50) implies the following two weaker invariants:

i = proj;(Xier (Le x, @) (51)
Ym>1: L, < proj; (XieKW (L %, wp/m' )) , (52)

A

where m’ = min(7;;(k), m). Invariant (51) is statement 1 of the theorem, whereas invariant
(52) proves its statement 2. Finally, statement 3 is a direct consequence of invariant (50).
This finishes the proof of Theorem 5. o

3.6 Back to distributed monitoring in terms of runs

In this section we briefly explain how to extend the methods of sections 3.2 — 3.5 to handle
monitoring in terms of runs as defined in Section 2. Central to our previous message passing
algorithms was the homogeneous nature of the objects involved, namely languages. Lan-
guages were used to express both the distributed system, its observations, and the solution
to the monitoring problem.

The problem with the monitoring as defined in Section 2 is that it involves a mix of
languages (for the observations) and of runs (to express the solutions of the monitoring
problem). Whereas runs cannot be reduced to languages (since states are involved), lan-
guages can be lifted to sets of runs, as we explain next. A run can be seen as a special kind
of automaton, consisting of a chain alternating labeled states and labeled transitions.

Chains and chain processes. More precisely, call a chain any word alternating symbols
from two finite alphabets S and L, i.e., an element of (SL)*S. Run o of formula (1) can
be seen as a chain; hence, chains will be represented by means of notation (1). Call (S, L)-
chain process, or simply chain process if no confusion can occur, any sub-language of (SL)*S.
Chain processes are generically denoted by the symbol ¥. They represent sets of runs of
automata in a flat, unstructured, manner; very much like languages do for observations.

Basic operations. Chain processes are equipped with the following operations.

e For ¥ and ¥’ two (S, L)-chain processes, their intersection ¥ NY' is the set of common
chains to ¥ and X'

e For o an (S,L)-chain, L'’ C L and 7 : S — S’ a total surjection from S onto some
alphabet S’ let

Projy, r.x (U) (53)

be the projection of o onto L' along m, obtained by applying the following two rules
to chain o, where the term “maximal” refers to partial ordering by inclusion:
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1. any maximal sub-chain

[ lryo Crys Ciin
Sk Sk+1 Sk42 Sk+43 ---Sktn—1 — > Sk+n

such that Vm =1,....,n — 1, {1, & L' and £y, € L', is replaced by
£k+n

m(sk) > T(Sktn);

2. any maximal sub-chain

Cry1 lryo lrys Chin
Sk Sk+1 Sk42 Sk+43 -+ -Sktn—-1 — > Sk4n

such that Vm =1,...,n,{,, € L', is replaced by m(sy).

States that are not connected in the resulting chain are removed. For ¥ an (S, L)-chain
process, projy 1. (X) = {proj; ;... (¢) | o0 € £} is the projection of ¥ onto L' along
m. We simply write projy,.. (E) when no confusion can result. Finally, when L' = L
we omit these alphabets and write

proj, (E) instead of projy, .. (E) (54)

Please, note that the above projection operation is different from applying the usual
projections for languages to o, seen as a word of (SL)*S.

e Finally, for i = 1,2, let ¥; be an (S;, L;)-chain process. The product 1 x. s is
defined by

S %, 8y = projlp .. (S1)Nproj, . (52)
where L = Ly U Lo, S = S; X S, and 7; is the projection from S onto S;, for i =1, 2.

An effective algorithm for computing this product is proposed in Appendix A.1.

Distributed monitoring. Problem 1 is reformulated in terms of chain processes as fol-
lows. Let A = (S,L,—,Sp), where L = L, W L, be the system for monitoring. The set ¥ 4
of all runs of A is an (S, L)-chain process. Regard an observation ¢1,0s,...,¢, € L4, as a
(N, L,)-chain as follows:

¢ ¢ ‘,
L1222 n-1

w = 0 >n

where the integers 0, 1,2, ..., n label the nodes of the chain. These integers count the length
of the observation. A set of observations 2 is thus an (N, L, )-chain process.
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Definition 4 Using notational convention (54), the monitor of A in terms of runs is the
map

Q — M =ger projﬂ(EA Xg Q), (55)
where m : S X N+ S is the projection over the set of states of the system for monitoring.

The projection proj, erases the component of the state originating from the observation
and otherwise has no effect — note that this was not needed when performing monitoring in
terms of languages. The language L generated by monitor (55) coincides with the result
provided by monitor (9).

Definition 4 also applies if 4 = X ;7 A; and Q = X?E]wi, with the slight difference that
Q is now an (N!, L,)-chain process. We leave the reader as an (easy) exercise to reformulate
and prove the counterpart of Theorem 1 and Lemma, 1, for chain processes. The completion
of (S, L)-chain process ¥ is defined by

S =g B.(SL)*S, (56)

and the order relation ¥’ < ¥ is defined by ¥’ C ¥. Again, Lemmas 2 and 3 are easily
extended to chain processes.

Since Theorem 1 and Lemmas 1-3 were the only foundations needed to develop modular
monitoring with its distributed message passing algorithms, both off-line and on-line, the
latter carry over to chain processes, which solves Problem 1 of distributed monitoring in
terms of runs.

4 FEfficient data structures

4.1 DMotivation — Objective 3

So far we have represented the set of solutions to the monitoring problem as a flat, unstruc-
tured, set of chains. Our message passing algorithms will manipulate the same kind of data
structures. Since distributed systems involves lots of concurrency, this quickly becomes in-
tractable, especially for on-line algorithms. So the following central (informal) requirement
emerges:

Requirement 1 (addressing Objective 3) Represent the set of runs ¥ 4 of an automa-
ton A in the form of some efficient data structure D 4, with the following features:

1. A notion of intersection can be defined over this data structure, which parallels the
intersection of chain processes in that D N'D' represents X NY', for ¥ and ' sets of
runs defined over the same alphabet. D N'D' can be computed directly on D and D',
without the need to unwrap them back to ¥ and X'.

