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A constructive and unifying framework for

zero-bit watermarking

Teddy Furon

Abstract

In the watermark detection scenario, also known as zerevhtermarking, a watermark, carrying no hidden
message, is inserted in a piece of content. The watermadctdetchecks for the presence of this particular weak
signal in received contents. The article looks at this moblfrom a classical detection theory point of view, but
with side information enabled at the embedding side. Thiamaehat the watermark signal is a function of the host
content. Our study is twofold. The first step is to design thstlembedding function for a given detection function,
and the best detection function for a given embedding foncfThis yields two conditions, which are mixed into one
‘fundamental’ partial differential equation. It appeahatt many famous watermarking schemes are indeed solution
to this ‘fundamental’ equation. This study thus gives bittha constructive framework unifying solutions, so far
perceived as very different.

Index Terms

Zero-bit watermarking, Pitman-Noether theorem, detectraeory.

I. INTRODUCTION

In the past six years, side-informed embedding strategies been shown to greatly improve watermaekoding
They exploit knowledge of the host signal during the coredtom of the watermark signal. The theory underlying
these side-informed schemes was presented in the famoas‘Wdpting on Dirty paper” by M. Costa in 1983. Our
work gives some theoretical aspect of the achievable padoces when using side-information at the embedding
side, as in Costa’s correspondence, but for the wateretgctionproblem (a.k.a. zero-bit watermarking [1, Sect.
2.2.3]). This surprisingly received almost no study cormepato the issue of watermark decoding, although it is
perceived as a non trivial problem [2], [3]. Some other etioms are works from M. Milleret al. (embedding

cone) [4], JANIS [5] and watermark detection with distontioompensated dither modulation (DC-DM) schemes
[6].
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A. Motivations from the application side

The trade-off between payload of the hidden message andtrass is a well known fact in watermarking. The
main rationale for zero-bit watermarking is that maximurbustness that a watermarking primitive can inherently
offer, is expected as the payload is reduced to the minimuere Hre two application scenarios where zero-bit
watermarking might be sufficient, ie. it is not necessaryitteta message, but just the presence of a mark.

Some copy protection platforms [7] use watermarks as flagsse/tpresence warns compliant devices that the
piece of content they are dealing with, is a copyrighted neteContent access and copy protection are tackled by
cryptographic primitives. Watermarking just prevents tealog hole’ [8]-[10]. In other words, compliant devices
expect three kinds of content: commercial contents whieh earcrypted and watermarked, free contents which
are in the clear and not watermarked, and pirated contentsigh the ‘analog hole’ which are in the clear but
watermarked. Although most of DRM systems hide a messagedilcopy status, we have seen here that the
presence of a mark is indeed sufficient.

Copyright protection is the most famous application of wai@king. However, hiding the name of the author
in his Work is just a fact having no legal value. In Europe, #li¢hor first must be a member of an author society,
then he registers his Work. The only legal proof is to givedence that the suspicious image is indeed a version
of a Work duly registered in an author society’s databases€guently, this is a yes/no question, which can be
solved by detecting the presence or absence of a watermaviopsly embedded by an author society.

In these two applications, the presence of a watermark isi.rsecret, contrary to a steganographic scenario. The
attacker obviously knows which content is watermarkedhidopy protection application, for instance, there is no

point in attacking a personal video which is a free conteat pnotected neither by encryption nor by watermarking.

B. Motivations from the scientific side

Zero-bit watermarking is closely related to detection ofiweignals in noisy environment: the watermark signal
is embedded in a host signal, unknown to the detector. Itsepasvvery weak compared the one of the host.
Watermarkers resorted to classical elements of detectienry very early. This includes the use of Neyman-
Pearson and Pitman-Noether theorems, calculus of asyimgficacy, LMP tests (Locally Most Powerful) [11],
and robust statistics [12].

The priority was at these times to design a better detector the classical correlation, which is only optimal
for white host signals. To name a few, this includes the warkieams such as Q. Cheng and T. Huang [13], A.
Briassouli and M. Strinzis [14], M. Barrgt al. [15]. They assume that the host signals are drawn from a known
pdf (probability density function), and they apply the abawentioned classical elements of detection theory. X.
Huang and B. Zhang relax this implicit assumption consittgthat the ‘real’ pdf of the host belongs to a given
family of distributions [16]. Their test is designed to fgiperform for the entire family. This allows to encompass
attacks modifying the pdf within the family.

Another track is to see the host signal as a side informatidy available at the embedding. Side information

brings huge improvements in watermark decoding. Howetgruse for zero-bit watermarking has received less
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interest. Pioneer works are mostly heuristic approachgq14]. More recent works use the binning principle to
achieve zero-bit watermarking [6], [18], although J. Eggeotices that SCS (Scalar Costa Scheme) is less efficient
for zero-bit than for positive rate watermarking scheme, [@8ct. 3.6]. Indeed, Erezt al. prove the optimality of
DC-DM based on lattices (those whose Voronoi region asytigatidy tends to an hypersphere) for strictly positive
rate data hiding as far as an additive white noise attack nisidered [20]. In the case of zero-rate watermarking,
P. Moulin et al. reasonably conjecture that sparse lattice DC-DM is opt{@H]. For zero-bit watermarking, lattice
DC-DM achieves high performances showing some host im@nfee rejection [6]. However, there is a loss of
efficacy compared to the private setup where the side infilomas also available at the detector.

At first glance, it would seem that the problem of watermartedion is simpler than the decoding of hidden
symbols, because the decoder’s output belongs to a mespage which is bigger than the detector's range
B = {0, 1}. In other words, whereas watermark detection implies a lgirbmary hypotheses test, decoding of
watermark is a complex multiple hypotheses test.

Yet, almost no theoretical limiie. an equivalent of Costa’s result but for watermark detecti@s been shown,
except [22, Sect. 2] which only tackles the Gaussian casdléthav mentioned during the WaCha’'05 workshop
in Barcelona, that zero-bit watermarking is a hard problehose optimal solution is not known for the moment
[2]. Especially, up to now, there is no reason why the binnpnigciple should be optimal, even if, as far as the
author knows from the literature, it has the best performaragainst an AWGN attack. Yet, DC-DM schemes are

known to be weak against scale gain attack.

Il. STRATEGY AND NOTATION

Our goal is not to derive an accurate statistical model ofttbst signal as done in the above-mentioned prior
works. On contrary, very basic assumptions (Gaussianilalitibn or flat-host assumption) are in order, allowing
us to stress the major role of side information at the embepsiide. While the binning scheme is commonly used
to exploit side information, it is not the only way. Our appch is indeed closer to the theory of weak signal

detection.

A. Embedding side

The embedder transforms an original host signialto a watermarked contegt= f(s) = s+ x. The host signal
or channel state is a vector ofn components of the original content, modeled as randomhlasaThe notational

key of the article is to decompose the watermark signak a unit power vectow and an amplitudé.
f(s) =s+x=s+0w(s). 1)

w is a smooth function fronR™ to R", with the constraint&s{w(s)} = 0 andEg{||w(s)||?} = n. This vector
gives a direction pointing to an acceptance regioR®f towards which the host signal should be pushed. The scalar
6 controls the gain or amplitude of the watermark signal. Fatcal frameworks often use a constaht= /P,

whereP is the fixed power ok. Yet, in practice, host contents might support differentesmark power depending
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on their individual masking property. This change mightreeecur within a content, such that we should resort to
a vectorf = (64, --- ,0,) gathering positive and small gains affecting each sampteréftrict our study to scalar
gain for the sake of simplicity, but the results of this papan be easily extended to a vector gain. In this case,
one might considef as the average gain.

Both parts of the watermark signal depends on the host chregéher through side information, or for some
perceptual reasons. Unfortunately, in blind schemes, igifiemation is not made available at the detection side.
Moreover, we wish to maintain a low detector’s complexithigh prevents the use of a human visual or auditive
system in order to recreate an estimatefdbased on the received content. The only fact the detectowkni®
that the watermark amplitudgis positive and small. We believe this model allows a greadlflbty which eases

practical implementations of watermarking schemes.

