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A constructive and unifying framework for

zero-bit watermarking
Teddy Furon

Abstract

In the watermark detection scenario, also known as zero-bitwatermarking, a watermark, carrying no hidden

message, is inserted in a piece of content. The watermark detector checks for the presence of this particular weak

signal in received contents. The article looks at this problem from a classical detection theory point of view, but

with side information enabled at the embedding side. This means that the watermark signal is a function of the host

content. Our study is twofold. The first step is to design the best embedding function for a given detection function,

and the best detection function for a given embedding function. This yields two conditions, which are mixed into one

‘fundamental’ partial differential equation. It appears that many famous watermarking schemes are indeed solution

to this ‘fundamental’ equation. This study thus gives birthto a constructive framework unifying solutions, so far

perceived as very different.

Index Terms

Zero-bit watermarking, Pitman-Noether theorem, detection theory.

I. I NTRODUCTION

In the past six years, side-informed embedding strategies have been shown to greatly improve watermarkdecoding.

They exploit knowledge of the host signal during the construction of the watermark signal. The theory underlying

these side-informed schemes was presented in the famous paper “Writing on Dirty paper” by M. Costa in 1983. Our

work gives some theoretical aspect of the achievable performances when using side-information at the embedding

side, as in Costa’s correspondence, but for the watermarkdetectionproblem (a.k.a. zero-bit watermarking [1, Sect.

2.2.3]). This surprisingly received almost no study compared to the issue of watermark decoding, although it is

perceived as a non trivial problem [2], [3]. Some other exceptions are works from M. Milleret al. (embedding

cone) [4], JANIS [5] and watermark detection with distortion compensated dither modulation (DC-DM) schemes

[6].
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A. Motivations from the application side

The trade-off between payload of the hidden message and robustness is a well known fact in watermarking. The

main rationale for zero-bit watermarking is that maximum robustness that a watermarking primitive can inherently

offer, is expected as the payload is reduced to the minimum. Here are two application scenarios where zero-bit

watermarking might be sufficient, ie. it is not necessary to hide a message, but just the presence of a mark.

Some copy protection platforms [7] use watermarks as flags whose presence warns compliant devices that the

piece of content they are dealing with, is a copyrighted material. Content access and copy protection are tackled by

cryptographic primitives. Watermarking just prevents the‘analog hole’ [8]–[10]. In other words, compliant devices

expect three kinds of content: commercial contents which are encrypted and watermarked, free contents which

are in the clear and not watermarked, and pirated contents through the ‘analog hole’ which are in the clear but

watermarked. Although most of DRM systems hide a message like a copy status, we have seen here that the

presence of a mark is indeed sufficient.

Copyright protection is the most famous application of watermarking. However, hiding the name of the author

in his Work is just a fact having no legal value. In Europe, theauthor first must be a member of an author society,

then he registers his Work. The only legal proof is to give evidence that the suspicious image is indeed a version

of a Work duly registered in an author society’s database. Consequently, this is a yes/no question, which can be

solved by detecting the presence or absence of a watermark previously embedded by an author society.

In these two applications, the presence of a watermark is nota secret, contrary to a steganographic scenario. The

attacker obviously knows which content is watermarked. In the copy protection application, for instance, there is no

point in attacking a personal video which is a free content, not protected neither by encryption nor by watermarking.

B. Motivations from the scientific side

Zero-bit watermarking is closely related to detection of weak signals in noisy environment: the watermark signal

is embedded in a host signal, unknown to the detector. Its power is very weak compared the one of the host.

Watermarkers resorted to classical elements of detection theory very early. This includes the use of Neyman-

Pearson and Pitman-Noether theorems, calculus of asymptotic efficacy, LMP tests (Locally Most Powerful) [11],

and robust statistics [12].

The priority was at these times to design a better detector than the classical correlation, which is only optimal

for white host signals. To name a few, this includes the worksof teams such as Q. Cheng and T. Huang [13], A.

Briassouli and M. Strinzis [14], M. Barniet al. [15]. They assume that the host signals are drawn from a known

pdf (probability density function), and they apply the above-mentioned classical elements of detection theory. X.

Huang and B. Zhang relax this implicit assumption considering that the ‘real’ pdf of the host belongs to a given

family of distributions [16]. Their test is designed to fairly perform for the entire family. This allows to encompass

attacks modifying the pdf within the family.

Another track is to see the host signal as a side information only available at the embedding. Side information

brings huge improvements in watermark decoding. However, its use for zero-bit watermarking has received less
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interest. Pioneer works are mostly heuristic approaches [4], [17]. More recent works use the binning principle to

achieve zero-bit watermarking [6], [18], although J. Eggers notices that SCS (Scalar Costa Scheme) is less efficient

for zero-bit than for positive rate watermarking scheme [19, Sect. 3.6]. Indeed, Erezet al. prove the optimality of

DC-DM based on lattices (those whose Voronoi region asymptotically tends to an hypersphere) for strictly positive

rate data hiding as far as an additive white noise attack is considered [20]. In the case of zero-rate watermarking,

P. Moulin et al. reasonably conjecture that sparse lattice DC-DM is optimal[21]. For zero-bit watermarking, lattice

DC-DM achieves high performances showing some host interference rejection [6]. However, there is a loss of

efficacy compared to the private setup where the side information is also available at the detector.

At first glance, it would seem that the problem of watermark detection is simpler than the decoding of hidden

symbols, because the decoder’s output belongs to a message space which is bigger than the detector’s range

B = {0, 1}. In other words, whereas watermark detection implies a simple binary hypotheses test, decoding of

watermark is a complex multiple hypotheses test.

Yet, almost no theoretical limit,ie. an equivalent of Costa’s result but for watermark detection, has been shown,

except [22, Sect. 2] which only tackles the Gaussian case. N.Merhav mentioned during the WaCha’05 workshop

in Barcelona, that zero-bit watermarking is a hard problem whose optimal solution is not known for the moment

[2]. Especially, up to now, there is no reason why the binningprinciple should be optimal, even if, as far as the

author knows from the literature, it has the best performances against an AWGN attack. Yet, DC-DM schemes are

known to be weak against scale gain attack.

II. STRATEGY AND NOTATION

Our goal is not to derive an accurate statistical model of thehost signal as done in the above-mentioned prior

works. On contrary, very basic assumptions (Gaussian distribution or flat-host assumption) are in order, allowing

us to stress the major role of side information at the embedding side. While the binning scheme is commonly used

to exploit side information, it is not the only way. Our approach is indeed closer to the theory of weak signal

detection.

A. Embedding side

The embedder transforms an original host signals into a watermarked contenty = f(s) = s+x. The host signal

or channel states is a vector ofn components of the original content, modeled as random variables. The notational

key of the article is to decompose the watermark signalx as a unit power vectorw and an amplitudeθ.

f(s) = s + x = s + θw(s). (1)

w is a smooth function fromR
n to R

n, with the constraintsES{w(s)} = 0 andES{‖w(s)‖2} = n. This vector

gives a direction pointing to an acceptance region ofR
n, towards which the host signal should be pushed. The scalar

θ controls the gain or amplitude of the watermark signal. Theoretical frameworks often use a constantθ =
√

P ,

whereP is the fixed power ofx. Yet, in practice, host contents might support different watermark power depending
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on their individual masking property. This change might even occur within a content, such that we should resort to

a vectorθ = (θ1, · · · , θn) gathering positive and small gains affecting each sample. We restrict our study to scalar

gain for the sake of simplicity, but the results of this papercan be easily extended to a vector gain. In this case,

one might considerθ as the average gain.

Both parts of the watermark signal depends on the host content, either through side information, or for some

perceptual reasons. Unfortunately, in blind schemes, sideinformation is not made available at the detection side.

Moreover, we wish to maintain a low detector’s complexity, which prevents the use of a human visual or auditive

system in order to recreate an estimate ofθ based on the received content. The only fact the detector knows is

that the watermark amplitudeθ is positive and small. We believe this model allows a great flexibility which eases

practical implementations of watermarking schemes.

B. Detection side

Upon receipt of signalr, the detector makes a binary decision:d = 1 (d = 0) means that, according to the

detector, the piece of content under scrutiny is watermarked (resp. it has not been watermarked). There are two

hypotheses: Under hypothesisH0, the detector receives an original contentr = r0 = s (see end of subsection I-A

for justifications), whereas under hypothesisH1, the detector receives a watermarked and possibly attackedcontent

r = r1. Probability of false alarmPfa and power of the testPp are given by

Pfa = Pr{d = 1|H0} ; Pp = Pr{d = 1|H1}. (2)

Once again, in zero-bit watermarking, no symbol is transmitted. Our problem is then fundamentally different

from the communication of one bit because, under hypothesisH0, no processing is applied ands, given by Nature,

is directly sent to the detector.

We assume that the detector has the structure of a Neyman-Pearson test. First, it applies a detection function

t mapping fromR
n to R. Then, this scalar is compared to a thresholdτ : d = 1 if t(r) > τ , d = 0 else. The

threshold is given by the constraint of a significance levelα such thatPfa = ED{d|H0} ≤ α. Note that, for a given

detection function, this threshold does not depend on what happens under hypothesisH1 (embedding functionw,

watermark’s amplitudeθ). Moreover, we assume without loss of generality, that, under hypothesisH0, t(r) is a

centered random variable with unit variance:

ER{t(r)|H0} = 0, Var{t(r)|H0} = 1. (3)

If not the case, it is easy to built the testt̃(r) = (t(r) − ER{t(r)|H0})/
√

Var{t(r)|H0}.