2. The projection projy, 1, .. (DA) can be directly computed on D4, without the need to
unwrap it back to X 4.
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3. A product can be defined for this data structure, such that Dy = Dy X Dy, and
this product can be computed directly on D4 and D 4, without the need to unwrap them
back to X4 and X 4.

4. The above operations satisfy Theorem 1, Lemma 1, and support partial order < intro-
duced in (43) for the analysis of on-line algorithms.

The rest of the paper investigates various means to satisfy Requirement 1, with increasing
efficiency.

In a first stage, we shall investigate how to store and manipulate runs of automata
efficiently. In section 3.6, we consistently represented sets of runs in a totally flat manner.
This is clearly stupid and a first improvement consists in taking into account that runs are
partially ordered by the prefix order, with a unique minimum consisting of the empty run.
This trivial remark leads to representing the executions of an automaton as its “execution
tree”, where partial runs are represented only once. Developing distributed monitoring
techniques using execution trees is investigated in Section 4.2.

Now, a number of algorithms from control engineering and optimization manipulate
sets of executions of automata. Examples include dynamic programming and the Viterbi
algorithm. Those algorithms represent sets of executions in the form of “trellises”, in which
runs of identical length ending at the same state are merged (the rationale being that they
share the same future). We shall devote the longer section 4.3 to distributed monitoring
techniques using trellises. As the reader will notice, this subject is full of pitfalls and must
be investigated with extreme care. In particular, meeting Requirement 1.4 is non trivial.
A surprising conclusion will be that making trellises suitable for distributed processing will
bring us very close to partial orders.

Thus the last step naturally consists in further increasing the efficiency of data structures
by taking concurrency into account, i.e., the fact that independent and unrelated moves in
a system need not be represented through their many possible interleavings, but only once
by means of a partial order. This is the subject of Section 5.

4.2 Execution trees
4.2.1 Definition

Execution trees consist in representing sets of runs by superimposing common prefixes of
the latter, thus obtaining a tree-shaped data structure. Formally, an (S, L)-execution tree
is a tree whose branches and nodes are labeled by two finite alphabets denoted by L and
S. We do not distinguish execution trees that are related by a label preserving bijection
between their nodes and branches, respectively.

For A = (S, L, —, s9) an automaton, let I/ 4 denote the (unique) maximal (S, L)-execution
tree whose all branches are maximal runs of A, each such run being represented only once.
Call U 4 the execution tree of A. Fig. 4 shows an automaton and a prefix of its execution
tree (execution trees are infinite as soon as automata possess loops).
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| P /TX
DSOWSIQC S92 S0 S1
S LN
> AN

S0 S1 S1 S0 S1

Figure 4: Automaton A and a prefix of its execution tree U 4. (The reader is kindly invited
to draw the corresponding chain process, for comparison; in doing this, please, remember
that the different prefixes of a same chain must be listed.)

Execution trees are clearly a much more compact data structure than chain processes.
However, they raise the following new issue: an (S, L)-execution tree V, as defined above,
can only represent a prefiz closed language. Whereas this is fine when representing the sets
of all runs of an automaton, it is no longer convenient to capture observations, which are
not prefix closed. Languages that are not prefix closed can be represented as execution trees
equipped with an extra boolean marking, to indicate the allowed final states. Formally:

Definition 5 (execution tree) An (S, L)-execution tree is a triple V = (T, A, f), where
T is a tree, X is a labeling of the tree, mapping nodes to S and branches to L, and f :
nodes(T) — {0, 1}, is the stop function. Call stop point any node mapped to 1 by f and call
run any branch of T that is either infinite or ending at a stop point. Whenever convenient,
we shall denote the components of V by Ty, Ay, and fy.

The correspondence between execution trees and chain processes is as follows:

Lemma 4 Fach (S, L)-execution tree V = (T, X, f) gives raise to a unique chain process Ly
having identical sets of runs, and vice-versa. We denote by ® this one-to-one correspondence,
from exzecution trees to chain processes.

In Uy, the execution tree of an automaton A, every node is a stop point. Non trivial stop
functions are necessary to represent sets of observations as execution trees.

4.2.2 Operations on execution trees

To be able to express monitoring in terms of execution trees, we need to equip them with
operations as described in Requirement 1. These are introduced next:

e For V and V' two (S, L)-execution trees, their intersection is defined by

vnyY =4 @7 (@(V)N (V)
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e Let V be an (S, L)-execution tree. For L' C L and 7 : S — S’ a total surjection from
S onto some alphabet S’, the projection of V onto L' along 7 is defined by:

Projs .. (V), or, simply proj,., (V) —gof P! (projL,L,”T (@(V))) (57)
e The product of execution trees is defined as follows:
Vx, V' =aer 7H(B(V) %, B(V')) (58)
When V =V’ x,, V", we simply write
projy, (V) instead of projy .. (V) (59)

While the above definitions are mathematically convenient, they are not effective and do
not satisfy the requirement that these operations can be performed directly on the data
structures themselves, without unwrapping them back to chain processes. The following
result is therefore essential:

Theorem 6 The above operations of intersection, projection, and product, can be computed
directly on execution trees.

Proof: See Algorithm 6 in Appendix A.2. S

4.2.3 Execution tree based monitoring

The monitor for A = (S,L,—,sq),L = L, U L, is redefined in terms of execution trees as
follows. We first need to represent observations as execution trees. To this end, note that
local observations w; can be represented as an (N, L, ;)-execution tree with a single branch.
Thus we can represent the global observations by the (N’ L,)-execution tree

U
Q = Xielwia

and, using notational convention (54), the global monitor is simply defined by the map
Q — M =qe proj,r(Z/{A X, Q), (60)

where m : S x N+ S is the projection over the set of states of the system for monitoring
(the component of the state originating from the observation is erased).

This is illustrated in Fig. 5. The construction of M can be performed incrementally and
on-line, while successive events of () are received. Note that, when the second observation is
being processed, the branch (s1,0) A (s3, 1) offers no continuation to explain the postfix
{r, f} of the observation sequence; it must therefore be pruned out from M. Such a pruning
can be performed with delay exactly 1, i.e., on reception of the event labeled r in €.