B. Detection side

Upon receipt of signat, the detector makes a binary decisieh= 1 (d = 0) means that, according to the
detector, the piece of content under scrutiny is waternthikesp. it has not been watermarked). There are two
hypotheses: Under hypothes$i&, the detector receives an original content ry = s (see end of subsecti@-A
for justifications), whereas under hypothesis, the detector receives a watermarked and possibly attazkatent

r = r;. Probability of false alarnP;, and power of the tesP, are given by
P =Pr{d=1Ho} ; P,=Pr{d=1H1}. 2

Once again, in zero-bit watermarking, no symbol is tran@ditOur problem is then fundamentally different
from the communication of one bit because, under hypotiiégjno processing is applied asggiven by Nature,
is directly sent to the detector.

We assume that the detector has the structure of a NeymageeRe@st. First, it applies a detection function
t mapping fromR"™ to R. Then, this scalar is compared to a thresheldl = 1 if ¢(r) > 7, d = 0 else. The
threshold is given by the constraint of a significance levsluich thatP;, = Ep{d|Ho} < a. Note that, for a given
detection function, this threshold does not depend on whppéns under hypothests, (embedding functiorw,
watermark’s amplitude®). Moreover, we assume without loss of generality, that,eurfd/pothesisH, ¢t(r) is a

centered random variable with unit variance:
Er{t(r)[Ho} =0,  Var{t(r)|Ho} = 1. )

If not the case, it is easy to built the te$t) = (t(r) — Er{t(r)|Ho})//Var{t(r)|Ho}.

C. Pitman Noether efficacy

In this article, the tests are compared asymptoticallyrfor +0o0. The Pitman-Noether theorem indicates that

the best test has the higher efficagywhose general definition is given by [11, Sect. III.C.3]:

1

s O™ 12\
ﬁ_<nlin;o o S ER{t()[ M1} Var{t(r)[Ho) 1/2) : “)
6=0
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wherem is the first integer for which then-th derivative of Eg {¢(r)|H1} is not null, andd a positive scalar
such that the limit is not null. In our problem, it is not unseaable to assume: = 1 andé = 1/2 because the
expectation of the detection function grows wiiln as Vafi(r)|Ho} has been set to one for all This is at least
true for well known watermarking schemes. We are not ablenig & counter-example, ie. a watermarking scheme
having a better growth rate thagin. Therefore, we restrict our analysis do=1/2.

The Pitman Noether theorem holds for composite one-sidgmbthesis test. In Secm}A, motivations clearly
show that our problem is not a simple hypothesis té& {( & = 0 versusH, : 8 = /P fixed), but a composite
one-sided hypothesis test{{ : 6 = 0 versusH; : 6 > 0).

Last but not least, the proof of this theorem is based on ampstic study where the alternative hypothesis
H, has a vanishing parametéy, = kn—?, with k a positive constant. Important assumptions are the foligwi

regularity conditions:

lim ( %ER{t(I‘”Hl}

n—oo

/B (1(0) 1)

) =1 and lim (Var{t(r|H1)}/Var{t(r)|Ho}) =1,
0 n—oo

(5)
and thatt(r) — Egr{¢t(r)} tends (convergence in law), as— oo, to a normal variable, both undéf; and under
Ho.

We also define the efficiency per element (a.k.a. the difteakedetector SNR) in the same way as the efficacy

0=

but without the limit, such that in our case:
2

0= [l ©

IIl. DETECTION OF WEAK SIGNAL DEPENDENT ON SIDE INFORMATION

The goal of this section is to give the expressions for the detection and the best embedding functions. We
mean ‘best’ in the sense of the Pitman Noether theorem, @& as they maximized the efficiency per element.
This section doesn’t consider any attack. Hence, the PitMagther theorem considers signais = s and
r; =y = s+ 0,w(s), with Eg{||w(s)||?} = n andd,, = k/\/n, k > 0. It means that the proof of this theorem
fixes the embedding distortion tbr = 62n = k2, but asn increases, the power of the watermarking signal

vanishes.

A. Best detector for a given embedding function

In this subsection, embedding functien is fixed. A well known corollary of the Pitman Noether theor§i,
Sect. 111.C.3] states that the Locally Most Powerful (LM®st inf# = 0 is asymptotically the best. A Cauchy-
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Schwarz inequality gives:

0
SpER{wIH)

dr (7)

0
t(r) 89P(T|H1

\/ [ twptelro)d \/ [ I‘|H0 ] el

2
) dr (8)
0=0
1 0
—\/ [ vepro) <p—(rmo) O pixfrs) 0_0) dr, ©)

_ 1 Op(r[Ha)
t(r)—ktp(rmo) 0|, (10)

wherek; is a positive constant whose role is explained below. Theaigbe LMP with § = 0 is reinforced in

0=0

IN

with equality for the LMP test:

practice by the fact the watermark power is very weak conmtptwehe host power.

When there is no attack(r|H,) = ps(r) andp(r|H;) = py (r). We assume there exigts> 0, such that function
f(s) is invertible at least when < 6 < 0: s = f~!(y). This allows to writepy (r) = ps(f~!(r))|Jg-1 (r)|, with
the last term being the determinant of the Jacobian matri éftaken at(r, #). Developing this last equation (see

Appendixﬂ), we finally get these expressions:

tr) = kvps((;)T (x) = kadliv(w(r)) (12)
Ly, IVsw) 12)
ps(r)

The first term of 1) corresponds to the classical non-lireearelation based LMP test [13]-[15], whereas the
second term is not null whenever side information is enahlethe embedding side.
Let B,,(R) be the ball of radiug centered o0, S,,(R) the associated hypersphere, dndR) = an(R) t(r)ps(r)dr.

Then, thanks to the Gauss theorem, we have

E(R)| = kK /B |y s w0 (13)
— g / ps(r)w(r) e(r)dr (14)

Sn(R)
< K / ps ()| w(r) | dr, (15)

Sn(R)

with e(r) the unit normal vector at position on S,,(R). E{||w(r)||?} < oo implies thatlimg_, ;. E(R) = 0.
This shows that the expectation of the detection functimermiby ) is zero under hypothesi), as required
in The constant; enforces that Vat (r)|Ho} = 1:

) L fopamn] )
’“‘(/ | o L_odr> | ()

Finally, (8), (10) and [(6) give the efficiency per element$ach tests:

n=n"tk;? (17)
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B. Best embedding function for a given detection function
The detection function being given (such thair,) is a centered random variable with unit variance), we write:
0 Es gt(s + 6w(s)) (18)
o0 0=0

- Er{t(r)[H1}
—  Be{w(s) ' Vi(s)}. (19)

00

0=0

It appears that, for a givet it is important to letw(s) «x Vi(s), Vs € R™. The efficiency per element is then

upper bounded by the following Cauchy-Schwarz inequality:

= ( / nps<s>||w<s>||||w<s>|ds) < / ps(3)]V(s)]%ds (20)

with equality when:
w(s) =k, ViE(s) VseR", (21)

wherek,, is a normalizing constant to achie¥g{||w(s)||?} = n:

kw = v/n/Es{[[Vt(s)[]?}. (22)
[®3) and [2R) give the efficiency per element for such tests:

n=nk,* =Es{||Vt(s)|*}. (23)

C. Synthesis

For the moment, we know how to design the best embeddingiumfdr a given detection function, and how to
design the best detection function for a given embeddingtfan. This is reminiscent of the Lloyd-Max algorithm in
guantization. However, dealing with closed form equatjams can insert@l) inm2) yielding a partial differential

equation, that we loosely name ‘fundamental equation of-berwatermarking’:
ps(r)t(r) + kiky,div(ps(r)Vi(r)) =0 Vr € R". (24)

Hence, the best couple of detection/embedding functians/} is {t*, k,,Vt*}, with t* a fundamental solution,
ie. a solution of @4). Note that]l?) anE[ZS) are still validherefore, it is possible to build a scheme of a given
n (virtually, as high as possible), providem(24) admits aisoh with k., k; = n~!. The fundamental equation can
also be written as:

Vps(r)

T
nt(r) + ps(®) Vi(r) + V=t(r) =0, (25)

V?t(r) being the Laplacian of(r).