C. Pitman Noether efficacy

In this article, the tests are compared asymptotically forn → +∞. The Pitman-Noether theorem indicates that

the best test has the higher efficacyη, whose general definition is given by [11, Sect. III.C.3]:

η̄ =

(

lim
n→∞

n−mδ ∂m

∂θm
ER{t(r)|H1}

∣

∣

∣

∣

θ=0

Var{t(r)|H0}−1/2

)
1

mδ

, (4)
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wherem is the first integer for which them-th derivative ofER{t(r)|H1} is not null, andδ a positive scalar

such that the limit is not null. In our problem, it is not unreasonable to assumem = 1 and δ = 1/2 because the

expectation of the detection function grows with
√

n as Var{t(r)|H0} has been set to one for alln. This is at least

true for well known watermarking schemes. We are not able to find a counter-example, ie. a watermarking scheme

having a better growth rate than
√

n. Therefore, we restrict our analysis toδ = 1/2.

The Pitman Noether theorem holds for composite one-sided hypothesis test. In Sect. II-A, motivations clearly

show that our problem is not a simple hypothesis test (H0 : θ = 0 versusH1 : θ =
√

P fixed), but a composite

one-sided hypothesis test (H0 : θ = 0 versusH1 : θ > 0).

Last but not least, the proof of this theorem is based on an asymptotic study where the alternative hypothesis

H1 has a vanishing parameterθn = kn−δ, with k a positive constant. Important assumptions are the following

regularity conditions:

lim
n→∞

(

∂

∂θ
ER{t(r)|H1}

∣

∣

∣

∣

θ=θn

/
∂

∂θ
ER{t(r)|H1}

∣

∣

∣

∣

θ=0

)

= 1 and lim
n→∞

(Var{t(r|H1)}/Var{t(r)|H0}) = 1,

(5)

and thatt(r) − ER{t(r)} tends (convergence in law), asn → ∞, to a normal variable, both underH1 and under

H0.

We also define the efficiency per element (a.k.a. the differential detector SNR) in the same way as the efficacy

but without the limit, such that in our case:

η =
1

n

[

∂

∂θ
ER{t(r)|H1}

]2

θ=0

. (6)

III. D ETECTION OF WEAK SIGNAL DEPENDENT ON SIDE INFORMATION

The goal of this section is to give the expressions for the best detection and the best embedding functions. We

mean ‘best’ in the sense of the Pitman Noether theorem, ie. such as they maximized the efficiency per element.

This section doesn’t consider any attack. Hence, the PitmanNoether theorem considers signalsr0 = s and

r1 = y = s + θnw(s), with ES{‖w(s)‖2} = n and θn = k/
√

n, k > 0. It means that the proof of this theorem

fixes the embedding distortion toDE = θ2
nn = k2, but asn increases, the power of the watermarking signal

vanishes.

A. Best detector for a given embedding function

In this subsection, embedding functionw is fixed. A well known corollary of the Pitman Noether theorem[11,

Sect. III.C.3] states that the Locally Most Powerful (LMP) test in θ = 0 is asymptotically the best. A Cauchy-
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Schwarz inequality gives:

∂

∂θ
ER{t(r)|H1}

∣

∣

∣

∣

θ=0

=

∫

Rn

t(r)
∂

∂θ
p(r|H1)

∣

∣

∣

∣

θ=0

dr (7)

≤
√

∫

Rn

t(r)2p(r|H0)dr

√

∫

Rn

p(r|H0)

(

1

p(r|H0)

∂

∂θ
p(r|H1)

∣

∣

∣

∣

θ=0

)2

dr (8)

=

√

∫

Rn

p(r|H0)

(

1

p(r|H0)

∂

∂θ
p(r|H1)

∣

∣

∣

∣

θ=0

)2

dr, (9)

with equality for the LMP test:

t(r) = kt
1

p(r|H0)

∂p(r|H1)

∂θ

∣

∣

∣

∣

θ=0

, (10)

wherekt is a positive constant whose role is explained below. The useof the LMP with θ = 0 is reinforced in

practice by the fact the watermark power is very weak compared to the host power.

When there is no attack,p(r|H0) = pS(r) andp(r|H1) = pY(r). We assume there existsθ̄ > 0, such that function

f(s) is invertible at least when0 ≤ θ ≤ θ̄: s = f−1(y). This allows to writepY(r) = pS(f−1(r))|Jf−1 (r)|, with

the last term being the determinant of the Jacobian matrix off−1 taken at(r, θ). Developing this last equation (see

Appendix I), we finally get these expressions:

t(r) = −kt
∇pS(r)T

pS(r)
w(r) − ktdiv(w(r)) (11)

= −kt
div(pS(r)w(r))

pS(r)
. (12)

The first term of (11) corresponds to the classical non-linear correlation based LMP test [13]–[15], whereas the

second term is not null whenever side information is enabledat the embedding side.

LetBn(R) be the ball of radiusR centered on0, Sn(R) the associated hypersphere, andE(R) =
∫

Bn(R)
t(r)pS(r)dr.

Then, thanks to the Gauss theorem, we have

|E(R)| = kt

∣

∣

∣

∣

∣

∫

Bn(R)

div(pS(r)w(r))dr

∣

∣

∣

∣

∣

(13)

= kt

∣

∣

∣

∣

∣

∫

Sn(R)

pS(r)w(r)T e(r)dr

∣

∣

∣

∣

∣

(14)

≤ kt

∫

Sn(R)

pS(r)‖w(r)‖dr, (15)

with e(r) the unit normal vector at positionr on Sn(R). E{‖w(r)‖2} < ∞ implies thatlimR→+∞ E(R) = 0.

This shows that the expectation of the detection function given by (12) is zero under hypothesisH0, as required

in II-B. The constantkt enforces that Var{t(r)|H0} = 1:

kt =

(

∫

Rn

1

p(r|H0)

[

∂p(r|H1)

∂θ

]2

θ=0

dr

)−1/2

. (16)

Finally, (6), (10) and (16) give the efficiency per element for such tests:

η = n−1k−2
t (17)
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B. Best embedding function for a given detection function

The detection functiont being given (such thatt(r0) is a centered random variable with unit variance), we write:

∂

∂θ
ER{t(r)|H1}

∣

∣

∣

∣

θ=0

= ES

{

∂

∂θ
t(s + θw(s))

∣

∣

∣

∣

θ=0

}

(18)

= ES{w(s)T∇t(s)}. (19)

It appears that, for a givent, it is important to letw(s) ∝ ∇t(s), ∀s ∈ R
n. The efficiency per element is then

upper bounded by the following Cauchy-Schwarz inequality:

η =
1

n

(∫

Rn

pS(s)‖w(s)‖‖∇t(s)‖ds
)2

≤
∫

Rn

pS(s)‖∇t(s)‖2ds (20)

with equality when:

w(s) = kw∇t(s) ∀s ∈ R
n, (21)

wherekw is a normalizing constant to achieveES{‖w(s)‖2} = n:

kw =
√

n/ES{‖∇t(s)‖2}. (22)

(20) and (22) give the efficiency per element for such tests:

η = nk−2
w = ES{‖∇t(s)‖2}. (23)

C. Synthesis

For the moment, we know how to design the best embedding function for a given detection function, and how to

design the best detection function for a given embedding function. This is reminiscent of the Lloyd-Max algorithm in

quantization. However, dealing with closed form equations, we can insert (21) in (12) yielding a partial differential

equation, that we loosely name ‘fundamental equation of zero-bit watermarking’:

pS(r)t(r) + ktkwdiv(pS(r)∇t(r)) = 0 ∀r ∈ R
n. (24)

Hence, the best couple of detection/embedding functions{t,w} is {t⋆, kw∇t⋆}, with t⋆ a fundamental solution,

ie. a solution of (24). Note that (17) and (23) are still valid. Therefore, it is possible to build a scheme of a given

η (virtually, as high as possible), provided (24) admits a solution with kwkt = η−1. The fundamental equation can

also be written as:

ηt(r) +
∇pS(r)T

pS(r)
∇t(r) + ∇2t(r) = 0, (25)

∇2t(r) being the Laplacian oft(r).

D. A geometric property of fundamental solutions

A nice property induced by the fundamental equation is that apair of its solutions with different efficiencies per

element are orthonormal for the scalar product〈., .〉 defined here for two functionsg andh by:

〈g, h〉 = ER{g(r)h(r)|H0}. (26)
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DenoteL[t] = div(pS(r)∇t(r)). This differential operator is symmetric if
∫

Rn ti(r)L[tj ](r)dr =
∫

Rn L[ti](r)tj(r)dr.