Now, since, by Section 4.2.2, ® mirrors the basic operations on chain processes with the
corresponding ones on execution trees, the apparatus composed of Theorem 1, partial order
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51 s1 0 (s1,0)
%O}_ PR %‘.%f 7 ;oany
S s30O 52 3@ 1 (5271) >X<(5371)
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f f ; ’
2@ 53@
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A Un Q M=Uy x,; Q

Figure 5: Computing the monitor U4 x,, 2. Stop points of execution trees are marked in
black. The branch whose node is crossed does not belong to the product and must be pruned
out.

<, and Lemmas 1-3 carries over to execution trees. Having this at hand, we can consider
modular monitoring with execution trees, defined as the map:

(wi)iel — Mmod =def (PrOjLi;m (UA Xy Q))iEI’ (61)
where, for each i, Q = X[{GI wi, w; is an observation for A;, and m; : S x NI — S, is the
projection over the ith local state of the system for monitoring. Algorithm 1 as well as its
on-line version Algorithm 3 carry over to execution trees. We insist that, while performing
the steps of these algorithms, we never need to unwrap execution trees back to a flat set of
runs.

Discussion. Did we address Requirement 1 properly? Not quite so: our solution is some-
how cheating. In general, execution trees grow exponentially in width with their length,
see Fig. 4. This becomes particularly prohibitive when considering on-line algorithms. We
would be happy with data structures having bounded width along the processing. Trel-
lises, which have been used for a long time in dynamic programming algorithms, are good
candidates for this. The next section is devoted to this more compact data structure.

4.3 Trellises

Execution trees are a simple structure to represent sets of runs, for automata. However,
when a path of the execution tree branches, its descendants separate for ever. To over-
come this drawback, trellises have been used in dynamic programming (or in the popular
Viterbi algorithm), by merging, in the execution tree, futures of different runs according to
appropriate criteria.
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4.3.1 Observation criteria

For example, we may consider merging terminal nodes of two finite runs ¢ and ¢’ if they
satisfy the following two conditions:

1. They begin and terminate at identical states (this first condition is mandatory to
ensure that o and ¢’ have identical futures);

2. They are equivalent according to one of the following observation criteria:

(a) o and o' possess identical length;*
(b) o and ¢’ possess identical visible length (by not counting silent transitions);

(c) Select some L, C L, and require that o and o’ satisfy proj_ (wo) = projy, (wgr),
where w, and w, are the words over L generated by runs o and o', and projy, ()
denotes the projection of languages.

(d) Assume A = X5 A; and require that ¢ and o' have identical lengths when
restricted to the different local alphabets L;.

We now formalize the concept of observation criterion. In the following we will need to mark
that a given transition is “silent”, i.e., has no label. This will be indicated by using an extra
symbol “-”.

Definition 6 (observation criterion) An observation criterion 6 : LU {-} — Ly is a
partial function mapping alphabet L U {-} to some free monoid (Ly,.). For £ € LU {-},
write B(¢) = L to mean that 6(f) is undefined. For w € L*, we define recursively 8(wl) =
O(w).0(¢), and we take the convention that L* = e, the empty subset of Lg.

Let T be a directed graph whose nodes are labeled by S and branches are labeled by LU{-}.
For 6 an observation criterion, say that two paths

Kl 62 Z3 gn
Sinit S1 52 83 ...5n—1 > Send
and ! ! ! !
! Kl ! 62 ! 63 ! ! Zm > !
Sinit 51 S2 Sz Sm—1 Send

of T are 0-equivalent iff

— ! .
Sinit = Sipit» Send = Send> and

0(01lals ... L) = O(LL L, .. 0" ) (62)

Note that, in the above definition, labels ¢; or K;- may be equal to “-”.

IThis is the observation criterion used in dynamic programming or Viterbi algorithm.
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Notation. By abuse of notation, we shall sometimes write 6(w) instead of §(¢1lal3 ... Ly),
when w = (14> ... L, is the word produced by the above run.

Definition 7 (trellis) An (S, L,0)-trellis is a tuple T = (G, A, f,8), where
e G is a directed graph,
e A is a labeling of the graph, mapping nodes to S and paths to L,
e f:nodes(G) — {0,1}, is the stop function,
e 0:LU{-}— Ly is an observation criterion,

satisfying the following condition: any two paths originate from the same node of T and
terminate at the same node of T iff they are 0-equivalent. Call stop point any node mapped
to 1 by f and call run any path of G that is either infinite or ending at a stop point.
Whenever convenient, we shall denote the components of T by G, etc.

Note that the directed graph G may contain circuits and is therefore not a DAG. This
contrasts with the classical notion of trellis used in dynamic programming and the Viterbi
algorithm. Still, as a consequence of the definition, every circuit of G must be labeled by
a word whose image by # is €. Observation criteria corresponding to the above examples

(a)—(d) are:

(a) Lo ={1}*, and, VL € LU{-}, 0(¢) = 1, otherwise 6(¢) = L.
(b) Lo ={1}*, and, Vl € L, §(¢) = 1, otherwise () = L.
(c) Lo =L%, and 0(¢) = L iff £ € L,, otherwise 0(¢) = L.
)

(d) Ly = ({1}*)I equipped with per-chain concatenation, and #(¢)(i) = 1 if £ € L;,
otherwise §(¢) = L.

Trellises are illustrated in Fig. 6, for the above cases (a), (b), and (c). Case (d) will be
discussed later. Trellises will be generically denoted by symbols 7 or S in the sequel.

At this point, we need to state the counterpart of Lemma 4 on the correspondence
between execution trees and trellises. However, the situation is more involved, as not every
execution tree can give raise to a trellis, even when equipped with an observation criterion.