D. A geometric property of fundamental solutions

A nice property induced by the fundamental equation is thaaiaof its solutions with different efficiencies per

element are orthonormal for the scalar prodict) defined here for two functiong andh by:
(9, h) = Er{g(r)h(r)[Ho}. (26)
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DenoteL[t] = div(ps(r)Vi(r)). This differential operator is symmetric Jf, . t;(r) L[t;](r)dr = [, L[t;](r)t;(r)dr.

In our case,

/n t;(r)L[t;])(r)dr — /n t;(r)Lit;](r)dr = / div(ps(r)(t;(r)Vt;(r) — t;(r)Vii(r)))dr. (27)

n

The symmetry is enabled for functions ¢; if the last term, denoted by, is zero. Let us write it as a limit:

C = [ dvs(o) bt 1) 1 (6)Ves(r)) ) (28)

= B}im div(ps(r)(t;(r)Vit;(r) — t;(r)Vi(r)))dr (29)
—00 Bn(R)

= B}im ps(r)(ti(r)Vi;(r)Te(r) — t;(r)Vt;(r)Te(r))dr (30)
—00 Sn(R)

The Gauss theorem gives the later equation. Assuming thgidhof the host vanishes more quickly than the norm

It:(r)Vt;(r)|, we suppose in the sequel that the symmetry property is eddibt the solutions of the fundamental
equation. Then[(24) id (27) gives

[ twrima - [ gertoa = - [ a@aps@n@d s [ GE s 6

n

= (m —ny)(ti;t;) =0 (32)

The restriction to normalized detection functions and thit equation imply thatt;, ¢;) = 6(j — ¢) whereé is the
Kronecker delta function. Hence, the solutions of the fundatal equation with different efficiencies per element
constitute a family of orthonormal functions (Subsecf{iwrB.] even shows orthonormal functions sharing the same

efficiency), if the symmetry property holds for all pairs déments of this family.

IV. SOME SOLUTIONS OF THE FUNDAMENTAL EQUATION OF ZERGBIT WATERMARKING

We are not able to find a general solution of the fundamentahtaon. However, in some cases, we show some

examples of solution in this section.

A. The scalar case

To avoid multiplication of notation, we use the same leterdenote the scalar version of above-mentioned
vectorial functions.

We suppose here that the host samples are i.i.d. suchpgitat = []"_, ps(s;). Moreover, our strategy is to
maintain this statistical independence while embeddimgvtlatermarkw(s) = (eyw(s1), -+ ,enw(sy))?, where
e is a secret vector, with for instance, = +1Vi € {1,--- ,n}. (1J) shows that the detection function is indeed
a sumt(r) = >"" | €t(r;); and [25) boils down to a scalar second-order ordinary wifféal equation with non

constant coefficients:

nt(r) + 2 s(r) () +1"(r) = 0. (33)
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TABLE |

POLYNOMIAL SOLUTIONS OF THE SCALARGAUSSIAN CASEs ~ N(0, 1).

[ ] w(s) \ t(r) \ Var{t(r)|H } |
1 1 r 1
2 s =t (1460)1
3 =l =i 146662 + O(6%)
4 i =G , 1+ 12/66 + 60862 + O(6°)
5 3=’ 16r—10r4r® 1+ 547062 + O(6%)
6 1ss;§§%+ss 715+451‘22\;5157‘4+r6 1 4 40v/300 + 4912262 + O(63)
7 715+451322 751554“6 7105r'+110257'33g217'5+7"7 1+ 44139202 + O(6%)

1) Gaussian caseAssume that ~ N(0,02). ) becomes even simpleyt(r) — rt'(r) /o2 +t"(r) = 0. The
solution is a linear combination of two ‘independeng.(their Wronskian is not null) confluent hypergeometric

functions of the first kind taken in?/2:

2 1 ,,,2
1) = kg (222 34
(T) t1-1 1( 2 72720_% ) ( )
1—0217 3 r2
b) _ z
tOr) = kyraFy (72 ,5,—20%). (35)

If 027 is an even integer?) is a polynomial function. Ifo27 is an odd integert® is a polynomial function.
Another way to see this is to recognize this later differrgquation as the Hermite equation wheis a positive
integer ando2 = 1. Therefore, ifno2 = k € N, tx(r) = rHg(r/o.), Hy being the Hermite polynomial of order
k. This family of polynomials is known to be orthogonal with @ighting functiodt exp(—r2/2). In our context,
this is confirmed by@O), which reduces to the value of thegrand on the boundaries on an increasing interval
of R. The conditionC = 0 is satisfied becausém, _,, 7™ exp(—r?/202) = 0, Vm € N. In the sequel, we call
this set of fundamental solutions the ‘polynomial family’.

Table gives the expressions of the first elements &f thmily and their associated embedding function.
Figure [:].) shows a plot of the detection function of these &fsments.

The first line of this table is the well known direct spread @pem scheme with a linear correlator, optimal
detector in the Gaussian i.i.d. case. The second line is kRrasathe proportional or multiplicative embedding, first
proposed in [23, Sect. 4.2] for perceptual reasons (ies khbwn that a greater embedding power is not visible when
watermarking wavelet coefficients with a proportional edtdiag, in comparison to a simple additive embedding).
A higher efficiency per element is another inherent advantagproportional embedding. The remaining lines of
this table generalize this idea to new schemes (as far asutheraknows).

2) Uniform case: The classical ‘flat-host’ assumption used in DC-DM schemaliss states that the host

pdf is a piecewise constant function. More precisely, weuges here the host pdf can be written @s(s) =

1This is the probabilists’ definition of Hermite polynomialslowever, these polynomials take different forms accaydio the chosen
standardization. For instance;, = 1/v/k! when the coefficient of highest order &f;, is set to 1.
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Fig. 1. Plot of the detection function — ¢(r) for the seven first elements of the polynomial family as tsie Table . Darker lines
corresponds to higher orders.

S PIIi(s), with TI; the indicator function of the elementary inter\{%z‘, %(i +1)), and > P,
V/1/m. In this case,[(35) defined almost everywHeis a lot simplerxt(r) + ¢”(r) = 0, whose obvious solutién
is t(r) = V2 cos(,/7r) and hencew(s) = —v/2sin(,/7s). Although these are not exactly the sawtooth embedding
function of the scalar DC-DM (a.k.a. SCS), we find back atti@esiodic functions.
If the ‘flat-host’ assumption holds on the above partitiofRothen it also holds on the finer partlthj];LOO k% , k\f( i+
1)), k € N. This gives birth to another fundamental solutiitr) = v/2 cos(k./7r), whose efficiency per element
is k2 greater. We call the sinusoidal family the set of fundamlesautionst,, indexed with integers. Once again,

elements of this family are orthonormal:

CEENES

(t,te) Z 2P, cos(k\/mr) cos(by/mr)dr = 6(k — £). (36)

B. The vector case

uses the cartesian system where the embedding prac@ssesample wise manner. We generalize this idea
to block based watermarking schemes assuming there eristéegerp dividing n so thatR” = R? x R? - .- x RP
and thatps(s) = H;Z/ﬁ’p(s(i,l)pﬂ, “,S(i—1)ptp). If t®) is a solution of the fundamental equation®# with a
given efficiency, thert™ (r) = \/p/n > 1/% t®)(r (i—1)p+1>"" "+ T(i—1)p+p) IS @ solution inR™ yielding the same

efficiency. This realizes a statlstlcally independent edalireg in the sense that the block pfwatermark samples

2Except on the boundaries due to discontinuities. This lts lmportance as the probability that the host signal isadsoundary is zero.

3The other solution{t(r) = v/2sin(y/7r), w(s) = V2 cos(,/ns)} is valid on a shifted partitionJ; [57=(2i — 1), 5%=(2i +1)).
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only depends on the same block @host samples. The issue is now on finding solutitfis A usual technique
is the separation of variables method in a specific ortholgomardinate system [24].

1) Separation of variables:Classically, the separation of variables method considesolutiont®)(r) =
[1%_, ty, (r;), where each,, have to satisfy@B) with their own efficienay,. The resulting efficiency of(»)
is thenn = >~F_, n;. For white Gaussian hosts, this gives birth to an extensfahe polynomial family which is
indeed based on the multivariate Hermite polynomials, xedeby then/p-uplek € NP: Hy(r) = HZ‘:/’l’ Hy, (r5).
Two different elements of this family are orthogonal for thealar product6), even if they share the same
efficiency per element.