In our case,
∫

Rn

ti(r)L[tj ](r)dr −
∫

Rn

tj(r)L[ti](r)dr =

∫

Rn

div(pS(r)(ti(r)∇tj(r) − tj(r)∇ti(r)))dr. (27)

The symmetry is enabled for functionsti, tj if the last term, denoted byC, is zero. Let us write it as a limit:

C =

∫

Rn

div(pS(r)(ti(r)∇tj(r) − tj(r)∇ti(r)))dr (28)

= lim
R→∞

∫

Bn(R)

div(pS(r)(ti(r)∇tj(r) − tj(r)∇ti(r)))dr (29)

= lim
R→∞

∫

Sn(R)

pS(r)(ti(r)∇tj(r)
T e(r) − tj(r)∇ti(r)

T e(r))dr (30)

The Gauss theorem gives the later equation. Assuming that the pdf of the host vanishes more quickly than the norm

‖ti(r)∇tj(r)‖, we suppose in the sequel that the symmetry property is enabled for the solutions of the fundamental

equation. Then, (24) in (27) gives
∫

Rn

ti(r)L[tj ](r)dr −
∫

Rn

tj(r)L[ti](r)dr = −
∫

Rn

ti(r).ηjpS(r)tj(r)dr +

∫

Rn

tj(r).ηipS(r)ti(r)dr (31)

= (ηi − ηj)〈ti, tj〉 = 0 (32)

The restriction to normalized detection functions and thislast equation imply that〈ti, tj〉 = δ(j − i) whereδ is the

Kronecker delta function. Hence, the solutions of the fundamental equation with different efficiencies per element

constitute a family of orthonormal functions (Subsection IV-B.1 even shows orthonormal functions sharing the same

efficiency), if the symmetry property holds for all pairs of elements of this family.

IV. SOME SOLUTIONS OF THE FUNDAMENTAL EQUATION OF ZERO-BIT WATERMARKING

We are not able to find a general solution of the fundamental equation. However, in some cases, we show some

examples of solution in this section.

A. The scalar case

To avoid multiplication of notation, we use the same letter to denote the scalar version of above-mentioned

vectorial functions.

We suppose here that the host samples are i.i.d. such thatpS(s) =
∏n

i=1 pS(si). Moreover, our strategy is to

maintain this statistical independence while embedding the watermark:w(s) = (ǫ1w(s1), · · · , ǫnw(sn))T , where

ǫ is a secret vector, with for instance,ǫi = ±1 ∀i ∈ {1, · · · , n}. (11) shows that the detection function is indeed

a sumt(r) =
∑n

i=1 ǫit(ri); and (25) boils down to a scalar second-order ordinary differential equation with non

constant coefficients:

ηt(r) +
p′S(r)

pS(r)
t′(r) + t′′(r) = 0. (33)
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TABLE I

POLYNOMIAL SOLUTIONS OF THE SCALARGAUSSIAN CASEs ∼ N (0, 1).

η w(s) t(r) Var{t(r)|H1}

1 1 r 1

2 s −1+r2

√

2
(1 + θ)4

3 −1+s2

√

2

−3r+r3

√

6
1 + 66θ2 + O(θ4)

4 −3s+s3

√

6

3−6r2+r4

2
√

6
1 + 12

√
6θ + 608θ2 + O(θ3)

5 3−6s2
+s4

2
√

6

15r−10r3
+r5

2
√

30
1 + 5470θ2 + O(θ4)

6 15s−10s3
+s5

2
√

30

−15+45r2
−15r4

+r6

12
√

5
1 + 40

√
30θ + 49122θ2 + O(θ3)

7 −15+45s2
−15s4

+s6

12
√

5

−105r+105r3
−21r5

+r7

12
√

35
1 + 441392θ2 + O(θ4)

1) Gaussian case:Assume thats ∼ N (0, σ2
x). (25) becomes even simpler:ηt(r) − rt′(r)/σ2

x + t′′(r) = 0. The

solution is a linear combination of two ‘independent’ (ie. their Wronskian is not null) confluent hypergeometric

functions of the first kind taken inr2/2:

t(a)(r) = kt1 .1F1

(

−σ2
xη

2
,
1

2
,

r2

2σ2
x

)

, (34)

t(b)(r) = kt2 .r.1F1

(

1 − σ2
xη

2
,
3

2
,

r2

2σ2
x

)

. (35)

If σ2
xη is an even integer,t(a) is a polynomial function. Ifσ2

xη is an odd integer,t(b) is a polynomial function.

Another way to see this is to recognize this later differential equation as the Hermite equation whenη is a positive

integer andσ2
x = 1. Therefore, ifησ2

x = k ∈ N, tk(r) = κkHk(r/σx), Hk being the Hermite polynomial of order

k. This family of polynomials is known to be orthogonal with a weighting function1 exp(−r2/2). In our context,

this is confirmed by (30), which reduces to the value of the integrand on the boundaries on an increasing interval

of R. The conditionC = 0 is satisfied becauselimr→∞ rm exp(−r2/2σ2
x) = 0, ∀m ∈ N. In the sequel, we call

this set of fundamental solutions the ‘polynomial family’.

Table IV-A.1 gives the expressions of the first elements of this family and their associated embedding function.

Figure (1) shows a plot of the detection function of these first elements.

The first line of this table is the well known direct spread spectrum scheme with a linear correlator, optimal

detector in the Gaussian i.i.d. case. The second line is known as the proportional or multiplicative embedding, first

proposed in [23, Sect. 4.2] for perceptual reasons (ie., it is known that a greater embedding power is not visible when

watermarking wavelet coefficients with a proportional embedding, in comparison to a simple additive embedding).

A higher efficiency per element is another inherent advantage of proportional embedding. The remaining lines of

this table generalize this idea to new schemes (as far as the author knows).

2) Uniform case: The classical ‘flat-host’ assumption used in DC-DM scheme studies states that the host

pdf is a piecewise constant function. More precisely, we assume here the host pdf can be written aspS(s) =

1This is the probabilists’ definition of Hermite polynomials. However, these polynomials take different forms according to the chosen

standardization. For instance,κk = 1/
√

k! when the coefficient of highest order ofHk is set to 1.
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Fig. 1. Plot of the detection functionr → t(r) for the seven first elements of the polynomial family as listed in Table IV-A.1. Darker lines

corresponds to higher orders.

∑+∞
i=−∞ PiΠi(s), with Πi the indicator function of the elementary interval[ π√

η i, π√
η (i + 1)), and

∑+∞
i=−∞ Pi =

√
η/π. In this case, (25) defined almost everywhere2, is a lot simpler:ηt(r) + t′′(r) = 0, whose obvious solution3

is t(r) =
√

2 cos(
√

ηr) and hence,w(s) = −
√

2 sin(
√

ηs). Although these are not exactly the sawtooth embedding

function of the scalar DC-DM (a.k.a. SCS), we find back at least periodic functions.

If the ‘flat-host’ assumption holds on the above partition ofR, then it also holds on the finer partition
⋃+∞

i=−∞[ π
k
√

η i, π
k
√

η (i+

1)), k ∈ N. This gives birth to another fundamental solutiontk(r) =
√

2 cos(k
√

ηr), whose efficiency per element

is k2 greater. We call the sinusoidal family the set of fundamental solutionstk indexed with integers. Once again,

elements of this family are orthonormal:

〈tk, tℓ〉 =
∑

i

2Pi

∫ (i+1) π
√

η

i π
√

η

cos(k
√

ηr) cos(ℓ
√

ηr)dr = δ(k − ℓ). (36)

B. The vector case

IV-A uses the cartesian system where the embedding processes in a sample wise manner. We generalize this idea

to block based watermarking schemes assuming there exists an integerp dividing n so thatRn = R
p ×R

p · · ·×R
p

and thatpS(s) =
∏n/p

i=1 p(s(i−1)p+1, · · · , s(i−1)p+p). If t(p) is a solution of the fundamental equation inR
p with a

given efficiency, thent(n)(r) =
√

p/n
∑n/p

i=1 t(p)(r(i−1)p+1, · · · , r(i−1)p+p) is a solution inR
n yielding the same

efficiency. This realizes a statistically independent embedding in the sense that the block ofp watermark samples

2Except on the boundaries due to discontinuities. This has little importance as the probability that the host signal is ona boundary is zero.

3The other solution{t(r) =
√

2 sin(
√

ηr), w(s) =
√

2 cos(
√

ηs)} is valid on a shifted partition
⋃

i[
π

2
√

η
(2i − 1), π

2
√

η
(2i + 1)).
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only depends on the same block ofp host samples. The issue is now on finding solutionst(p). A usual technique

is the separation of variables method in a specific orthogonal coordinate system [24].

1) Separation of variables:Classically, the separation of variables method considersa solution t(p)(r) =
∏p

i=1 tηi
(ri), where eachtηi

have to satisfy (33) with their own efficiencyηi. The resulting efficiency oft(p)

is thenη =
∑p

i=1 ηi. For white Gaussian hosts, this gives birth to an extension of the polynomial family which is

indeed based on the multivariate Hermite polynomials, indexed by then/p-uplek ∈ N
p: Hk(r) =

∏n/p
i=1 Hki

(ri).

Two different elements of this family are orthogonal for thescalar product (26), even if they share the same

efficiency per element.

This extension of the polynomial family is illustrated in the following example. IfS ∼ N (0, σ2
xIn), then

∇pS(r) = −pS(r)r/σ2
x, and (24) becomesηt(r) − rT∇t(r)/σ2

x + ∇2t(r) = 0. JANIS, a zero-bit watermarking

scheme heuristically invented some years ago [5], [17], is afundamental solution. Its detection function is the

following one:

t(r) =

√

p

n

n/p
∑

i=1

p
∏

j=1

r(i−1)p+j

σx
. (37)

Note thatrj appears only once in the detection function,∀j ∈ {1, · · · , n}. It is easy to see thatrT∇t(r) = pt(r)

and∇2t(r) = 0. Thus, JANIS with orderp is a solution to (24) provided thatησ2
x = p. This can be interpreted as

follows: this is a block based watermarking scheme built on the p-multivariate Hermite polynomialH(1,··· ,1). This

theoretical framework proves the optimality of the heuristic JANIS scheme.