Lemma 5 Fach (S, L,0)-trellis T gives raise to a unique (S, L)-execution tree V having
identical sets of runs. Conversely, for any observation criterion 0, each (S, L)-execution
tree V satisfying the following condition:

two 6-equivalent paths are followed by isomorphic child (S, L)-execution trees, (63)

gives raise to a unique (S, L,0)-trellis having identical sets of runs. We denote by Uy this
one-to-one correspondence, from trellises to execution trees satisfying Condition (63). Note
that ¥y is parameterized by 6.
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S0
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Figure 6: Top. Left: A; right: execution tree /4. Bottom. Left: 7;(‘“); mid: Tﬁb); right:
T, with L, = {b,c}. Labels of transitions are omitted in the trellises. Loops in trellises
are dashed, they correspond to paths in the execution tree whose labels are undefined under
observation criterion 6.

Proof: For the direct statement, just take the set of all runs of 7 and take for V the unique
execution tree having this set of runs. Note that V satisfies Condition (63). For the converse
part, if 0 and ¢’ are two f-equivalent paths of execution tree V, then their respective terminal
nodes possess isomorphic child trees, by Condition (63). Therefore, merging these two
terminal nodes and their respective children can be consistently performed and preserves
(63). Performing this for each pair of minimal §-equivalent paths of V yields the desired
trellis. S

4.3.2 Operations on observation criteria and trellises
We now introduce important operations on observation criteria:

Definition 8
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1. Let @ : LU{-} — Ly be an observation criterion, and L' C L. Observation criterion
is called L'-consistent if

O(wy) =0(w2) = 0(projL,U{_} (wl)) = 0(projL,U{_} (UJ2)). (64)
For L =L'UL", say that 0 is (L', L'")-distributable if it is both L'- and L"-consistent.

2. Two observation criteria 6’ : L' U{-} — Ly and §" : L" U {-} — Ly are called
compatible if the two restrictions, of 8" and 0" to (L' N L") U {-}, are equal. In this
case, we define their join:

@U@ = iftelL then (L) else 8" (0)

The compatibility of 8' and 6" ensures that §' 116" = 6" LU6". In general, 0’ 16" is not
(L', L')-distributable.

3. For two observation criteria §' : L' U {-} — Ly and 0" : L" U {-} — Ly define their
product as being the following partial function

0" x 0" (L'U{-}HUL"U{})— Lo X Lo = (0" x0")() = (6'(£),0"(¢))
0" x 0" is always (L', L")-distributable.

A counterexample of §' U 6" not being L'-consistent is given by 6’ : L' U {-} — {1}* and
6" : L"U{-} — {1}*, both counting non silent transitions. Then ¢'L16" : L'UL"U{-} — {1}*
also counts non silent transitions and it is neither L’- nor L"-consistent — take for example
wy =4, € L'\ L" and we =€, € L" \ L'.

The following result indicates how Condition (63) is preserved by the above operations
on observation criteria:

Lemma 6 The following properties hold regarding Condition (63):

1. For A an automaton, its execution tree U4 satisfies Condition (63) for any observation
criterion 6.

2. The set of execution trees satisfying Condition (63) with respect to a given 6 is closed
under intersection.

3. Let 6 be an observation criterion, let V be an (S, L)-execution tree satisfying Con-
dition (63), and let L' C L be such that 6 is L'-consistent. Then the projection
projy, 1., (V) satisfies Condition (63) with respect to ¢'.

4. If V' and V" satisfy Condition (63) with respect to 6 and 0" and these two observation
criteria are compatible, then V' x, V" satisfies Condition (63) with respect to both ' x6"
and 0" U 0" (provided that the latter is distributable).

Proof: We prove the successive statements.
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1. Obvious, by definition of U 4.
2. Obvious.

3. Condition (64) ensures that, if two paths ¢ and ¢’ of V are #-equivalent, then their
images by the projection projy, ;... are also 6'-equivalent. Since equality of child trees
is preserved by projection, this statement is proved.

4. Since ' and 6" are compatible and 0 =g.r 6’ U 6" is distributable, then 6 is both L'-
and L"-consistent. Let o1 and o2 be two f-equivalent paths of V' x,, V", and let w;
and wy be the words over labels they define. By (62) and with the corresponding
notations, this means that:

S1,init = S2,init » S1,end = S2,end , and O(wy) = #(ws). (65)

The same holds if we take instead 6 =ger 8’ x 0", where the two observation criteria
0" and 6" are arbitrary. By definition of the product of execution trees, and since 6 is
distributable, (65) is equivalent to:

i o i 0 " . " .
$1,init = 52,init » S1,end = S2,end > S1,init = S2,init » S1,end = 52,end

0w = 0'(wl) 0" () = 0" ()
Therefore, using notation (59), projy, (01) and projy, (02) are #'-equivalent, and
pProjy. (01) and projy. (02) are #"-equivalent. Thus child trees of projy, (01) and

pProjy. (02) are isomorphic, and so are child trees of proj. (01) and projy» (02).
Hence, child trees of oy and of o5 are isomorphic too. o

Using Lemmas 5 and 6, we are now ready to introduce the basic operations on trellises, by
building on the corresponding operations, for execution trees:

e For 7 and T’ two (S, L, #)-trellises, their intersection is defined by

TOT  =aee U, (To(T)NTH(T))

e Let 7 be an (S, L,0)-trellis, and let L' C L be such that 6 is L’'-consistent, and
m: S — S’ a total surjection from S onto some alphabet S’. The projection of T onto
L' along 7 is defined by:

prOjL,L’;w (T) —def \Ijall (prOjL,L’;ﬂ' (\1’9(7—))) ) (66)

where 6’ is the restriction of 6 to L’. We shall write simply proj L,;W(T) instead
of projy, 1. (’T) when no confusion can result. By statement 3 of Lemma 6, this
definition is legitimate.
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e Let 7 be an (S, L, 6)-trellis, and 7' be an (S’, L', 0')-trellis. Define the following two
kinds of product:

for § L' distributable: 7 x, , T' =def \I’;Ulgr (\I’e(T) Xy ‘1’0’(7-,)) (67)
for any two 6 and 6": T x, , T' =der ‘I’(;Xlgz (‘1’9(7) Xy ‘I’H’(TI)) (68)

By statement 4 of Lemma 6, this definition is legitimate. Furthermore, let o;,i = 1,2
and o},7 = 1,2 be two pairs of equivalent paths of ¥y(7) and Wy (T'), respectively,
such that oy and o}, on the one hand, and o5 and ¢}, on the other hand, synchronize
to yield two paths of Wy (T) x,, ¥p.(T'). Then these two paths are also equivalent, for
the two observation criteria 6" LI 8" and 6’ x 6".