This extension of the polynomial family is illustrated inettfollowing example. IfS ~ AN(0,021,,), then
Vps(r) = —ps(r)r/o2, and [24) becomest(r) — rTVi(r)/o2 4+ V3t(r) = 0. JANIS, a zero-bit watermarking
scheme heuristically invented some years ago [5], [17], fsralamental solution. Its detection function is the
following one:

aﬂ_Vggﬁﬁﬂt%ﬁ. (37)
nia j=1 Oz
Note thatr; appears only once in the detection functioi,c {1,--- ,n}. It is easy to see that’ Vi(r) = pt(r)
andV2t(r) = 0. Thus, JANIS with ordep is a solution to @4) provided thajr? = p. This can be interpreted as
follows: this is a block based watermarking scheme builtteyptmultivariate Hermite polynomiaH; ... ;). This
theoretical framework proves the optimality of the helriSANIS scheme.
Separation of variables can be done on another coordinatersy The following spherical coordinate system

(p,61,--- ,0,_1) is adapted to isotropic host distributions, jg(s) = f(p) with p = ||s||:

r1 = psinfp_1sinfp_s---sinfysinb;
rg = psinf,_1sinf,_s---sinf; cosb
r3 = psinfp_1sinf,_o---cosbs

rp—1 = psinf,_qcosb, o
T, = pcosf,_q.

For instance, we seek a functigifr) = t(p,60,—1) = U(p)V(8p—1), which depends on two simple statistics
p=>" r?andf,_; = arccos(r’e,/|r|)). e, is a secret unit vector shared by the embedder and the detecto

taken as thep-th element of the canonical basis (ie. in the cartesiandinate system). Separating variables in

@) yields two equations:

KV (6) + (p—2) cot OV (8) + V"(6) = 0 (38)
e = K0 G)+ (0= Do+ P EE) 00 4 0"0) = 0 (39)
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with K € R. The choicel/(p) = kip? andV () = pcos® 6 — 1 is a solution provided’(p)/f(p) = —p/o2 (white
Gaussian host)K = 2p andno? = 2. The detection function is then
1 =
t(r) =k ((Vpr'ep)? — |Ir)?) = m <(P -1y — ;ﬁ) : (40)
t(r) = 7 defines g-dimensional two-sheet hyperboloid. This is closed to a-$lweet hypercone, acceptance region
of the absolute normalized correlation, which is the optimdetection function based on such simple statistics
for Gaussian white host [3]. We agree here with N. Merhav an&dbbag that the acceptance region must be a
two-sheet geometric form contrary to the well-known notigeal correlation and its one-sheet hypercone [1]. Yet,
neither the absolute normalized correlation nor the fammarsnalized correlation are fundamental solutions. We
suppose that this stems from the difference in the modelbeperceptual constraint: fixed embedding power vs.
random small and positive gain. (40) is however not unkmin the watermarking literature. This is the measure
of robustness given in Coet al. book [1, Eq.(5.13)].
Let us now invent a host such that
R/Ry ,if R< Ry
P(s € B,(R)) =

1 , if R > Ry.
This extension of the one dimension uniform distributiontfie sense that, in one dimension, a uniform distribution
gives a linear cumulative distribution function over théeival B, (R)) implies that its isotropic pdf equalf(p) =

PP /Ry, if 0 < p < Ry (0, else). A solution in the form(r) = U(p) must then satisfyyU(p) + U (p) = 0,

() (p) \/2surf(S, (1)) cos(y/mp)  with /Ry = 0 [x], (41)
t®(p) = y/2surf(S,(1))sin(y/7p) with /7Ry = 0 [27]. (42)

surf(S,(1)) is the surface area of the-hypersphere of unit radius: s¢8,(1)) = 27?/2/T(p/2). This solution

whose solutions are as follows:

looks like the sphere hardening dither modulation schemenired by F. Balado [25, Sect. 5].

2) Sparsity: Many possible coordinate systems allow a separation obbkes [24], but their investigation is
out of the scope of this paper. Preferably, we would like hereediscover a famous principle in watermarking.
Suppose we know a solutian to the scalar equatiom*t*(z) + f(x)t*' (z) +t*"(x) = 0. We would like to extend
this solution considering a solution in the form= t* o g, with ¢ : R? — R a differentiable function. Gradient and
Laplacian have the following expressions:

Vi(r) =t (g(r))Vg(r),  Vt(r) =t"(g(r))[Vg(r)|* + " (g(r))VZg(r). (43)
and the fundamental equation becomes:
. Vps(r)” .
o906 (= 2 1000 + g0 + gl ) + o) (19902 - ) =0 g
n ps(r) U
A linear form, ie. a projectio(r) = r” ), is a solution providing the following simplification&2g(r) = 0 and

[Vg(r)|| = ||| - Then,t is a fundamental solution with an efficiency per elemegnt *||A||?, provided we have:
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VPS(I')T _ 20/ T
A= AT, (45)

For a white Gaussian host, this implies thfdtr) = —xz||A|| =20, 2, which is the score (igp’(x)/p(x)) associated
to N(0, || A[[?c2). Hence, the polynomial family is extended to the vector caite fundamental solutions of the
form ¢,.(r) = ki Hi(rTX/||A||o.) whose efficiency per element is= k/o?2.

For the flat host assumptioif, appears to be the null function. Hence, the sinusoidal faisilextended to the
vector case with fundamental solution of the fotfn) = k; cos(r” A) whose efficacy i) = || A%

This kind of solutions illustrates the principle known asusgity or time sharing [26, Sect. 5.2 and 8.2], where
the watermark embedding is processed on the projeation A typical implementation of this principle is the
Spread Transform Dither Modulation [26, Sect. 5.2].

3) Space partitioning:Under the flat host assumptiorD(ZS) reduces to the well knbl@imholtz equation:
nt(r) + V2t(r) = 0. Supposet* is a solution, then the composition of this function by a slation operator
yields another solutiont(r) = ¢*(r — ro). This property is due to the fact the scovls(r)/ps(r) is invariant
by translation since it is null. One can also mix differentusons defined over a specific regiaf} C RP:
t(r) = >, ti(r)I;(r), with II;(.) the indicator function of regiol;. Assume now, that region&’;} constitute a
partition of R? and that the host pdf is a piecewise constant function suahptlis) = >, P;II;(s). Then, the
above mixture is a solution of the fundamental equationgpkon the boundaries of contiguous regions where the
gradients ofpg andt are a priori not defined.

An elegant way to set a partition is to define the regions asMbrenoi cells of ap-dimension latticeA:

Ci =V +c;, c; € A andV the Voronoi cell centered ofl. With all these elements, we can write:

t(r) = Z ti(0)IL(r) = Y ¢ (r — ¢))Ii(x) = t*(r — Q(r)), (46)

ci€A
with @Q(.) the guantization function mappirig’ onto A.

Under the flat host assumption, sparsity and space paitijdndeed give the same extension of the sinusoidal
family: i (r) = v/2 cos(r” Ax), when vector\ is defined by2rG~"k, with G the generator matrix of lattica
andk € NP, r belonging toC;, means thai = c¢; + T = Gn; + I, with n;, € ZP andt € V. Thus,t(r) = ¢(r)
becausen!k € Z, V(k, n;) € NP x ZP. This givesn = || Ax||? = 47%||G~Tk||%. Once again, this is not exactly the
lattice quantizer based watermarking scheme, but at leading back solutions which are periodic with respect
to a lattice.

To conclude, the goal of this section is to show that seveml-known watermarking schemes are indeed

solutions of the fundamental equation, underlying the yingf character of this theoretical framework.

V. CONDITIONS, LIMITATIONS , AND EXTENSIONS
A. Conditions

Many assumptions have been made to derive the fundamentatieqg and we would like to collect and state

them explicitly in this section before providing some liatibns and extensions.
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First, at the embedding side, the model of the perceptuatcaint is based on the masking phenomenon, modeled
as a perceptual gaith Whereas this article focuses on a scalar gain for sake gdligity, in practice, it is likely
to be a vector of positive and small values locally adapthreygower of the watermark signal to the power of the
masking effect. The main fact is that this gain is unknown mvgenerating the energy constrained sigrés), and
unknown at the detection side. This model is quite diffetthian the classical power or energy constraint, which
imposes a fixed amount of embedding distortion.

