
HAL Id: inria-00081003
https://inria.hal.science/inria-00081003

Submitted on 21 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A File Aggregation Scheme for FLUTE
Christoph Neumann, Vincent Roca, Rod Walsh

To cite this version:
Christoph Neumann, Vincent Roca, Rod Walsh. A File Aggregation Scheme for FLUTE. 2005. �inria-
00081003�

https://inria.hal.science/inria-00081003
https://hal.archives-ouvertes.fr

RMT C. Neumann
Internet-Draft V. Roca
Expires: April 20, 2006 INRIA Rhone-Alpes
 R. Walsh
 Nokia
 October 17, 2005

 A File Aggregation Scheme for FLUTE
 draft-neumann-rmt-flute-file-aggregation-02.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 20, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document introduces a logical and physical file aggregation
 scheme for File Delivery over Unidirectional Transport (FLUTE). The
 logical file aggregation mechanism is a generalized grouping
 mechanism, allowing to logically group files. The physical file
 aggregation scheme allows, additionally to a logical grouping, to
 more efficiently use Forward Error Correction (FEC) in the context of

Neumann, et al. Expires April 20, 2006 [Page 1]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 FLUTE, in particular when dealing with a large number of "small"
 files. Unlike a solution based on the creation of an archive, the
 object aggregation scheme (1) avoids the need to perform preliminary
 transformations on the content and (2) preserves the possibility to
 extract a subset of the content, which may be critical aspect with
 some partially reliable broadcasting test cases.

Table of Contents

 1. Introduction . 4
 1.1 Motivations . 4
 1.1.1 Logical aggregation 4
 1.1.2 Physical aggregation 4
 1.1.3 Aggregation Mode Selection 6
 1.2 Modifications compared to the FLUTE version 1
 specifications . 6
 2. Conventions used in this document 8
 3. The Generalized Grouping Mechanism 9
 3.1 Syntax of FDT Instance with the Generalized Grouping
 Mechanism . 9
 3.2 A simple example . 9
 4. The Physical File Aggregation Scheme 11
 4.1 multipart/mixed MIME type object and multipart/related
 MIME type object . 11
 4.2 Extending the FDT with Aggregated Object Information . . . 11
 4.3 Syntax of FDT Instance with Aggregated Object
 Description Information 12
 4.4 Symbol alignment of aggregated files 17
 4.4.1 MIME compatible padding 17
 4.5 Recovering files at FLUTE receiver supporting physical
 file aggregation . 17
 4.5.1 Recovering files before the entire reception of
 the aggregated object 17
 4.5.2 Recovering files after the entire reception of the
 aggregated object 18
 4.6 Recovering files at FLUTE receiver that does not
 support physical file aggregation 18
 4.7 Limitations . 19
 5. FLUTE version 1 backward compatibility 20
 5.1 Redirection mechanism 20
 6. Security Considerations 21
 7. IANA Considerations . 22
 8. Acknowledgments . 23
 9. References . 24
 9.1 Normative References 24
 9.2 Informative References 25
 Authors' Addresses . 25
 A. Example of FDT Instance (informative) 26

Neumann, et al. Expires April 20, 2006 [Page 2]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 B. Example of FDT Instance (informative) 27
 Intellectual Property and Copyright Statements 28

Neumann, et al. Expires April 20, 2006 [Page 3]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

1. Introduction

1.1 Motivations

 This document introduces a logical and physical file aggregation
 scheme for File Delivery over Unidirectional Transport (FLUTE) [10],
 version 1. FLUTE is a protocol for unidirectional delivery of files
 and builds on Asynchronous Layered Coding (ALC), version 1 [7], the
 base protocol designed for massively scalable multicast distribution.
 The logical object aggregation mechanism allows to logically group
 correlated files. The physical object aggregation scheme
 additionally allows to more efficiently use Forward Error Correction
 (FEC) with FLUTE in some situations.

1.1.1 Logical aggregation

 The logical aggregation mechanism offers a means to logically group
 files without physically binding them to the same transport object.
 This is achieved by labeling files as being part of one or more
 groups. This functionality is desirable when transmitting a set of
 closely related files that will be used by the receiver in the
 conjunction with each other. The effect is to simplify the FLUTE-to-
 application messaging and processing overhead and to enable selective
 caching of files when it is not feasible to either promiscuously
 receive all files or explicitly indicate all wanted files in advance
 of joining the FLUTE session.

 One example is an html page (file) with several embedded images. By
 labeling the web page file and all related image files as being part
 of the same group, the FLUTE receiver knows in advance the files he
 needs to download based on only the URI of the web page file.
 Without this grouping mechanism it would have to analyze the web page
 file and then deduce which other files are related and need to be
 downloaded.