The following result aims at satisfying Requirement 1:

Theorem 7 The above operations of intersection, projection, and product, can be computed
directly on trellises.

Proof: See Algorithm 7 of Appendix A.3. S

4.3.3 Discussion: interleaving versus partial orders

In this section we compare the two kinds of products, in terms of efficiency of the resulting
data structure.

Consider first the case in which each local system A; is equipped with observation crite-
rion

Observation criterion #; counts the transitions (for simplicity, we assume that all labels of
L; are observed). Note that these observation criteria are pairwise compatible, so that we
can consider both their join O, = Lljc; 6; and their product ©, = X;c;6;.

While O is distributable, ©, is not. The following problem occurs when using 0, see
Fig. 7 for the case whare I has cardinal two. This figure shows two automata A4 and A’.
Note that A’ itself is already a #'-trellis. The last diagram shown is obtained by performing
projection as explained. It does not yield a valid trellis, however, since the two paths
S =% 81 —2> 55 and sy —=— s5 shoud not be confluent because they have different lengths.
The reason is that @, is not distributable. This problem disappears when (correctly) using
0O, see Fig. 8.

Let us modify the observation criteria as follows. Take

B(0)=¢ if (=e, eclse 6(0) =-

'y =1¢0 if 0'=d, else 0'(l')=- (70)

In words, 6 counts the number of e’s and mark them with symbol “¢”, and €' counts the
number of d’s and mark them with symbol “d”. This amounts to considering that only
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Figure 7: Tllegal use of ©, when local observation criteria are given by (69).
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v
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observed events are counted and L, = {e}, L’ = {d}. Since L, N L = (), it follows that
f and @' are compatible, hence O is well defined. Since # and 6’ map symbols to disjoint
sets, ©; is now distributable and can thus be legally used. The two observation criteria O
and O, are compared in Figure 9. The latter is more efficient: ©, distinguishes paths that
differ by interleaving, whereas ©y does not. This is the reason for the merge on the second

diagram.

The conclusion is that one should always use product x

.y » Dever

XT,u)

for the following

two reasons: the former is legal for any tuple of local observation criteria, and even when
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Figure 9: Comparing legal products using ©, and © «, for observation criteria (70).

the latter is legal, it is less efficient. Vector observation criteria are preferred to interleaving
ones.

Relation with Fidge-Mattern vector clocks for distributed systems. Vector clocks
have been introduced for the analysis of distributed systems and algorithms in the 80’s
by Mattern [36] and Fidge [22]. Using vector clocks amounts to regarding executions of
the overall distributed system as tuples of synchronized local executions. Product X,
amounts to using vector clocks, which is nothing but taking a partial order view of distributed
executions, where local executions are still considered sequential.

4.3.4 Trellis based monitors

We want to extend our algebraic formulation of monitors to trellises. Considering the anal-
ysis of the previous section, we shall only use product x, ., which we denote simply by
X
We first discuss global monitoring. Let A = (S, L, —,Sy), L = L,UL, be an automaton,
and € an observation criterion for it. Let € be a set of observations for A, represented as

an (N, L,,0,)-trellis. The trellis based monitor for A is defined as the map
Q — M =4 proj, (T_A,g X Q), (71)

where projection 7 removes the state label arising from the observations.

Next, thanks to Lemmas 5 and 6, the apparatus composed of factorization Theorem 1,
partial order <, and Lemmas 1-3 carries over to trellises. Having this at hand, we can next
consider modular monitoring with trellises.
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Let A = X;er A; be a product of automata and let 6;,i € I, be a family of observation
criteria and set © = x;cr8;. For each ¢ € I, let 6, ; be the restriction of 6; to L, ; and set
0O, = Xierbo,i- For each i, let w; be an observation for A;. It is a chain, and thus we can
see it as a trellis with observation criterion 6, ;. The global observation is thus represented
by the (N, L,, ©,)-trellis

T
Then, having a factorization theorem for trellises, monitoring can again be defined as the
map:

(Wi)ier > Mmod =det (Projp .., (Tae X, Q))iel, (72)

where m; : SxN' — S; is the projection over the ith local state of the system for monitoring.
Examples of distributable observation criteria for modular monitoring are cases (ii) and (iii)
of Section 4.3.3.

5 From trellises to partial order models

In the preceding section, we have seen that runs of distributed systems should be seen as
partial orders, obtained by synchronizing the sequential runs of components. Now, if the
components of the distributed system interact asynchronously, then internal concurrency
also must exist within each component. Hence, the runs of a component should themselves
be seen as partial orders. Thus it makes sense to construct a variant of unfoldings or
trellises, where runs appear as partial orders. This is illustrated in Fig. 10. Advantages and
difficulties are discussed next.

Advantages:

e Partial order unfoldings are better than interleaving ones in that they remove diamonds
within the component or system considered. This causes reduction in size.

e Furthermore, when long but finite runs are considered for the monitoring problem,
it may be that partial order unfoldings perform nearly as well as interleaving based
trellises; this is, e.g., the case when most merge in the considered trellis originate from
diamonds in the interleaving semantics.

e Partial order trellises are better than interleaving ones in that they remove diamonds
within the component or system considered. This causes reduction in size.

e Partial order unfoldings and trellises can be equipped with notions of product and
intersection.
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Figure 10: Showing the partial order unfolding ¢}’ 4 and trellis 737 .4, 4/ for comparison,
we have left the sequential trellis T4x a7.9xg:. Note that the diamond has disappeared in
both cases.