Separation of variables can be done on another coordinate system. The following spherical coordinate system

(ρ, θ1, · · · , θp−1) is adapted to isotropic host distributions, ie.pS(s) = f(ρ) with ρ = ‖s‖:

r1 = ρ sin θp−1 sin θp−2 · · · sin θ2 sin θ1

r2 = ρ sin θp−1 sin θp−2 · · · sin θ1 cos θ1

r3 = ρ sin θp−1 sin θp−2 · · · cos θ2

...

rp−1 = ρ sin θp−1 cos θp−2

rp = ρ cos θp−1.

For instance, we seek a functiont(r) = t(ρ, θp−1) = U(ρ)V (θp−1), which depends on two simple statistics

ρ =
∑p

i=1 r2
i and θp−1 = arccos(rT ep/‖r‖). ep is a secret unit vector shared by the embedder and the detector

taken as thep-th element of the canonical basis (ie. in the cartesian coordinate system). Separating variables in

(25) yields two equations:

KV (θ) + (p − 2) cot θV ′(θ) + V ′′(θ) = 0 (38)

(ηρ2 − K)U(ρ) +

(

(p − 1)ρ + ρ2 f ′(ρ)

f(ρ)

)

U ′(ρ) + ρ2U ′′(ρ) = 0 (39)
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with K ∈ R. The choiceU(ρ) = ktρ
2 andV (θ) = p cos2 θ− 1 is a solution providedf ′(ρ)/f(ρ) = −ρ/σ2

x (white

Gaussian host),K = 2p andησ2
x = 2. The detection function is then

t(r) = kt

(

(
√

prTep)
2 − ‖r‖2

)

=
1

σ2
x

√

2p(p − 1)

(

(p − 1)r2
p −

p−1
∑

i=1

r2
i

)

. (40)

t(r) = τ defines ap-dimensional two-sheet hyperboloid. This is closed to a two-sheet hypercone, acceptance region

of the absolute normalized correlation, which is the optimum detection function based on such simple statistics

for Gaussian white host [3]. We agree here with N. Merhav and E. Sabbag that the acceptance region must be a

two-sheet geometric form contrary to the well-known normalized correlation and its one-sheet hypercone [1]. Yet,

neither the absolute normalized correlation nor the famousnormalized correlation are fundamental solutions. We

suppose that this stems from the difference in the models of the perceptual constraint: fixed embedding power vs.

random small and positive gain. Eq.(40) is however not unknown in the watermarking literature. This is the measure

of robustness given in Coxet al. book [1, Eq.(5.13)].

Let us now invent a host such that

P (s ∈ Bp(R)) =











R/R0 , if R ≤ R0

1 , if R > R0.

This extension of the one dimension uniform distribution (in the sense that, in one dimension, a uniform distribution

gives a linear cumulative distribution function over the intervalB1(R)) implies that its isotropic pdf equalsf(ρ) =

ρ1−p/R0, if 0 < ρ < R0 (0, else). A solution in the formt(r) = U(ρ) must then satisfyηU(ρ) + U ′′(ρ) = 0,

whose solutions are as follows:

t(a)(ρ) =
√

2surf(Sp(1)) cos(
√

ηρ) with
√

ηR0 = 0 [π], (41)

t(b)(ρ) =
√

2surf(Sp(1)) sin(
√

ηρ) with
√

ηR0 = 0 [2π]. (42)

surf(Sp(1)) is the surface area of thep-hypersphere of unit radius: surf(Sp(1)) = 2πp/2/Γ(p/2). This solution

looks like the sphere hardening dither modulation scheme invented by F. Balado [25, Sect. 5].

2) Sparsity: Many possible coordinate systems allow a separation of variables [24], but their investigation is

out of the scope of this paper. Preferably, we would like hereto rediscover a famous principle in watermarking.

Suppose we know a solutiont⋆ to the scalar equation:η⋆t⋆(x)+ f(x)t⋆′(x)+ t⋆′′(x) = 0. We would like to extend

this solution considering a solution in the form:t = t⋆ ◦ g, with g : R
p → R a differentiable function. Gradient and

Laplacian have the following expressions:

∇t(r) = t⋆′(g(r))∇g(r), ∇2t(r) = t⋆′′(g(r))‖∇g(r)‖2 + t⋆′(g(r))∇2g(r). (43)

and the fundamental equation becomes:

t⋆′(g(r))

(

− η

η⋆
f(g(r)) +

∇pS(r)T

pS(r)
∇g(r) + ∇2g(r)

)

+ t⋆′′(g(r))

(

‖∇g(r)‖2 − η

η⋆

)

= 0 (44)

A linear form, ie. a projectiong(r) = rT
λ, is a solution providing the following simplifications:∇2g(r) = 0 and

‖∇g(r)‖ = ‖λ‖ . Then,t is a fundamental solution with an efficiency per elementη = η⋆‖λ‖2, provided we have:
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∇pS(r)T

pS(r)
λ = ‖λ‖2f(rT

λ). (45)

For a white Gaussian host, this implies thatf(x) = −x‖λ‖−2σ−2
x , which is the score (ie.p′(x)/p(x)) associated

to N (0, ‖λ‖2σ2
x). Hence, the polynomial family is extended to the vector casewith fundamental solutions of the

form tk(r) = κkHk(rT
λ/‖λ‖σx) whose efficiency per element isη = k/σ2

x.

For the flat host assumption,f appears to be the null function. Hence, the sinusoidal family is extended to the

vector case with fundamental solution of the formt(r) = kt cos(rT
λ) whose efficacy isη = ‖λ‖2.

This kind of solutions illustrates the principle known as sparsity or time sharing [26, Sect. 5.2 and 8.2], where

the watermark embedding is processed on the projectionrT
λ. A typical implementation of this principle is the

Spread Transform Dither Modulation [26, Sect. 5.2].

3) Space partitioning:Under the flat host assumption, (25) reduces to the well knownHelmholtz equation:

ηt(r) + ∇2t(r) = 0. Supposet⋆ is a solution, then the composition of this function by a translation operator

yields another solution:t0(r) = t⋆(r − r0). This property is due to the fact the score∇pS(r)/pS(r) is invariant

by translation since it is null. One can also mix different solutions defined over a specific regionCi ⊂ R
p:

t(r) =
∑

i ti(r)Πi(r), with Πi(.) the indicator function of regionCi. Assume now, that regions{Ci} constitute a

partition of R
p and that the host pdf is a piecewise constant function such that ps(s) =

∑

i PiΠi(s). Then, the

above mixture is a solution of the fundamental equation, except on the boundaries of contiguous regions where the

gradients ofpS and t are a priori not defined.

An elegant way to set a partition is to define the regions as theVoronoi cells of ap-dimension latticeΛ:

Ci = V + ci, ci ∈ Λ andV the Voronoi cell centered on0. With all these elements, we can write:

t(r) =
∑

i

ti(r)Πi(r) =
∑

ci∈Λ

t⋆(r − ci)Πi(r) = t⋆(r − Q(r)), (46)

with Q(.) the quantization function mappingRp onto Λ.

Under the flat host assumption, sparsity and space partitioning indeed give the same extension of the sinusoidal

family: tk(r) =
√

2 cos(rT
λk), when vectorλk is defined by2πG−Tk, with G the generator matrix of latticeΛ

andk ∈ N
p. r belonging toCi, means thatr = ci + r̃ = Gni + r̃, with ni ∈ Z

p and r̃ ∈ V . Thus,t(r) = t(r̃)

becausenT
i k ∈ Z, ∀(k,ni) ∈ N

p ×Z
p. This givesη = ‖λk‖2 = 4π2‖G−Tk‖2. Once again, this is not exactly the

lattice quantizer based watermarking scheme, but at least we find back solutions which are periodic with respect

to a lattice.

To conclude, the goal of this section is to show that several well-known watermarking schemes are indeed

solutions of the fundamental equation, underlying the unifying character of this theoretical framework.

V. CONDITIONS, LIMITATIONS , AND EXTENSIONS

A. Conditions

Many assumptions have been made to derive the fundamental equation and we would like to collect and state

them explicitly in this section before providing some limitations and extensions.

January 12, 2007 DRAFT



14

First, at the embedding side, the model of the perceptual constraint is based on the masking phenomenon, modeled

as a perceptual gainθ. Whereas this article focuses on a scalar gain for sake of simplicity, in practice, it is likely

to be a vector of positive and small values locally adapting the power of the watermark signal to the power of the

masking effect. The main fact is that this gain is unknown when generating the energy constrained signalw(s), and

unknown at the detection side. This model is quite differentthan the classical power or energy constraint, which

imposes a fixed amount of embedding distortion.

Second, in this paper, schemes are claimed optimal if they maximize the efficiency per sample. This meaning

of optimality only holds when the Pitman Noether theorem canbe applied, ie. for schemes fulfilling the following

regularity assumptions [11, Sect. III.C.3]:

• The energy of the watermark signal and the variance of the tested statistic must be bounded. Without of loss

of generality, we imposeES{‖w(s)‖2} = n andER{t(r)2} = 1.