Second, in this paper, schemes are claimed optimal if theyimize the efficiency per sample. This meaning
of optimality only holds when the Pitman Noether theorem lbarapplied, ie. for schemes fulfilling the following
regularity assumptions [11, Sect. III.C.3]:

« The energy of the watermark signal and the variance of thedestatistic must be bounded. Without of loss

of generality, we imposé&s{||w(s)|?} = n and Egr {t(r)?} = 1.
» The smoothness conditions on the dengify7{;) as a function o and on the non-linearity(.) such that
Eq. (%) holds,

« The convergence in law of the statistidR) to a normal variable under both hypothesis.

Moreover, we also restrict our study to detection functideéined inR™ at least twice differentiable except on a
zero-measure set to get the existence of its gradient anthdiap. Then, the above study can be summarized in
the following proposition.

Proposition 1: Suppose a zero-bit watermarking scheme based on the emiexddi detection functiorsw(.),¢(.)}
satisfies the above-mentioned conditions. Then, this selieraptimal for a given efficacy and when there is no
attack, if and only ift(.) is a solution of the fundamental equatidn](24) an@) = k., Vit(s), Vs € R".

The convergence in law to a normal variable is a very resteéatondition. When the host samples are i.i.d. (or
blocked based i.i.d.), a block based embedding gives ammedemplution because its matched detection function is
the sum ofn/p i.i.d. random variables. The parametemust be fixed to ensure the asymptotic normality by the
central limit theorem (ag2{t (r)?} < +o0).

Proposition 2: The principle of block based embedding gives birth to two amé@nt families of detection
functions: sums ofp-multivariate Hermite polynomials for white Gaussian lsosind sums of cosine functions
periodically defined op-dimension lattices for flat hosts. Both families gathehortormal functions for the scalar
product defined by[(26).

B. Limitations

The Pitman Noether theorem states that the efficacy is aioritéor optimality only asymptotically. This makes
sense in our study because the watermark signal is deeplgdstet in the host, thus requiring spreading of the
mark on long sequences. In the same way, efficacy is very lusefipplications such as passive sonar and radio
astronomy, also dealing with weak signals and long intégmaimes.

Our framework nicely gives a unified theory gathering mangwn watermarking schemes. However, all new

fundamental solutions may not be adequate for practicalementations where host signals are not so longj or
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is not so small. We foresee at least two reasons:

« When@ is not so small, the variance und#f; grows very fast with the efficacy, as shown in Appenﬁ'x I
and in Tablel IV-A.LL.
« The Berry-Esseen theorem shows that the rate of convergeribe normal distribution depends on the third

moment of¢(.), which we suspect to be fast increasing with the efficacy.

A proper study requires a non asymptotic analysis of theoperdinces which is out of the scope of this article. Some
experimental works can be found in literature. For instarnice p-multivariate Hermite polynomial based family
of detection functions has been already experimentaltgdesnder the abbreviation JANIS: in [17], the efficacy is
given by the order of the JANIS scheme, 4e= p. The ROC curve (ieP, = P,(Py,) for a given embedding gain)
and the ‘power’ curve (ieP, = P,(¢) for a givenPy,) are largely improved compared to performances of spread
spectrum watermarking scheme (see respectively Fig. 3 &and4Fn [17]). However, for a given vector length,
the comparison of the performances based on a normal distnibof the tested statistic with the experimental
measurements clearly mismatch as the efficacy increasesisatite parametef increases. Hence, whereas the
central limit theorem proves the asymptotic convergendawnneeded in the theoretical framework, in any case,
it shall not be used to estimate performances in practicettfer lesson learnt from [17], is that a scheme with
a higher efficacy can perform more poorly than another onenim@n asymptotic regime. In Fig. 3 of [17], the
scheme withp = 5 yields a higher power than the one with= 4 only if Py, > 1073, with n = 2400 for both
schemes.

Whereas this study provides a somewhat elegant, consguaid unifying theoretical framework; unfortunately

it doesn’t give clear guidelines on the design of a watermngrischeme in an non asymptotic regime.

C. Extension to asymmetric tests

So far, the main idea of the paper is to take advantage of thevllkedge of the host valueto boost the efficiency
per element. This results in the increaseRaf{t(r)|H1} = 0,/n7 + O(6?), while the variance V4t (r)|H,} is
maintained at the level of Vét(r)|H,} at least to the first order. Asymptotically, the test has tdena clear cut
between two distributions having the same variance. Thsommetimes called a symmetric test. This subsection
focuses on the variance \afr)|#,). As H. Malvar and D. Florencio did for zero-rate watermackii27], we
would like to control the value of Vé#(r)|H1), achieving so-called asymmetric téfsts

The watermark signal is already dependent to the host thrtheg vectorw(s) which pushes the host towards a
region in space where the detection function has a highereyat. hopefully the acceptance region. We add here
another dependence which modulates the amplitude of thitsrdrost signals which are naturally far away from the
acceptance region are more strongly pushed than thoseheeacteptance region. We write the watermark signal

x(s) = 0k, (s)w(s). For a fair comparison with the previous sections, the caimgtreadsEs{k., (s)?||w(s)||?} =

4Be careful not to confuse with asymmetric watermarking hte detection key is different from the embedding privasg. k
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n. The embedding strategy is not changeds) = Vi(s). Hence, we have:

n = Es{ky(s)’[|Vi(s)]*} (47)
%Ea{t(r)lHl} = BEs{ku(s)[IV(s)]?} (48)
6=0
_ Es{ku(s)[IVE(s)[*}?
TS Eslha(s)2VES) ) 49
Now, the goal is to choose functidn, such that it reduces the variance un@éeér.

EVar{t(r)|H1} = 2Eg{t(s)7(s)} > —2Var{v(s)}, (50)

90 0=0

wherev(s) = k,(s)||Vt(s)||? such that its centered versionii$s) = v(s) — %Ea{t(r)lHl}\gzo- The Cauchy-
Schwarz inequality gives-2Var{v(s)} as the lower bound, with equality whers) = —ct(s), ¢ a positive constant.

Hence, we achieve to reduce V)| ). However, this strategy consumes embedding distortion:
n = Bs{ku(s)’|Vt(s)|*} = Es{v(s)*|[Vi(s)| %}
= Es{t(s)?||VE(s)| 7} + nnBs{[[Vt(s)[| 7%} — 2cy/nnEs{t(s)[| Vi(s)[|*}- (51)

For the simple cases explored in this paper, we are able tafiiigctions’ = h(s) such thaps(s')t(s') || Vt(s)|| 72 =
—ps(s)t(s)||Vt(s)|| =2, which implies a third null term. Denote= Eg{t(s)?||Vt(s)|| =2} andb = Es{||Vt(s)| ~2}.
@) finally reads:

n = ac® + bn. (52)

A higher ¢ decreases Vét(r)|H,} (first order approximation) but alsg due to the distortion constraint. In
practice, this strategy brings a crucial issue. Startilognfra tested statistic having a symmetric distribution under
both hypotheses, a decrease of Vé&r)|H,} yields a higher power of test only Er{t(r)|H1} is greater than
thresholdr > 0. Now, if this is not the case (for instance, due to an attaitidn the impact of this strategy is just
the opposite. This phenomenon does not appear in [27], aatticle tackles watermark decoding where threshold
7 equals0, the distributions undet{, (bit 1 has been hidden) arH; (bit 0 has been hidden) being symmetric
around this value.

Experimental works about this variance reducing embedsliragegy applied to the JANIS scheme are summarized
in [5, Sect. 6.4]. It stresses the difficulty in finding an aggmiate value ot because it requires to foresee an attack
scenario and its impact on the expectation of the testetstitatThe final rule applied in this experimental paper
is to setc to the value which maximizes the Gaussian estimation of tveep of test (which is, once again, a very

poor estimation). Results are mitigated and more complexegitiing strategies are investigated in [5, Sect. 6.4].