Difficulty: the projection of a partial order unfolding or trellis can sometimes not be
represented as another partial order unfoldings or trellis, see Fig. 11. This figure shows
the problem with partial order unfoldings, but the same difficulty holds with partial order
trellises.

Solutions when using partial order unfoldings. When using partial order unfoldings,
the difficulty can be circumvent by one of the following means:

e 15* method: enhance occurrence nets with possible additional causalities and conflicts,
not resulting from the graph structure of the net. This is the approach taken in [15, 16].
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Figure 11: The figure shows a distributed system with two components, written as (Ax .A") x
A". This means that the first component is already a distributed system and therefore has
internal concurrency. We show on the right the partial order unfolding of this distributed
system. Some conflicts are depicted in in thick gray dashed lines and some causalities are
depicted in thick gray solid lines. Projecting on the first component should yield the last
diagram, having the conflicts and causalities in it. Unfortunately, these cannot be captured
by occurrence net features, with the available nodes. An enriched structure is needed.

e 2™ method: abandon occurrence nets and use event structures instead. Event struc-
tures are sets of events equipped directly with a causality relation and a conflict rela-
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tion, with no use of condition nodes to graphically encode conflict. This is the approach
taken in [18].

e 3" method: keep occurrence nets as such, but avoid the enhancement used in the 15
method by exchanging messages in the form of so-called interleaving structures, see [4].

With these modifications, the preceding techniques for distributed monitoring with partial
order unfoldings apply. The development of similar techniques for partial order trellises is
under progress.

6 Related work on distributed diagnosis

Distributed diagnosis has been investigated within the so-called Discrete Event Systems
community. Most of the work performed consists in extensions and adaptations of the de-
centralized diagnosis framework originally introduced by Debouk, Lafortune, and Teneket-
zis [11]. This early work introduces the idea of distributed observers, although modularity of
computations is not fully developed, since the underlying system is handled as a whole. Boel
and van Schuppen [7] have examined an asymmetric version of this setting, where one ob-
server helps the second, and at the same time minimizes its communication cost. The effect
of delays in communication channels is explicitly studied and handled [12, 41], and issues of
decidability of distributed observability (or diagnosability) were analyzed by Tripakis [49].
By contrast with the above contributions, the work of Su and Wonham [46, 47, 48], that
we extensively discussed, fully investigates modularity issues and is probably the closest to
the present paper. It introduces the notion of supremal local support of a language sys-
tem. Moreover, this object is computed by a message passing algorithm, as in our case.
The on-line version is not investigated however. All these studies use the classical au-
tomata/languages/product paradigm, which makes considering distributed systems more
difficult. The recent line of search by Lafortune on Petri net diagnosis introduces an algebra
for distributed systems that is closer to ours [23, 24].

Diagnosis has also been investigated in the AT community, see in particular [28]-[31]
and [39]. Most interesting is the book [29]. In this work, the same problem of monitoring
is considered as in our paper. The solutions are stored and manipulated in the form of
labeled Directed Acyclic Graphs resembling our unfoldings. One step further is performed
compared to unfoldings: when an unobserved cycle of the automaton exists, then it is kept
as such in this “partial unfolding”, very much like what we did in Figure 6 for trellises.
Compared to the present work, Lamperti-Zanella’s one does not attempt to formalize the
data structures they use. As a consequence, distributed algorithms become cumbersome
and their correctness is difficult to verify. This fact is indeed a strong argument in favor of
our more algebraic approach to deal with data structures.

The message passing algorithms we have developed in Sections 3.4 and 3.5 relate to so-
called belief propagation algorithms in the area of Bayesian Networks, a community bridging
AT and statistics [32, 38]. These ideas are nevertheless present in many communities, under
different names (signal and image processing, digital communications, coding theory, etc.).
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The algebraic techniques we used to manipulate data structures originate from a totally
different community. Foundations are found in the seminal work [37] on event structure
semantics of Petri nets. Unfolding theory and event structures have been subsequently de-
veloped by Winskel, e.g., in [52, 53]. The interest of the partial order nature of unfoldings
has been first recognized by McMillan [34, 35] in the context of model checking. System-
atic investigation of factorization properties of data structures, and their use in distributed
algorithms were then explored in our group [15, 16, 19].

7 Extensions and further research issues

In this section we review some further problems arising from applications and we draw
corresponding research directions.

7.1 Building models for large systems: self-modeling

As explained in Appendix B, realistic applications such as fault management in telecommu-
nication networks and services require models of complexity and size far beyond what can
be constructed by hand. Thus, any model based algorithm would fail addressing such type
of application unless proper means are found to construct the model.

In some contexts including the one reported in Appendix B, an automatic construction
is possible. One approach developed in [1] is called self-modeling. Tts principle is illlustrated

capturing architecture behavior of generic standards:
(network discovery) network elements SDH, WDM
OTN, GMPLS...

A

automatic automatic

behavioral model ™ algorithm generation
generation and deployment

Figure 12: Self-modeling.

in Fig. 12. To construct models, the following prior information is assumed available:

(a) A finite set of prototype components is available, and all systems considered are ob-
tained by composing instances of these prototype components.

In our application context, these prototype components are specified by the different
network standards used (as listed in the left most box of Fig. 12), in the form of an
inheritance tree of Managed Classes, described in the so-called information model of
each technology. In this context, the number of classes for consideration is typically
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small (a dozen or so). In contrast the number of instantiated components in the
systems may be huge (from hundreds to thousands).

(b) For each prototype component, a behavioral model is available in one of the forms we
discussed in this paper.

This is the manual part of the modeling. It was done, e.g., by Alcatel, for the case of
all standards shown in the left most box of Fig. 12, by browsing component behaviour
descriptions in the norms, and parsing typical failure scenarios [1].

(c) System architecture can be automatically discovered.

By “system architecture” we mean the structure of the system (list of instances and
their topology and interconnections). This assumes that so-called reflexive architec-
tures are used, i.e., architectures carrying a structural model of themselves. This is for
example the case in our context, where this task is referred to as network discovery.