• The smoothness conditions on the densityp(.|H1) as a function ofθ and on the non-linearityt(.) such that

Eq. (5) holds,

• The convergence in law of the statistict(R) to a normal variable under both hypothesis.

Moreover, we also restrict our study to detection functionsdefined inR
n at least twice differentiable except on a

zero-measure set to get the existence of its gradient and Laplacian. Then, the above study can be summarized in

the following proposition.

Proposition 1: Suppose a zero-bit watermarking scheme based on the embedding and detection functions{w(.), t(.)}
satisfies the above-mentioned conditions. Then, this scheme is optimal for a given efficacyη and when there is no

attack, if and only ift(.) is a solution of the fundamental equation (24) andw(s) = kw∇t(s), ∀s ∈ R
n.

The convergence in law to a normal variable is a very restrictive condition. When the host samples are i.i.d. (or

blocked based i.i.d.), a block based embedding gives an elegant solution because its matched detection function is

the sum ofn/p i.i.d. random variables. The parameterp must be fixed to ensure the asymptotic normality by the

central limit theorem (asE{t(p)(r)2} < +∞).

Proposition 2: The principle of block based embedding gives birth to two important families of detection

functions: sums ofp-multivariate Hermite polynomials for white Gaussian hosts, and sums of cosine functions

periodically defined onp-dimension lattices for flat hosts. Both families gather orthonormal functions for the scalar

product defined by (26).

B. Limitations

The Pitman Noether theorem states that the efficacy is a criterion for optimality only asymptotically. This makes

sense in our study because the watermark signal is deeply embedded in the host, thus requiring spreading of the

mark on long sequences. In the same way, efficacy is very useful in applications such as passive sonar and radio

astronomy, also dealing with weak signals and long integration times.

Our framework nicely gives a unified theory gathering many known watermarking schemes. However, all new

fundamental solutions may not be adequate for practical implementations where host signals are not so long, orθ
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is not so small. We foresee at least two reasons:

• When θ is not so small, the variance underH1 grows very fast with the efficacy, as shown in Appendix II

and in Table IV-A.1.

• The Berry-Esseen theorem shows that the rate of convergenceto the normal distribution depends on the third

moment oft(.), which we suspect to be fast increasing with the efficacy.

A proper study requires a non asymptotic analysis of the performances which is out of the scope of this article. Some

experimental works can be found in literature. For instance, the p-multivariate Hermite polynomial based family

of detection functions has been already experimentally tested under the abbreviation JANIS: in [17], the efficacy is

given by the order of the JANIS scheme, ie.η = p. The ROC curve (ie.Pp = Pp(Pfa) for a given embedding gain)

and the ‘power’ curve (ie.Pp = Pp(θ) for a givenPfa) are largely improved compared to performances of spread

spectrum watermarking scheme (see respectively Fig. 3 and Fig. 4 in [17]). However, for a given vector length,

the comparison of the performances based on a normal distribution of the tested statistic with the experimental

measurements clearly mismatch as the efficacy increases andas the parameterθ increases. Hence, whereas the

central limit theorem proves the asymptotic convergence inlaw needed in the theoretical framework, in any case,

it shall not be used to estimate performances in practice. Another lesson learnt from [17], is that a scheme with

a higher efficacy can perform more poorly than another one in an non asymptotic regime. In Fig. 3 of [17], the

scheme withp = 5 yields a higher power than the one withp = 4 only if Pfa > 10−3, with n = 2400 for both

schemes.

Whereas this study provides a somewhat elegant, constructive and unifying theoretical framework; unfortunately

it doesn’t give clear guidelines on the design of a watermarking scheme in an non asymptotic regime.

C. Extension to asymmetric tests

So far, the main idea of the paper is to take advantage of the knowledge of the host values to boost the efficiency

per element. This results in the increase ofER{t(r)|H1} = θ
√

nη + O(θ2), while the variance Var{t(r)|H1} is

maintained at the level of Var{t(r)|H0} at least to the first order. Asymptotically, the test has to make a clear cut

between two distributions having the same variance. This issometimes called a symmetric test. This subsection

focuses on the variance Var(t(r)|H1). As H. Malvar and D. Florencio did for zero-rate watermarking [27], we

would like to control the value of Var(t(r)|H1), achieving so-called asymmetric tests4.

The watermark signal is already dependent to the host through the vectorw(s) which pushes the host towards a

region in space where the detection function has a higher value, ie. hopefully the acceptance region. We add here

another dependence which modulates the amplitude of this vector: host signals which are naturally far away from the

acceptance region are more strongly pushed than those near the acceptance region. We write the watermark signal

x(s) = θkw(s)w(s). For a fair comparison with the previous sections, the constraint reads:ES{kw(s)2‖w(s)‖2} =

4Be careful not to confuse with asymmetric watermarking where the detection key is different from the embedding private key.
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n. The embedding strategy is not changed:w(s) = ∇t(s). Hence, we have:

n = ES{kw(s)2‖∇t(s)‖2} (47)

∂

∂θ
ER{t(r)|H1}

∣

∣

∣

∣

θ=0

= ES{kw(s)‖∇t(s)‖2} (48)

η =
ES{kw(s)‖∇t(s)‖2}2

ES{kw(s)2‖∇t(s)‖2} (49)

Now, the goal is to choose functionkw such that it reduces the variance underH1:

∂

∂θ
Var{t(r)|H1}

∣

∣

∣

∣

θ=0

= 2ES{t(s)ν̃(s)} ≥ −2Var{ν(s)}, (50)

whereν(s) = kw(s)‖∇t(s)‖2 such that its centered version is̃ν(s) = ν(s) − ∂
∂θER{t(r)|H1}

∣

∣

θ=0
. The Cauchy-

Schwarz inequality gives−2Var{ν(s)} as the lower bound, with equality wheñν(s) = −ct(s), c a positive constant.

Hence, we achieve to reduce Var(t(r)|H1). However, this strategy consumes embedding distortion:

n = ES{kw(s)2‖∇t(s)‖2} = ES{ν(s)2‖∇t(s)‖−2}

= c2ES{t(s)2‖∇t(s)‖−2} + nηES{‖∇t(s)‖−2} − 2c
√

nηES{t(s)‖∇t(s)‖−2}. (51)

For the simple cases explored in this paper, we are able to finda bijections′ = h(s) such thatpS(s′)t(s′)‖∇t(s′)‖−2 =

−pS(s)t(s)‖∇t(s)‖−2, which implies a third null term. Denotea = ES{t(s)2‖∇t(s)‖−2} andb = ES{‖∇t(s)‖−2}.

(51) finally reads:

n = ac2 + bnη. (52)

A higher c decreases Var{t(r)|H1} (first order approximation) but alsoη due to the distortion constraint. In

practice, this strategy brings a crucial issue. Starting from a tested statistic having a symmetric distribution under

both hypotheses, a decrease of Var{t(r)|H1} yields a higher power of test only ifER{t(r)|H1} is greater than

thresholdτ > 0. Now, if this is not the case (for instance, due to an attack),then the impact of this strategy is just

the opposite. This phenomenon does not appear in [27], as this article tackles watermark decoding where threshold

τ equals0, the distributions underH0 (bit 1 has been hidden) andH1 (bit 0 has been hidden) being symmetric

around this value.

Experimental works about this variance reducing embeddingstrategy applied to the JANIS scheme are summarized

in [5, Sect. 6.4]. It stresses the difficulty in finding an appropriate value ofc because it requires to foresee an attack

scenario and its impact on the expectation of the tested statistic. The final rule applied in this experimental paper

is to setc to the value which maximizes the Gaussian estimation of the power of test (which is, once again, a very

poor estimation). Results are mitigated and more complex embedding strategies are investigated in [5, Sect. 6.4].

VI. ATTACK NOISE

When there is an attack, the received signal underH1 is r1 = a(y). The attack channela is defined through a con-

ditional probability distributionpa(r1|y), whose associated attack power isσ2
a =

∫ ∫

‖r1−y‖2pa(r1|y)pY(y)dydr1/n.

The parameters of the attack channel are unknown at the detection side. We would like to keep the detection as
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simple as possible so that the estimation of these parameters is not tractable in this strategy. The performance of the

detector should degrade slowly with the strength of the attack, according to the definition of robust watermarking

given in [28].

The Pitman Noether might then become useless because there is a disruption between the two hypotheses:H1

doesn’t asymptotically converge toH0, in the sense that the regularity conditions (5) are violated due to the presence

of the attack channel only underH1.

We present here two ways to tackle this problem, changing ourframework in order to enforce the Pitman Noether

theorem. A first idea is to restrict our analysis to a fixed WNR (watermark to noise power ratio):θ2
n/σ2

a = g. The

received signal can be written as:r1 = s + θnw(s) + θng−1/2z̃, with EZ{‖z̃‖2} = n. Therefore, the power of

the difference signalr1 − r0 asymptotically vanishes withθ2
n. The second idea considers attacks with fixed DNR

(document -ie. host- to noise power ratio) where signals arecorrupted by the same attack under both hypotheses

as T. Liu and P. Moulin did [6]. Yet, the targeted applications as described in our introduction do not a priori

motivate this possibility because the attack of unprotected contents underH0 are clearly unlikely. We argue that a

‘soft’ attack on original pieces of content still produces regular content. The attack channel changes the value of

the feature vectors, but it does not modify their inherent statistical structure.