VI. ATTACK NOISE

When there is an attack, the received signal uriders r; = a(y). The attack channel is defined through a con-
ditional probability distributiorp, (r1|y), whose associated attack powesfs= [ [ ||lr1—y||*pa(r1|y)py (y)dydri /n.

The parameters of the attack channel are unknown at theteteside. We would like to keep the detection as
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simple as possible so that the estimation of these parasristapt tractable in this strategy. The performance of the
detector should degrade slowly with the strength of theckitaccording to the definition of robust watermarking
given in [28].

The Pitman Noether might then become useless because shardisruption between the two hypothesHs:
doesn’t asymptotically converge 1, in the sense that the regularity conditioﬂs (5) are vidlakee to the presence
of the attack channel only undét;.

We present here two ways to tackle this problem, changindraorework in order to enforce the Pitman Noether
theorem. A first idea is to restrict our analysis to a fixed WNRtermark to noise power ratio)? /o2 = g. The
received signal can be written as; = s + 6, w(s) + 6,9~ /%2, with Ez{||Z||?} = n. Therefore, the power of
the difference signat; — ro asymptotically vanishes with2. The second idea considers attacks with fixed DNR
(document -ie. host- to noise power ratio) where signalscareupted by the same attack under both hypotheses
as T. Liu and P. Moulin did [6]. Yet, the targeted applicatioss described in our introduction do not a priori
motivate this possibility because the attack of unprotbctntents undeli, are clearly unlikely. We argue that a
‘soft’ attack on original pieces of content still producegular content. The attack channel changes the value of
the feature vectors, but it does not modify their inhereatistical structure.

Under both attack models, the fundamental equation appedys statistically robust in the sense that it is not
modified by the presence of the attack channel. Howeverigtualy true for very particular conditions as described

in the sequel.

A. Fixed WNR attacks

This subsection only shows that the fundamental equatiorairess unchanged when the watermarked signals
goes through a fixed WNR AWGN attack channel.

1) Best embedding function for a given detection functids:usual, we write:

sl = [ [ St owis) oy
- /w TVt(s)ps(s ds+//fz Vi(s)ps(s)pz(2z)dsdz (54)

We assumé is independent of and centered, so that the second term is null. We find backatne $est embedder

as [21).

2) Best detection function for a given embedding functidhe pdf ofr; = y +,/g6z is given by the following

Ps( )pz(2)dsdz (53)

0=0

convolution:
e, (1) = [ (v — Wi (55)

whose derivative is composed of two terms:
0 0 . 0
r) - = %py(u) o élﬂ%p\/gei(r —u)du+ [ ps(u) %pﬁez(r —u) o du (56)

%pRl (
We assume thaz is normal distributed. Thenimg o p_yz(r — u) is the Dirac distribution. Hence, the first
term is, as detailed in Sedqt. llItAQ/00py (r)|,_, = —div(ps(r)w(r)).
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The second term is calculated being inspired by some prdatiseoDe Bruijn’s identity (see [29, Th. 16.6.2]).
It corresponds to the derivative of the pdfafs) = s + ,/g0z with respect tad. In one hand, we have:

0 —ul2 n
g = [ostw (220225 st win )

On the other hand, it appears that:

r—ul]? n 10
V2ags)(r) = /ps(u) (”92794' - W) Pygoz(t —W)du =5 55pas) (x). (58)
Finally, the second term is null, because
0 .
%pa(S)(r) i—o = gl_% 99v2pa(8) (I‘) =0, (59)

and we find back the same best detection functior] ds (12).

B. Fixed DNR attacks

The framework is changed so that the hypotheses are fw: ro = a(s) againstH; : r; = a(s + 6w(s)).
What are the impacts of this new framework on the detectiaheanbedding functions?

As already said, our analysis only holds for channel attackserving the statistical structure of the host signal.
The restrictions are as follows. For hast- A'(0,1,,), the attack is an SAWGN channel(s) = (s + z), with
z ~ N(0,021,) independent 0§ andy = 1/,/1 + o2. The attack is a Wiener filtering for this very simple case,
which maintainsp(r|H,) as a normal distribution. For the flat host assumption, ti&chktis an addition of an
independent noisei(s) = s + z. The new expression gf(r|H,) is given by a convolution, which renders the pdf
underH, even flatter and larger. Consequently, at the scale of thermarking signalp(r|H,) is still a piecewise
constant function. The expressi(ll) of the best detedtinction given the embedding function is not modified
when restricting to attack channels preservirig|H).

This is not the case for the best embedding function giverd#tection function. For the class of attack channel
considered in this paper, we can writgs) = ~(s+z) with v = 1 for the additive noise attack, and=1/./1 + o2
for the SAWGN attack.[(38) is then modified as follows:

e} (o) = [ [ S+ ows) +2)

00 00

0=0

pz(z)ps(s)dzds (60)
0=0

= [ ([ Vetr (s + 2wataria) ps(o)as. (61)
This last equation shows that the best strategy at the enmggdiie should set
w(s) x Ez{Vit(y(s+2))}. (62)

This implies that the embedder knows the attack channehpateas. This counter attack may not be realistic in

general, and we keep our former strategy given@ (21), sb tha

1,02 = T (g () B w5 + ) 1) (63
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However, there are some cases where the counter acls(éabp'risingly simple because it is indeed identical
to the regular embedding stratedﬂ(Zl) whatever the pammelf the attack channel. This occurs wheis
such thatEz{Vt(y(s + z))} = h(y,0.)Vt(s). As a consequence, the fundamental equafioh (25) deriveidein
no attack case, remains valid under these particular attasks. The efficiency per element is then equal to
(v, 02) =0 (v, 02)n(1,0).

For the polynomial family, we rewrite the Wiener filtering ra#ing 2 = o'z distributed as\/(0,1) and

a = arccos(vy). A less familiar identity of the Hermite polynomials allows write:
—1
ty(v(s + 2)) = kel Ho—1(cos(a)s + sin(a)z) = /@MZ (f;_l) cos® () sin® ¥ (o) Hy (s)Hy—1—1(2) (64)
k=0

Ez{t,(v(s + 2))} reduces toE ;{t}(ys + 0.7%))} = kely* "1Ho_1(s) = v*~'t}(s) becauseE ;{Hy(2)} = &(k).
Consequently, we can state the following proposition:

Proposition 3: The polynomial family is a set of fundamental solutions faidi Gaussian hosts and SAWGN
attacks with Wiener filtering, whose efficiency per elemangiven byn (v, o.) = £v2¢. Wiener filtering means that
y=Q0+02)7 V2
Two noticeable exemptions ate andt,, whose efficiency follows the same rule whatever the value of the
SAWGN channel. Last but not least: the higher the ‘origiredficiencyn(1,0) = ¢, the less robust is the scheme
in the sense that(y,0.)/n(1,0) = (1 + 02%)~ 719 decreases faster with the strength of the attack.

For the sinusoidal family, an additive noise leads to

Ez{t)(s + 2)} = t)(s)Ez{cos({\/11z)} — £+/2ncos(£\/11s)Ez{sin(£,/72)}. (65)
The desired property is enable whenever the attack noisarmayen pdf which sets the second term to zero. For
instance, the AWGN channel givés;{t;(s + z)} = tg(s)e—f\/ﬁaf/? Consequently, we can state the following
proposition:

Proposition 4: The sinusoidal family is a set of fundamental solutions fat flosts and additive symmetric noise
attacks. For the AWGN channel attack, its efficiency is gibgm(1,0,) = é\/ﬁe“’\/ﬁ”i.

Once again, the higher the ‘original’ efficiengyl, 0), the less robust is the scheme in the sensejthat . )/n(1,0) =
e~1(10)o7 decreases faster with the strength of the attack.

The same analysis also holds for the extension of the poljalaand sinusoidal family to the vector case. For
instance, JANIS is a solution of the fundamental equationifd. hosts and SAWGN attack, such th&t{ V(v (s+
z))} = 4?7 1Vi(s). The Wiener filtering restriction is not necessary as JANSased on first order Hermite
polynomials. This gives the following efficiency per elerhgfry, o.) = py?? which follows the same decreasing rule
as the scalar polynomial family. The extended sinusoidallfafollows the same ruley(1,0.)/n(1,0) = e~n(1,0)07
with (1,0) = 472||G~Tk||? as shown in Appendik |II.