Having (a), (b), and (c) allows to construct automatically the system model (A;);e; and
even generate and deploy the monitoring algorithm automatically [1].

7.2 Probabilistic true concurrency models

In real-life applications, monitoring and diagnosis generally yield ambiguous results. For
example, in real-life systems, multiple faults must be considered; as a result, it is often
possible to explain the same observations by either one single fault or two independent
faults. This motivates considering probabilistic models and developing maximum likelihood
algorithms.

In doing this, we would obviously like that noninteracting subsystems are probabilistically
independent. None of the classical probabilistic DES models (Markov chains, Hidden Markov
Models, Stochastic Petri nets, stochastic automata) has this property. Samy Abbes [2, 3]
has developed the fundamentals of true concurrency probabilistic models.

7.3 Timed true concurrency models

In performing monitoring or diagnosis, physical time (even imprecise) can be used to filter
out some configurations. Timed systems models are needed for this. Candidates are timed
automata and concurrent or partial order versions of them [9].

7.4 Dynamically changing systems — Objective 4

So far we mentioned this objective but did not address it in this paper. In fact, addressing it
is the very motivation for considering run-based on-line algorithms in which no diagnoser is
statically pre-computed. Models of dynamically changing DES are not classical. A variety
of them have been proposed in the context of distributed systems. Petri net systems [14] are
systems of equations relating Petri nets; these models allow for dynamic instantiation of pre-
defined nets. Variants of such models exist in the Petri net litterature. Graph Grammars [44]
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are more powerful as they use a uniform framework to represent both the movement of
tokens in a net and the creation/deletion of transitions or subnets in a dynamic net. Graph
Grammars have been used by Haar et al. [25] for diagnosis under dynamic reconfiguration.
This subject is still in its infancy.

7.5 Incomplete models

For large, real-life systems, having an exact model (i.e., accepting all observed runs while
being at the same time non trivial) can hardly be expected. The kind of algorithm the
DES community develops gets stuck when no explanation is found for an observation. In
contrast, pattern matching techniques such as chronicle recognition [13] developed in the AT
community are less precise than the DES model based techniques but do not suffer from this
drawback. Leveraging the advantages of DES model based techniques to accept incomplete
models is a challenge that must be addressed.

8 Conclusion

We have discussed diagnosis of large networked systems. Our research agenda and require-
ments setting were motivated by the context of our ongoing cooperation with Alcatel, as
briefly reported in the appendix. The focus of this paper was on on-line distributed diagno-
sis, where diagnosis is reported in the form of a set of hidden state histories explaining the
recorded alarm sequences. In this context, efficiency of data structures to represent sets of
histories is a key issue.

We have tried to deviate least possible from the classical setting, where distributed
systems are modeled through the parallel composition of automata or languages. Our con-
clusion is that, to a certain extend, adopting a partial order viewpoint cannot be avoided.
To the least, distributed executions must be seen as a partial order of interacting concurrent
sequences of events. Of course, adopting a truly concurrent setting in which executions are
systematically represented as partial orders is also possible.

This heterodox viewpoint raises a number of nonstandard research issues, some of which
were listed in the previous section. While our group has started addressing some of these,
much room remains for further research in this exciting area.

Another important remark we like to state is the usefulness of categorical techniques
in analysing the issues we discussed in this paper. Note that we have considered a large
variety of data structures to represent sets of runs. For each of them, we have considered
the wished set of basic operators. Getting the desired factorization properties can become a
real nightmare if only pedestrian techniques are used — see, e.g., [18] for such a situation.
In contrast, taking a categorical perspective [33] significantly helps structuring the research
problems and focusing on the right properties for checking. It also prevents the researcher
from redoing variants of her proofs. See for instance [4, 19, 20].
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A Appendix: effective algorithms

A.1 Product of chain processes

Let X1, X5 be chain processes, and ¥ denote their product ¥; x, ¥2. The algorithm below
recursively builds the prefix closure [X] of ¥, which can then be “filtered out” to remove
spurious runs of A = A4; x A, not belonging to ¥; x, Xs.

Notations. Let o; be a chain in ¥;, representing a run of A;. We denote by [o;)s; the
fact that o; leads to state s; of A;. And o} = 0;.0;+5} denotes the extension of o; with the
extra transition s; Li s si of A;. We take L =Ly ULy, S =51 x Sy and m; : S — S; the
canonical projection.

Algorithm 5 (product of chain processes ¥; and )
e [Initialization. ¥ = {e} where € denotes the empty chain.

e Recursion. Apply the following extension rule until stability of X0 let o € X, with
0; = Projy, 1., (0), [0i)si, and let | € L:
—ifle LiNLy and Ao} = 0;.1.5}, € [X;], 71 =1,2,
then let o' = g.l.(s],s)) and ¥ := X U {c'},
— ifl € Ly \ Ly and o} = 01+ls8) € [T4],
then let o' = oele(s],s2) and T := X U {o'},
— symmetrically for | € Ly \ Ly.
The filtering of ¥ can be performed afterwards, by simply removing runs ¢ such that their
projections o; are not in ¥;. This operation could also be incorporated to algorithm 5, which

we didn’t do for clarity: given o such the o; € ¥; for i = 1 or i = 2, remove o from ¥ as
soon as all possible extensions by | € L have been tried.

A.2 Product of execution trees

We base the construction procedure on definition (58) that derives x,, from x, by
Vi Xyr Vo = @71((1)(1}1) Xa @(VQ))

So the essential modification in algorithm 5 amounts to incorporating the “refolding” ®*
of ¥ into an execution tree.