Under both attack models, the fundamental equation appearsto be statistically robust in the sense that it is not

modified by the presence of the attack channel. However, thisis only true for very particular conditions as described

in the sequel.

A. Fixed WNR attacks

This subsection only shows that the fundamental equation remains unchanged when the watermarked signals

goes through a fixed WNR AWGN attack channel.

1) Best embedding function for a given detection function:As usual, we write:

∂

∂θ
ER{t(r)|H1}

∣

∣

∣

∣

θ=0

=

∫ ∫

∂

∂θ
t(s + θw(s) + θ

√
gz̃)

∣

∣

∣

∣

θ=0

pS(s)p
Z̃
(z̃)dsdz̃ (53)

=

∫

w(s)T∇t(s)pS(s)ds +

∫ ∫ √
gz̃T∇t(s)pS(s)p

Z̃
(z̃)dsdz̃ (54)

We assumẽz is independent ofs and centered, so that the second term is null. We find back the same best embedder

as (21).

2) Best detection function for a given embedding function:The pdf ofr1 = y+
√

gθz̃ is given by the following

convolution:

pR1
(r) =

∫

pY(u)p√gθZ̃(r − u)du, (55)

whose derivative is composed of two terms:

∂

∂θ
pR1

(r)

∣

∣

∣

∣

θ=0

=

∫

∂

∂θ
pY(u)

∣

∣

∣

∣

θ=0

lim
θ→0

p√gθZ̃(r − u)du +

∫

pS(u)
∂

∂θ
p√gθZ̃(r − u)

∣

∣

∣

∣

θ=0

du (56)

We assume that̃z is normal distributed. Then,limθ→0 p√gθZ̃(r − u) is the Dirac distribution. Hence, the first

term is, as detailed in Sect. III-A,∂/∂θpY(r)|θ=0 = −div(pS(r)w(r)).

January 12, 2007 DRAFT



18

The second term is calculated being inspired by some proofs of the De Bruijn’s identity (see [29, Th. 16.6.2]).

It corresponds to the derivative of the pdf ofa(s) = s +
√

gθz̃ with respect toθ. In one hand, we have:

∂

∂θ
pa(S)(r) =

∫

pS(u)

(‖r− u‖2

gθ3
− n

θ

)

p√gθZ̃(r − u)du. (57)

On the other hand, it appears that:

∇2pa(S)(r) =

∫

pS(u)

(‖r− u‖2

g2θ4
− n

gθ2

)

p√gθZ̃(r − u)du =
1

gθ

∂

∂θ
pa(S)(r). (58)

Finally, the second term is null, because

∂

∂θ
pa(S)(r)

∣

∣

∣

∣

θ=0

= lim
θ→0

gθ∇2pa(S)(r) = 0, (59)

and we find back the same best detection function as (12).

B. Fixed DNR attacks

The framework is changed so that the hypotheses are now:H0 : r0 = a(s) againstH1 : r1 = a(s + θw(s)).

What are the impacts of this new framework on the detection and embedding functions?

As already said, our analysis only holds for channel attacksconserving the statistical structure of the host signal.

The restrictions are as follows. For hosts ∼ N (0, In), the attack is an SAWGN channel:a(s) = γ(s + z), with

z ∼ N (0, σ2
zIn) independent ofs andγ = 1/

√

1 + σ2
z . The attack is a Wiener filtering for this very simple case,

which maintainsp(r|H0) as a normal distribution. For the flat host assumption, the attack is an addition of an

independent noise:a(s) = s + z. The new expression ofp(r|H0) is given by a convolution, which renders the pdf

underH0 even flatter and larger. Consequently, at the scale of the watermarking signal,p(r|H0) is still a piecewise

constant function. The expression (11) of the best detection function given the embedding function is not modified

when restricting to attack channels preservingp(r|H0).

This is not the case for the best embedding function given thedetection function. For the class of attack channel

considered in this paper, we can writea(s) = γ(s+z) with γ = 1 for the additive noise attack, andγ = 1/
√

1 + σ2
z

for the SAWGN attack. (18) is then modified as follows:

∂

∂θ
ER{t(r)|H1}

∣

∣

∣

∣

θ=0

(γ, σz) =

∫ ∫

∂

∂θ
t(γ(s + θw(s) + z))

∣

∣

∣

∣

θ=0

pZ(z)pS(s)dzds (60)

=

∫

γw(s)T

(∫

∇t(γ(s + z))pZ(z)dz

)

pS(s)ds. (61)

This last equation shows that the best strategy at the embedding side should set

w(s) ∝ EZ{∇t(γ(s + z))}. (62)

This implies that the embedder knows the attack channel parameters. This counter attack may not be realistic in

general, and we keep our former strategy given by (21), so that

η(γ, σz) =
γ2η(1, 0)

n2
(ES{w(s)T EZ{w(γ(s + z))}})2. (63)
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However, there are some cases where the counter attack (62) is surprisingly simple because it is indeed identical

to the regular embedding strategy (21) whatever the parameters of the attack channel. This occurs whent is

such thatEZ{∇t(γ(s + z))} = h(γ, σz)∇t(s). As a consequence, the fundamental equation (25) derived inthe

no attack case, remains valid under these particular attackcases. The efficiency per element is then equal to

η(γ, σz) = γ2h2(γ, σz)η(1, 0).

For the polynomial family, we rewrite the Wiener filtering denoting z̃ = σ−1
z z distributed asN (0, 1) and

α = arccos(γ). A less familiar identity of the Hermite polynomials allowsto write:

t′ℓ(γ(s + z)) = κℓℓHℓ−1(cos(α)s + sin(α)z̃) = κℓℓ

ℓ−1
∑

k=0

(

ℓ−1
k

)

cosk(α) sinℓ−1−k(α)Hk(s)Hℓ−1−k(z̃) (64)

EZ{t′ℓ(γ(s + z))} reduces toEZ̃{t′ℓ(γs + σzγz̃))} = κℓℓγ
ℓ−1Hℓ−1(s) = γℓ−1t′ℓ(s) becauseEZ̃{Hk(z̃)} = δ(k).

Consequently, we can state the following proposition:

Proposition 3: The polynomial family is a set of fundamental solutions for i.i.d. Gaussian hosts and SAWGN

attacks with Wiener filtering, whose efficiency per element is given byη(γ, σz) = ℓγ2ℓ. Wiener filtering means that

γ = (1 + σ2
z)−1/2.

Two noticeable exemptions aret1 and t2, whose efficiency follows the same rule whatever the value ofγ in the

SAWGN channel. Last but not least: the higher the ‘original’efficiencyη(1, 0) = ℓ, the less robust is the scheme

in the sense thatη(γ, σz)/η(1, 0) = (1 + σ2
Z)−η(1,0) decreases faster with the strength of the attack.

For the sinusoidal family, an additive noise leads to

EZ{t′ℓ(s + z)} = t′ℓ(s)EZ{cos(ℓ
√

ηz)} − ℓ
√

2η cos(ℓ
√

ηs)EZ{sin(ℓ
√

ηz)}. (65)

The desired property is enable whenever the attack noise hasan even pdf which sets the second term to zero. For

instance, the AWGN channel givesEZ{t′ℓ(s + z)} = t′ℓ(s)e
−ℓ

√
ησ2

z/2. Consequently, we can state the following

proposition:

Proposition 4: The sinusoidal family is a set of fundamental solutions for flat hosts and additive symmetric noise

attacks. For the AWGN channel attack, its efficiency is givenby η(1, σz) = ℓ
√

ηe−ℓ
√

ησ2

z .

Once again, the higher the ‘original’ efficiencyη(1, 0), the less robust is the scheme in the sense thatη(γ, σz)/η(1, 0) =

e−η(1,0)σ2

z decreases faster with the strength of the attack.

The same analysis also holds for the extension of the polynomial and sinusoidal family to the vector case. For

instance, JANIS is a solution of the fundamental equation for i.i.d. hosts and SAWGN attack, such thatEZ{∇t(γ(s+

z))} = γp−1∇t(s). The Wiener filtering restriction is not necessary as JANIS is based on first order Hermite

polynomials. This gives the following efficiency per element η(γ, σz) = pγ2p which follows the same decreasing rule

as the scalar polynomial family. The extended sinusoidal family follows the same rule:η(1, σz)/η(1, 0) = e−η(1,0)σ2

z

with η(1, 0) = 4π2‖G−Tk‖2 as shown in Appendix III.

VII. A BOUT DC-DM WATERMARKING BASED ON LATTICE QUANTIZATION

Our theoretical framework doesn’t succeed in finding back well known DC-DM watermarking schemes based on

lattice quantization, where the detection function is usually defined by an Euclidean distancet(r) = kt‖Q(r)−r‖2,
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and the embedding functionx(s) = α(Q(s) − s) complies with rule (21). Parameterα is fixed and it plays a

crucial role in the trade-off between the embedding distortion and the inherent robustness of the scheme. Note

that our point of view is very different as we suppose that thehost signal is pushed in a direction given by

w(s) = kt∇t(s) = 2kt(Q(s) − s), but the watermark signalx(s) = θw(s) is not deterministic because the

amplitudeθ is not fixed.