VIl. ABouT DC-DM WATERMARKING BASED ON LATTICE QUANTIZATION

Our theoretical framework doesn’t succeed in finding back kreown DC-DM watermarking schemes based on

lattice quantization, where the detection function is Uigwdefined by an Euclidean distanegr) = k|| Q(r) —r||?,
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and the embedding functior(s) = «(Q(s) — s) complies with rule @1). Parameter is fixed and it plays a
crucial role in the trade-off between the embedding disiorand the inherent robustness of the scheme. Note
that our point of view is very different as we suppose that host signal is pushed in a direction given by
w(s) = kVi(s) = 2k(Q(s) — s), but the watermark signat(s) = fw(s) is not deterministic because the

amplitudef is not fixed.

A. Efficiency without noise

We consider a latticé. and a host whose pdf is a piecewise constant function ovepdhtion induced byA:
RP = (., e (V +ci). We study the detection function given bft) = &, (||Q(r) — r||* — x), with Q the quantizer

associated ta\, and{k;, u} enforcing a centered unit variance tested statistic ufttier

B voI(V)‘l/ e|2dr = (A, 2), (66)
%

_ -1 r4r—2_%=— _ 2y—3
ho— (vol(V) /v |4 u) (I(A,4) — I(A,2)?) (67)

I(A, k) denotes thek-th normalized moment ob, ie. vol(V)~* [, [Ir|*dr. The embedding function is/(s) =

2k,k:(Q(r) —r), ie. a vector pointing towards the nearest element of thiedatConstank,, is given by:

B N
b VI (%9)

Finally, ) gives the following efficiency per element fitve noiseless case:

 4I(A2)
"I, 4) — I(A,2)2

For a positive scale factgt < 1 giving a finer partition induced bgA, we have a higher efficienayss = 372n,.

(69)

Therefore, lattices should be compared for partitions witli)’) = 1. Anyway, finding the optimal lattice giving the
best efficiency is out of the scope of this paper. As an exanfipeubic latticeA = Z?, V is the centered hypercube
[-1/2,1/2)? andn = 60. For the two dimension hexagonal lattick,, whose associated generating matrix is
G = [21;0/3]/1/2v/3 such that valV) = 1, we achieve a higher efficiency per elemgnt 1800v/3/43 ~ 72.50.
Compared to the square lattizé, the ‘more spherical’ of the two lattices is the best, wherattack is considered.
This is surprisingly different from the zero-rate case pre¢ed in [21, Sect. 3.3].

Increasing the integep, there exist lattices with nearly spherical Voronoi cellsstimingV = B,(R), the
efficiency reads) = (p+4)(p+2)R~2. SettingR = I'(p/2 + 1)/ /\/z such that valV) = 1, and using Stirling’s
approximation, we achieve a linear efficiency per element: 27ep. In view of Sec, this issue is now whether
we can increase paramegerwhich is the size of the blocks. The tested statistic readsrim of the square norm of
a quantization noise of a flat host, which is not asymptdiicaaussian. Once again, we are facing the limitations

of the Pitman Noether theorem: the block based watermarnkingt be done with a fixeg.
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B. Efficiency of a mixture of fundamental solutions

This section uses the geometric propertII—D to caltailthe efficiency per element of a detection function
defined by a mixture of fundamental solutions. Suppose alyamfiiorthonormal fundamental solutior{s;} with
integer indices (this is easily generalized to indicesN##), and create the following detection functiofr) =
S5 wjty (). We have:

Q Q
ER{t(I‘)lHQ} = ijER{tj(rﬂHo} =0, Var{t(r)|H0} = Zwi =1. (70)
j=1 j=1

The last equation gives a constraint on the weighis}.

The reader must be aware of two facts. First, we have chosentbemix some detection functions, but we
could also do the mixture on the embedding functions. Secihrigl mixture is a priori not a fundamental solution.
Given this mixture, we select the best embedding functids) = k,,Vi(s). However, it is a priori not true that
the mixture is the best detection function knowiwgs). The mixture of detection functions implies a mixture of

the associated embedding functiomgs) = Z?:l w;w;(s), but with different weights:

Q
w; = k’u}w] 7’]](1,0) and kw = (Z w?nj(lao))71/2

j=1
@) gives the efficacy when there is no attack:

Q
n(1,0) =Y win;(1,0). (71)
j=1

@) gives the following efficiency per element under attack

2

2
o ——\  (Za Va0 0,0
77(’%02): ijwj 77.7'(’750Z) :( = .Q ) ) (72)

j=1 Zj:l W,?Wj(lv 0)

if we suppose thaEg{w;(s)Ez{wy(v(s + 2))}} = 6(j — k)n/v.\/n;(v,0.)/n;(1,0), ie. the functions stay

orthogonal even under attack. This assumption considesitnplifies the expression of the efficiency. From Sect.
we know this holds for the polynomial familyy(= 1/1/1 + 02), and for the sinusoidal familyy(= 1),
becaus&Ez{wi(y(s+z))} ox wi(s).

It is quite difficult to compare mixtures of fundamental s@uas and to derive the optimum weighting. Let us

denote the scorgy ({w;},v,0.) = v/n(1,0)n(v, o,) for a mixture with weights{w,} andgp(n(1,0),~,0.) the

same score but for a pure fundamental solution whose efigienn(1,0) = Z?Zl w?n;(1,0) when there is no

nois€. These two scores are equal when there is no noise, othetivdgehave the following expressions:
Q

gu({wit o) = ) wini(1,0)7hi(v,02) (73)
j=1
gP(n(lao)v%Uz) = 77(170)7h(%0z), (74)

5Such fundamental solution might not exist for all weighttidisitions. For instance, the polynomial family requireattn(1,0)o2 € N.
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where functionh is defined in| VI-B. If the embedder knows the parameters ofatit@ck noise, then the optimum
weighting is given by a simplex optimizatiom; = 0(j—7*) with j* = argmax; n;(1,0)vh;(v, 0,). Otherwise, we
set the following criterionG ys ({w;}) = fo * gm({w;},7,0.)do.dy. This represents the average performance
of the mixture when no prior about the attack noise pararaésegiven.

For the sinusoidal family,2) holds if = 1. The integration only made overt, gives:

Q
GMGuﬁr=¢§§jw%huun>sv@y%uﬂ>=cpmun». (75)
j=1

The inequality is due to the concavity of the square root fiomcand it holds for any weight distribution. In the

same way, for the polynomial familﬂ?Z) holds+f= (1 4 02)~'/2. The integration only made over gives:

n;(1,0) n(L,0) _
Gu({w;}) = 2; T L0) +1< Loy 1T - GrmLo). (76)

The inequality is due to the concavity of the function— /(1 + z) on [0,+00) and it holds for any weight
distribution.

This tends to show that a pure fundamental solution is onagemore robust than any mixture of fundamental
solutions. However, this is not a general proof. We have shtivis only for the sinusoidal and the polynomial

families when considering attacks such tt@ (72) holds ahdnii(y,o,) has a known expression.

C. Application to DC-DM watermarking

Mixture is a tool which renders the study of some watermayldschemes easier. When applied on elements
of the sinusoidal family, this allows to recreate whateverigdic detection function. For instance, the following

weightsw; = —(—1)73/10/7%/42 give the Fourier series decomposition of the SCS scheme:

t(s) = 6;2_ - (j i cos(j/ms) = ﬁ — (s—Q(s))QGA—\é5 (77)
ws) = 6“_23 X cin(jis) = (s - Q(e)) Y2 (78)

with @ a quantizer whose step is = 27r/\/ﬁ. The application of@Z) gives the efficiency of SCS under s¥GN

attack, which is otherwise cumbersome to calculate withdihect expressions df andw. Here, we simply have:
2 2

2mo

o . 2 no2
90n (35217 %7 ) 60 602 3 [aT _
1,0,) == S = (1422 _ 2 950, e~ ) du | 79
mes(lo) = =g = g (1 g = 2 [ o0 (19

whereds is the third Jacobi theta function. When there is no attagk;s(1,0) = 60/A% = 15n/72 ~ 1.527. Fig.