Notations. We denote by n; a generic node of the tree T; of V; = (T4, As, fi). Node n;
identifies the unique run of the prefix closure [V;] of V; ending at node n;, we denote this
run by | n; (I n; is the causal past of node n; in V;). For n a node of V = V; X, Va,
corresponding to run o =] n of [V], we denote by n; =ger xi(n) the node of V; that
corresponds to o; = projy, ... (o).
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Algorithm 6 (product of execution trees V; and V)
e Initialization: V = (T, \, f) where
— T = {r}, a single rootnode, no paths, with
— xi(r) = r;, the rootnode of T;, i =1,2

)\(7" (>\1 (rl)a )\2(7"2)),
f(r) = fi(r) f2(r2), ie. 7 is a stop point iff both r; are stop points.

e Recursion: until stability of V, apply the following extension rule

) =
) =

let n be a node of T, n; = x;(n), i = 1,2, and
let | € L such that path n ——n' does not exist in V

—ifl€ LiNLy and 3n; —L>n! € [Vi],i= 1,2,
then create n ——n' in V
with xi(n') = ng,i = 1,2, A(n') = (A1(n}), A2(ny)) and f(n') = fi(ny)f2(n3),
— ifl € Ly \ Ly and 3n; —L>n! € [Vi],
then create n ——>n' in V
with x1(n') = nf, x2(n') = n2, A(n') = (A1 (n}), A2(n2)) and f(n') = fi(n}) f2(n2),

— symmetrically for 1 € Lo\ L.

In the very same way that Algorithm 5 was building the prefix closure of ¥; x_, X, this
procedure introduces spurious or “dead” paths in V, i.e. paths that do not lead to a run of V.
The edge n —L= n' is dead in V iff the subtree beyond n' (including n') is finite and doesn’t
contain any stop point. Such paths must be removed after convergence of algorithm 6.
They could also be detected and discarded on the fly: when no extension is possible after
some node n' that is not a stop point, the edge n —=n' (or the node n') is declared dead.
Similarly, a node that is not a stop point and leads only to dead nodes is dead itself. This
can be easily implemented in algorithm 6 under the form of an extra backtracking rule,
which we don’t do for clarity. The essential point being that V; x,, V> can be computed
directly, without the need to perform the unwrapping ® on it.

A.3 Product of trellises
As above, we base the construction on definition (67), that derives x,. , from x, by
T Xr.u T2 = \11971(\1191 (7—1) Xy Uy, (7-2))

where # = 6, U 0 and is distributable. (The approach is identical for the other product
X, and @ = 0; x 03.) The essential modification with respect to algorithm 6 is thus the

introduction of the “refolding” performed by \1!0_1 of T into a trellis.
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Notations. Recall that a node n; in trellis 7; now represents a set of ;-equivalent runs
o, for which n; is the maximal node. Given node n in 7, extremity of a run o, we still
denote by x;(n) = n; the extremal node of 0; = projy, ..., (o). By definition of trellises,
n; doesn’t depend on which o ending at n is selected.

Algorithm 7 (product of trellises 71 x, , 72)

e Initialization: T = (G, A, f,0) where (G, X, f) is as in algorithm 6 up to notations,
and 6 = 01 (] 02.

e Recursion: until stability of T, apply the following extension rule

— same as in algorithm 6, but after the creation of a path n ——=n' in T,
if In" € T such that n' and n'" represent 0-equivalent (sets of ) runs,
then merge n' and n''.

Although this procedure will obviously yield a valid (S, L,#)-trellis, by construction, we
must however justify that the merge is legal in the recursion.

First of all, observe that if n' and n' are f-equivalent, then n} = x;(n’) and n} = x;(n")
are #;-equivalent, thanks to the assumption that # = 6, Ll 65 is distributable. So one has
n; = n by definition of an (S;, T3, 8;)-trellis, and x; is well defined on the “merged node”
(n',n"). This also shows that the labelings A(n') and A(n") are identical. And in the same
way, the stop values f(n') and f(n") are also identical.

As in algorithm 6, spurious/dead paths may be built in the recursion. They can be
discarded at convergence of algorithm 7 or at runtime, in the same manner.

B Appendix, application context: distributed fault man-
agement in telecommunications networks

The techniques reported in this paper were developed in the context of a cooperation with
the group of Armen Aghasaryan at Alcatel Research and Innovation. A demonstrator has
been developed for distributed fault diagnosis and alarm correlation within the ALMAP
ALcatel MAnagement Platform.

More recently, an exploratory development has been performed by Armen Aghasaryan
and Eric Fabre for the Optical Systems business division of Alcatel. The system considered
is shown in Fig. A.1. In this application, diagnosis is still performed centrally, but the system
for monitoring is clearly widely distributed. Diagnosis covers both the transmission system
(optical fiber, optical components) and the computer equipment itself. Fault propagation
was not, very complex but self-modeling proved essential in this context. Performance of the
algorithms was essential.

A typical use case of distributed monitoring is illustrated if Figs. A.2-4. Fig. A.2 illus-
trates cross-domain management and impact analysis. The network for monitoring is the
optical ring of Paris area with its four supervision centers. When a fault is diagnosed, its
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possible impact on the services deployed over it is computed — this is another kind of model
based algorithm.

As for the optical ring itself, Fig. A.3 shows the system for monitoring. It is a network of
several hundreds of small automata — called managed objects — having a handful of states
and interacting asynchronously. Due to the object oriented nature of this software system,
each managed object possesses its own monitoring system. This monitoring system detects
failures to deliver proper service; it receives, from neighboring components, messages indi-
cating failure to deliver service and sends failure messages to neighbors in case of incorrect
functioning. This object oriented monitoring system causes a large number of redundant
alarms travelling within the management system and subsequently recorded by the supervi-
sor(s). Fig. A.4 shows a typical fault propagation scenario involving both horizontal (across
physical devices) and vertical (across management layer hierarchy) propagation.

The problem of recognising causally related alarms is called alarm correlation. Fig. A.5
shows how monitoring results are returned to the operator, by proposing candidate corre-
lations between the thousands of alarms recorded, i.e., which alarm causally results from
which other alarm. This shows by the way that diagnosis is not necessarily formulated, in
real life applications, as that of isolating specific pre-defined faults.
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Figure A.1: the submarine optical telecommunication system considered for the trial with Alcatel
Optical Systems business division and Alcatel Research and Innovation.
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