A. Efficiency without noise

We consider a latticeΛ and a host whose pdf is a piecewise constant function over thepartition induced byΛ:

R
p =

⋃

ci∈Λ(V + ci). We study the detection function given byt(r) = kt(‖Q(r)− r‖2 − µ), with Q the quantizer

associated toΛ, and{kt, µ} enforcing a centered unit variance tested statistic underH0:

µ = vol(V)−1

∫

V
‖r‖2dr = I(Λ, 2), (66)

kt = −
(

vol(V)−1

∫

V
‖r‖4dr − µ2

)− 1

2

= −(I(Λ, 4) − I(Λ, 2)2)−
1

2 . (67)

I(Λ, k) denotes thek-th normalized moment ofV , ie. vol(V)−1
∫

V ‖r‖kdr. The embedding function isw(s) =

2kwkt(Q(r) − r), ie. a vector pointing towards the nearest element of the lattice. Constantkw is given by:

kw =

√
n

2kt

√

I(Λ, 2)
. (68)

Finally, (23) gives the following efficiency per element forthe noiseless case:

η =
4I(Λ, 2)

I(Λ, 4) − I(Λ, 2)2
. (69)

For a positive scale factorβ < 1 giving a finer partition induced byβΛ, we have a higher efficiencyηβΛ = β−2ηΛ.

Therefore, lattices should be compared for partitions withvol(V) = 1. Anyway, finding the optimal lattice giving the

best efficiency is out of the scope of this paper. As an example, for cubic latticeΛ = Z
p, V is the centered hypercube

[−1/2, 1/2)p and η = 60. For the two dimension hexagonal latticeA2, whose associated generating matrix is

G = [2 1; 0
√

3]/
√

2
√

3 such that vol(V) = 1, we achieve a higher efficiency per elementη = 1800
√

3/43 ≈ 72.50.

Compared to the square latticeZ
2, the ‘more spherical’ of the two lattices is the best, when noattack is considered.

This is surprisingly different from the zero-rate case presented in [21, Sect. 3.3].

Increasing the integerp, there exist lattices with nearly spherical Voronoi cell. AssumingV = Bp(R), the

efficiency readsη = (p+4)(p+2)R−2. SettingR = Γ(p/2+1)1/p/
√

π such that vol(V) = 1, and using Stirling’s

approximation, we achieve a linear efficiency per element:η ≈ 2πep. In view of Sect.V-B, this issue is now whether

we can increase parameterp, which is the size of the blocks. The tested statistic reads in term of the square norm of

a quantization noise of a flat host, which is not asymptotically Gaussian. Once again, we are facing the limitations

of the Pitman Noether theorem: the block based watermarkingmust be done with a fixedp.
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B. Efficiency of a mixture of fundamental solutions

This section uses the geometric property of III-D to calculate the efficiency per element of a detection function

defined by a mixture of fundamental solutions. Suppose a family of orthonormal fundamental solutions{tj} with

integer indices (this is easily generalized to indices inN
p), and create the following detection functiont(r) =

∑Ω
j=1 ωjtj(r). We have:

ER{t(r)|H0} =
Ω
∑

j=1

ωjER{tj(r)|H0} = 0, Var{t(r)|H0} =
Ω
∑

j=1

ω2
j = 1. (70)

The last equation gives a constraint on the weights{ωj}.

The reader must be aware of two facts. First, we have chosen here to mix some detection functions, but we

could also do the mixture on the embedding functions. Second, this mixture is a priori not a fundamental solution.

Given this mixture, we select the best embedding functionw(s) = kw∇t(s). However, it is a priori not true that

the mixture is the best detection function knowingw(s). The mixture of detection functions implies a mixture of

the associated embedding functions,w(s) =
∑Ω

j=1 ̟jwj(s), but with different weights:

̟j = kwωj

√

ηj(1, 0) and kw = (
Ω
∑

j=1

ω2
j ηj(1, 0))−1/2

(23) gives the efficacy when there is no attack:

η(1, 0) =

Ω
∑

j=1

ω2
j ηj(1, 0). (71)

(63) gives the following efficiency per element under attack,

η(γ, σz) =





Ω
∑

j=1

ωj̟j

√

ηj(γ, σz)





2

=

(

∑Ω
j=1 ω2

j

√

ηj(1, 0)ηj(γ, σz)
)2

∑Ω
j=1 ω2

j ηj(1, 0)
, (72)

if we suppose thatES{wj(s)EZ{wk(γ(s + z))}} = δ(j − k)n/γ.
√

ηj(γ, σz)/ηj(1, 0), ie. the functions stay

orthogonal even under attack. This assumption considerably simplifies the expression of the efficiency. From Sect.

VI-B, we know this holds for the polynomial family (γ = 1/
√

1 + σ2
z ), and for the sinusoidal family (γ = 1),

becauseEZ{wk(γ(s + z))} ∝ wk(s).

It is quite difficult to compare mixtures of fundamental solutions and to derive the optimum weighting. Let us

denote the scoregM ({ωj}, γ, σz) =
√

η(1, 0)η(γ, σz) for a mixture with weights{ωj} andgP (η(1, 0), γ, σz) the

same score but for a pure fundamental solution whose efficiency is η(1, 0) =
∑Ω

j=1 ω2
j ηj(1, 0) when there is no

noise5. These two scores are equal when there is no noise, otherwisethey have the following expressions:

gM ({ωj}, γ, σz) =

Ω
∑

j=1

ω2
j ηj(1, 0)γhj(γ, σz) (73)

gP (η(1, 0), γ, σz) = η(1, 0)γh(γ, σz), (74)

5Such fundamental solution might not exist for all weight distributions. For instance, the polynomial family requires that η(1, 0)σ2
x ∈ N.

January 12, 2007 DRAFT



22

where functionh is defined in VI-B. If the embedder knows the parameters of theattack noise, then the optimum

weighting is given by a simplex optimization:ωj = δ(j−j⋆) with j⋆ = arg maxj ηj(1, 0)γhj(γ, σz). Otherwise, we

set the following criterion:GM ({ωj}) =
∫ 1

0

∫ +∞
0

gM ({ωj}, γ, σz)dσzdγ. This represents the average performance

of the mixture when no prior about the attack noise parameters is given.

For the sinusoidal family, (72) holds ifγ = 1. The integration only made overσz gives:

GM ({ωj}) =

√

π

2

Ω
∑

j=1

ω2
j

√

ηj(1, 0) ≤
√

π

2

√

η(1, 0) = GP (η(1, 0)). (75)

The inequality is due to the concavity of the square root function and it holds for any weight distribution. In the

same way, for the polynomial family, (72) holds ifγ = (1 + σ2
z)−1/2. The integration only made overγ gives:

GM ({ωj}) =

Ω
∑

j=1

ω2
j

ηj(1, 0)

ηj(1, 0) + 1
≤ η(1, 0)

η(1, 0) + 1
= GP (η(1, 0)). (76)

The inequality is due to the concavity of the functionx → x/(1 + x) on [0, +∞) and it holds for any weight

distribution.

This tends to show that a pure fundamental solution is on average more robust than any mixture of fundamental

solutions. However, this is not a general proof. We have shown this only for the sinusoidal and the polynomial

families when considering attacks such that (72) holds and whenh(γ, σz) has a known expression.

C. Application to DC-DM watermarking

Mixture is a tool which renders the study of some watermarking schemes easier. When applied on elements

of the sinusoidal family, this allows to recreate whatever periodic detection function. For instance, the following

weightsωj = −(−1)j3
√

10/π2/j2 give the Fourier series decomposition of the SCS scheme:

t(s) = −6
√

5

π2

∞
∑

j=1

(−1)j

j2
cos(j

√
ηs) =

√
5

2
− (s − Q(s))2

6
√

5

∆2
(77)

w(s) = kw
6
√

5η

π2

∞
∑

j=1

(−1)j

j
sin(j

√
ηs) = −(s − Q(s))

√
12

∆
(78)

with Q a quantizer whose step is∆ = 2π/
√

η. The application of (72) gives the efficiency of SCS under an AWGN

attack, which is otherwise cumbersome to calculate with thedirect expressions oft andw. Here, we simply have:

ηSCS(1, σz) =
90η

π4
.
(
∑∞

j=1 j−2e−j2 ησ2
z

2 )2
∑∞

j=1 j−2
=

60

∆2



1 +
6σ2

Z

∆2
− 3

π

∫

2πσ2
z

∆2

0

ϑ3(0, e−πu)du





2

, (79)

whereϑ3 is the third Jacobi theta function. When there is no attack,ηSCS(1, 0) = 60/∆2 = 15η/π2 ≈ 1.52η. Fig.

(2) shows the efficiency per element of SCS withσz ranging from 0 to 1 forη = 1. It shows that the efficiency per

element of a pure sinusoidal function starting from the samevalue, ie.ηSCS(1, 0), is largely more robust in this

range of noise. However, when the variance of the noise increases, the asymptotic behavior of (79) is dominated

by the first term,j = 1, ie. e−ησ2

z , whereas the efficiency of the previous pure sinusoidal function has a stronger

exponential decay:e−1.52ησ2

z . In this asymptotic case, a pure sinusoidal function with efficacy η performs better.
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Fig. 2. Efficiency per element of the SCS scheme under AWGN attack againstσz . The grey plots are the approximations by (79) for

jmax = {3, 5, 10, 20, 100}. The dotted line is the efficiency of the sinusoidal solutionwith η(1, 0) = 1, 52.