(ﬂ) shows the efficiency per element of SCS withranging from 0 to 1 fom = 1. It shows that the efficiency per
element of a pure sinusoidal function starting from the samlee, ie.nscs(1,0), is largely more robust in this
range of noise. However, when the variance of the noise aseg the asymptotic behavior (79) is dominated
by the first term,j = 1, ie. e~"9%, whereas the efficiency of the previous pure sinusoidaltfandas a stronger

exponential decaw‘1-52"”§. In this asymptotic case, a pure sinusoidal function wifica€y n performs better.
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Fig. 2. Efficiency per element of the SCS scheme under AWGHchtagainsto,. The grey plots are the approximations (79) for
Jmaz = {3, 5,10, 20,100}. The dotted line is the efficiency of the sinusoidal solutwith 7(1,0) = 1, 52.

In the same way, the detection function based on lattice tipearof Sect| VII-A can be decomposed through a
Fourier series over lattica, whose generator matrix i§:

t(r) = I(A,2) + V2 Z wi cos(2mr? G~ Tk), (80)

keNp

with wie = V2vol(V)~* [, [|r[|? cos(2ar” G~Tk)dr. This decomposition in Fourier series may not be easy to
obtain except for low dimension lattices. Yet, whatever thsulting weight distribution, the mixture has for
n(1,0.),9m({wk},7,02), and Gy ({wk}) equivalent expressions as for the one dimensional casdghanthe
common expression of the efficiency as shown in Appe@ix‘l‘lﬂierefore, the main conclusion is still valid: under

an AWGN attack, a pure sinusoidal solution sharing the sdffir@emcy without noise, performs better on average.

VIIl. CONCLUSION

Rewriting classical elements of detection theory with tlssumption that the watermark signal depends on
the host gives us the expression of the best embedding @umktiowing the detector. Coupling this result with
the expression of the LMP test gives a partial differentgiaion we named ‘fundamental equation’ of zero-bit
watermarking. Its main advantage is to offer a construdtieeretical framework unifying most of the watermarking
schemes the community knows. Moreover, a side product istfieadecomposition onto a family of orthogonal

fundamental solutions provide an easier way to charaetéhie performance of DC-DM schemes.
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For a given embedding functiom, we derive the Locally Most Powerful test, whose detectiamction is defined

as:

ks
t(r) = (1)

Ip(r|H1)

20 oo

(81)

6 — 0 makes functiorf invertible:s = £f~1(y), andp(r|H1) = ps(f~1(r))|Je-1 (r,0)|, with the last term being

the Jacobian of ~!. Finally, the detection function is:

—1
ks
= A+ B,

Some simple equations are:

£(s)lp—o =
f_l(Y)’9:0 =

f'(y) =

A. Expression ofd(r)

Deriving this last expression gives:

of 1
00

Hence,
of 1
59 (y)

The elements of the Jacobian matrix are given by:

of; !
9y,

[Jffl(yve)](ivj) =

()| Jp-1(r, )] +ps (£ (r))

(y) = —w(f'(y)) — 05w (f1(y))

o=

(“)|Jf71 (I‘, 9)|
00 0—0

Y,

y — Ow(Ef (y)).

of 1

= —w(y).

0

=0(i — j) — OVwi (£ (y) Je-1 (y)e;-

The simplification taking) = 0 yields|J¢-1(y,0)| = 1, and the expression of is as follows:

A(r) = —Vps(r)'w(r).

B. Expression of3(r)

This term implies the derivative of the determinant of matfi-: (r, ) which is invertible ag) — 0:

O] Jp |
a0

Taking # = 0 gives:
O|Jg-1|

January 12, 2007

(r,0) = |Jeg-1(r,0)|tr(Jg-1(r, 6)

O0Jg1
-1 f

g (00) =tr <8‘g€1 (r,O)) .

(82)

(83)

(84)
(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)
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The derivative of 9) gives the elements of mat?i;’gei(r, 0):

2 r—1
gejgyj (r,0) = —Vw; (1 (x))  Jeg-1(r,0)e; — 9%(vwi(f*1(r))TJH(r, 0)e;). (93)

So that, these elements are equat-®'w;(r)Te; whend = 0, and, finally, B(r) = —pg(r)div(w(r)).

0

APPENDIXII

MACLAURIN SERIES OFVAR{#(r)|H1} WITHOUT ATTACK.

We make the Maclaurin series ofs + 6w(s))?, and take the expectation:
Es{t(s + 0w(s))’} = 1 + 20Es{w(s)t'(s)t(s)} + 0*Es{w(s)*(t'(s)* + t(s)t"(5))} + O(6°).  (94)

If ¢is an odd function, thet andw = k,t’ are even functions. The second term of the series is nullidfan
even function, the second term is not null as shown in Thbia.il/

A. First order term for even polynomial function

An even polynomial detection function meatis) = j, Hy(s), with k even and«, = k!~'/2 (probabilists’ defi-
nition). Then,t’(s) = krkHi_1(s) andw(s) = kyrrkHi—1(s) = kp—1Hi—1(s). ThereforeEg{w(s)t'(s)t(s)} =

kik—1kEs{H(s)Hg—1(s)*}. A known formula of the square of Hermite polynomials is toéidwing one:
k—1

1,2
Hia(s) =Y (57') 0 Hor—a-2(s) (95)
=0
The orthogonality of the Hermite polynomial family allows to conclude that:

B {w(s)t (s)t(s)} = Kk 1k (’;721,1)2 (k2= )k = Y (_'“1‘),111'/’“2'02

The application of the Stirling approximation, whieiis large, gived® s {w(s)t’(s)t(s)} ~ \/2/e(2m)~3/423k/2|=1/4,

(96)

The derivation of the second order term is tackled in theofaithg section.

B. Second order term

In a similar way, we have:

k-1 2
w(s)th(S) = ﬁ <; (?1)2€!H2;€_2_2g(s)> , (97)
whose expectation, thanks to the orthogonality featuraphiies to:
) k k—1 B
Es{w(s)*t”(s)} = (e ; (1) 22k — 2 - 20)! (98)
The second term is slightly different:
w(s)2 (s)t(s) = %Hk_l(s)QHk(s)Hk_g(s), (99)
_ kk-1) kz_‘i (1 0H (s) kz_:z (%) (G2 el () (100)
Kk —1)] 2 Y Hok—2-2¢ 2 ) e “Hog—2-2¢ )
9 k—1 k=2,
= ﬁ (; (15—1)2 é!HQk_2_25(8)> (Z_O kkifél (lg—l)QK!Hgk_g_gg(S)) (101)
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whose expectation is

k—2
B {w(s)t" (s)t(s)} L <1 _ ﬁ) (1)t 22k — 2 — 201, (102)

C. Final expression

Withdrawing the square dig {t(r)|H1} = V&6 + O(6%), we get:

Var {t(r)|H1} = (103)

k—2
1 +2modk +1, 2)9(1@/2 (_’“1_)!1]1!/]“2!)!2 + 62 T —kl)!Q > (2 - %_6) () 02(2k — 2 — 20)! + O(abp)
=0

APPENDIXIII

EFFICACY OF THE EXTENDED SINUSOIDAL FAMILY UNDERAWGN ATTACK

We haveVi(r) = —v/2sin(r” A ). Therefore:
Ez{Vit(r +2)} = —V2(sin(r" A )Ez{cos(z M)} + cos(r? A )Ez{sin(z” Ax)}) Ak (105)

The last term is null when the pdf d& is odd (ie. pz(z) = pz(—z)) becausesin(z’ Ax) is even. Thus, if

Z ~ N(0,0%0), thenEz{Vt(r + z)} = h(1,0.)t(r), with

h(1,0.) = BEz{cos(z” Ac)} (106)
P
= BEz{cos(d>_ zitei)} (107)
i=1
= Egz {cos(zl)\hl)}Ez{cos(Z zidki)} —Ez, {sin(zlz\;g,l)}Ez{sin(Z 2iMki)} (108)
i=2 1=2
= e‘Ai’lai/QEz{cos(izi)\;m-)} (109)
i=2

Repeatingy — 1 times the last two lines, we finally get:
h(l,0,) = e~ IXll®o2/2 _ ,—n(1,0)02/2 (110)

Thereforen(1,0.) = n(1,0)e 1102,
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