In the same way, the detection function based on lattice quantizer of Sect. VII-A can be decomposed through a

Fourier series over latticeΛ, whose generator matrix isG:

t(r) = I(Λ, 2) +
√

2
∑

k∈Np

ωk cos(2πrT G−T k), (80)

with ωk =
√

2vol(V)−1
∫

V ‖r‖2 cos(2πrT G−Tk)dr. This decomposition in Fourier series may not be easy to

obtain except for low dimension lattices. Yet, whatever theresulting weight distribution, the mixture has for

η(1, σz), gM ({ωk}, γ, σz), and GM ({ωk}) equivalent expressions as for the one dimensional case thanks to the

common expression of the efficiency as shown in Appendix III.Therefore, the main conclusion is still valid: under

an AWGN attack, a pure sinusoidal solution sharing the same efficiency without noise, performs better on average.

VIII. C ONCLUSION

Rewriting classical elements of detection theory with the assumption that the watermark signal depends on

the host gives us the expression of the best embedding function knowing the detector. Coupling this result with

the expression of the LMP test gives a partial differential equation we named ‘fundamental equation’ of zero-bit

watermarking. Its main advantage is to offer a constructivetheoretical framework unifying most of the watermarking

schemes the community knows. Moreover, a side product is that the decomposition onto a family of orthogonal

fundamental solutions provide an easier way to characterize the performance of DC-DM schemes.
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APPENDIX I

LMP TEST

For a given embedding functionw, we derive the Locally Most Powerful test, whose detection function is defined

as:

t(r) =
kt

pS(r)

∂p(r|H1)

∂θ

∣

∣

∣

∣

θ=0

. (81)

θ → 0 makes functionf invertible: s = f−1(y), andp(r|H1) = pS(f−1(r))|Jf−1 (r, θ)|, with the last term being

the Jacobian off−1. Finally, the detection function is:

t(r) =
kt

pS(r)

(

∇pS(f−1(r))T ∂f−1

∂θ
(r)|Jf−1 (r, θ)| + pS(f−1(r))

∂|Jf−1(r, θ)|
∂θ

)

θ=0

(82)

=
kt

pS(r)
(A(r) + B(r)). (83)

Some simple equations are:

f(s)|θ=0 = s, (84)

f−1(y)
∣

∣

θ=0
= y, (85)

f−1(y) = y − θw(f−1(y)). (86)

A. Expression ofA(r)

Deriving this last expression gives:

∂f−1

∂θ
(y) = −w(f−1(y)) − θJw(f−1(y))

∂f−1

∂θ
(y). (87)

Hence,
∂f−1

∂θ
(y)

∣

∣

∣

∣

θ=0

= −w(y). (88)

The elements of the Jacobian matrix are given by:

[Jf−1(y, θ)](i, j) =
∂f−1

i

∂yj
= δ(i − j) − θ∇wi(f

−1(y))T Jf−1(y)ej . (89)

The simplification takingθ = 0 yields |Jf−1(y, 0)| = 1, and the expression ofA is as follows:

A(r) = −∇pS(r)T w(r). (90)

B. Expression ofB(r)

This term implies the derivative of the determinant of matrix Jf−1(r, θ) which is invertible asθ → 0:

∂|Jf−1 |
∂θ

(r, θ) = |Jf−1(r, θ)|tr(Jf−1(r, θ)−1 ∂Jf−1

∂θ
(r, θ)) (91)

Taking θ = 0 gives:
∂|Jf−1 |

∂θ
(r, 0) = tr

(

∂Jf−1

∂θ
(r, 0)

)

. (92)
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The derivative of (89) gives the elements of matrix∂J
f−1

∂θ (r, θ):

∂2f−1
i

∂θ∂yj
(r, θ) = −∇wi(f

−1(r))T Jf−1(r, θ)ej − θ
∂

∂θ
(∇wi(f

−1(r))T Jf−1(r, θ)ej). (93)

So that, these elements are equal to−∇wi(r)
T ej whenθ = 0, and, finally,B(r) = −pS(r)div(w(r)).

APPENDIX II

MACLAURIN SERIES OFVAR{t(r)|H1} WITHOUT ATTACK .

We make the Maclaurin series oft(s + θw(s))2, and take the expectation:

ES{t(s + θw(s))2} = 1 + 2θES{w(s)t′(s)t(s)} + θ2ES{w(s)2(t′(s)2 + t(s)t′′(s))} + O(θ3). (94)

If t is an odd function, thent′ andw = kwt′ are even functions. The second term of the series is null. Ift is an

even function, the second term is not null as shown in Table IV-A.1.

A. First order term for even polynomial function

An even polynomial detection function meanst(s) = κkHk(s), with k even andκk = k!−1/2 (probabilists’ defi-

nition). Then,t′(s) = κkkHk−1(s) andw(s) = kwκkkHk−1(s) = κk−1Hk−1(s). Therefore,ES{w(s)t′(s)t(s)} =

κ2
kκk−1kES{Hk(s)Hk−1(s)

2}. A known formula of the square of Hermite polynomials is the following one:

Hk−1(s)
2 =

k−1
∑

ℓ=0

(

k−1
ℓ

)2
ℓ!H2k−2−2ℓ(s) (95)

The orthogonality of the Hermite polynomial family allows us to conclude that:

ES{w(s)t′(s)t(s)} = κ2
kκk−1k

(

k−1
k/2−1

)2

(k/2 − 1)!k! =

√

(k − 1)!k!

(k/2 − 1)!(k/2!)2
. (96)

The application of the Stirling approximation, whenk is large, givesES{w(s)t′(s)t(s)} ≈
√

2/e(2π)−3/423k/2k−1/4.

The derivation of the second order term is tackled in the following section.

B. Second order term

In a similar way, we have:

w(s)2t′2(s) =
k

(k − 1)!2

(

k−1
∑

ℓ=0

(

k−1
ℓ

)2
ℓ!H2k−2−2ℓ(s)

)2

, (97)

whose expectation, thanks to the orthogonality feature, simplifies to:

ES{w(s)2t′2(s)} =
k

(k − 1)!2

k−1
∑

ℓ=0

(

k−1
ℓ

)4
ℓ!2(2k − 2 − 2ℓ)! (98)

The second term is slightly different:

w(s)2t′′(s)t(s) =
k(k − 1)

k!(k − 1)!
Hk−1(s)

2Hk(s)Hk−2(s), (99)

=
k(k − 1)

k!(k − 1)!

(

k−1
∑

ℓ=0

(

k−1
ℓ

)2
ℓ!H2k−2−2ℓ(s)

)(

k−2
∑

ℓ=0

(

k
ℓ

) (

k−2
ℓ

)

ℓ!H2k−2−2ℓ(s)

)

, (100)

=
k2

k!(k − 1)!

(

k−1
∑

ℓ=0

(

k−1
ℓ

)2
ℓ!H2k−2−2ℓ(s)

)(

k−2
∑

ℓ=0

k − ℓ − 1

k − ℓ

(

k−1
ℓ

)2
ℓ!H2k−2−2ℓ(s)

)

,(101)
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whose expectation is

ES{w(s)2t′′(s)t(s)} =
k

(k − 1)!2

k−2
∑

ℓ=0

(

1 − 1

k − ℓ

)

(

k−1
ℓ

)4
ℓ!2(2k − 2 − 2ℓ)!. (102)

C. Final expression

Withdrawing the square ofER{t(r)|H1} =
√

kθ + O(θ2), we get:

Var {t(r)|H1} = (103)

1 +2mod(k + 1, 2)θ

√

(k − 1)!k!

(k/2 − 1)!(k/2)!2
+ θ2 k

(k − 1)!2

k−2
∑

ℓ=0

(

2 − 1

k − ℓ

)

(

k−1
ℓ

)4
ℓ!2(2k − 2 − 2ℓ)! + O(θ3).(104)

APPENDIX III

EFFICACY OF THE EXTENDED SINUSOIDAL FAMILY UNDERAWGN ATTACK

We have∇t(r) = −
√

2 sin(rT
λk)λk. Therefore:

EZ{∇t(r + z)} = −
√

2(sin(rT
λk)EZ{cos(zT

λk)} + cos(rT
λk)EZ{sin(zT

λk)})λk (105)

The last term is null when the pdf ofZ is odd (ie. pZ(z) = pZ(−z)) becausesin(zT
λk) is even. Thus, if

Z ∼ N (0, σ2
zI), thenEZ{∇t(r + z)} = h(1, σz)t(r), with

h(1, σz) = EZ{cos(zT
λk)} (106)

= EZ{cos(

p
∑

i=1

ziλk,i)} (107)

= EZ1
{cos(z1λk,1)}EZ{cos(

p
∑

i=2

ziλk,i)} − EZ1
{sin(z1λk,1)}EZ{sin(

p
∑

i=2

ziλk,i)} (108)

= e−λ2

k,1σ2

z/2EZ{cos(

p
∑

i=2

ziλk,i)} (109)

Repeatingp − 1 times the last two lines, we finally get:

h(1, σz) = e−‖λk‖2σ2

z/2 = e−η(1,0)σ2

z/2 (110)

Therefore:η(1, σz) = η(1, 0)e−η(1,0)σ2

z .
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