1.1.2 Physical aggregation

 The main idea of the physical file aggregation scheme is to aggregate
 a (possibly large) set of (possibly small) files into one large
 aggregated object, that is treated as a single transport object by
 ALC. The benefits of logical aggregation, described above, also
 apply to physical aggregation. However, a shared-fate model is
 introduced as the successful reception of one of the aggregated files
 is to some extent statistically correlated to the successful
 reception of one or more others. Thus, there is a strong incentive
 to only physically aggregate files that are logically related into
 the same aggregated transport object.

Neumann, et al. Expires April 20, 2006 [Page 4]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 The physical file aggregation scheme is made possible by simple
 extension to FLUTE FDTs which provides a dedicated signaling
 mechanism, enabling extended FLUTE receivers to extract the files
 within the large aggregated object.

 With physical aggregation, FEC encoding is performed on a large
 object rather than on each individual file, which can be highly
 beneficial for transmission performance. Therefore this technique
 offers two specific transmission performance improvements:

 1. the coupon collector problem [14], that is caused by the separate
 FEC encoding of each individual file when file aggregation is not
 used, is now significantly reduced or even totally eliminated.
 Now FEC encoding is done over a single object, whose size is
 perhaps inferior to the maximum block size permitted by the FEC
 instance used (this is especially true with a Large Block FEC
 code).

 2. large block FEC codes perform better on large blocks than on
 small blocks, and using file aggregation offers more
 opportunities to use such codes whose performance is
 significantly higher than Reed Solomon codes [13].

 The performance gain of these two aspects depends on several
 parameters such as the FEC instance used, the aggregated object size
 and the number of files. Detailed quantitative analysis and
 explanation of the impact of all these parameters is outside the
 scope of this document. The physical file aggregation is mainly
 applicable for small files.

 The specified physical object aggregation solution is significantly
 different from a solution that would create a single archive from the
 list of files (e.g. a gzip compressed tarball archive). With an
 archive the result is either the full reconstruction of all
 individual files (if enough packets have been received for decoding
 to complete at a receiver) or an hazardous result (since the archive
 will be corrupted, possibly damaging the archive headers which then
 prevents file extraction). Indeed, although FEC can counter the
 effects of packet erasures, if the number of packets received is too
 low for the FEC decoding process to finish, the received parity
 packets may turn out to be inconsequential. On the opposite, the
 specified physical object aggregation solution can offer a partial
 reliability service, i.e. it enables a receiver to reconstruct parts
 of the content even if the FEC decoding process has not finished. To
 that purpose, the physical file aggregation scheme can optionally
 preserve the possibility to decode and exploit a subset of the
 content, by informing the receivers of the size and position of
 individual files within the aggregated object.

Neumann, et al. Expires April 20, 2006 [Page 5]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 Another motivation for having an object aggregation scheme compared
 to a basic archive based solution (e.g. tarball), is that no extra
 transformation (i.e. archive creation or extraction) is required at
 either the FLUTE sender or receiver. Everything is managed
 automatically by the transport mechanism according to transport-
 specific optimizations and can be transparent to upper applications
 (i.e. built on top of FLUTE), or enhanced by application hints on
 file relationships, without breaking the basic semantics of FLUTE
 sessions.

1.1.3 Aggregation Mode Selection

 The selection of whether a set of files would benefit from either no
 aggregation, logical aggregation or physical aggregation must be made
 for (or by) the FLUTE sender. The merits of aggregation
 (Section 1.1.1 and Section 1.1.2), as well as the introduced receiver
 and sender complexities may be taken into account. In particular,
 the choice between logical and physical aggregation would be mostly
 application-specific and dependent on the file size distribution and
 the inter-file relationship (in receiver use). It would also be
 tuned to the anticipated end-to-end losses and any selected FEC
 instance.

1.2 Modifications compared to the FLUTE version 1 specifications

 This document describes a simple and light extension of the FLUTE in-
 band signaling, the File Delivery Table (FDT), which is used to
 identify the group to which each file belongs to and to inform each
 receiver about the properties and structure of the aggregated object.

 More precisely:

 1. The FDT Instance syntax is extended introducing two new elements,
 "Group" and "aggregatedFile".

 2. Additional information concerning the description of the
 aggregated object is added to the FDT.

 3. An extra redirection to "extended" FDT Instances is introduced to
 be backward compatible with FLUTE version 1 specifications. This
 enables the use of FLUTE version 1 FDT Instance specifications in
 combination with the element-extended enhanced FDT schema of this
 specification.

 These modifications are described in details in Section 3 and
 Section 4 .

 All other features, requirements and specifications of the FLUTE

Neumann, et al. Expires April 20, 2006 [Page 6]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 version 1 specification remain valid.

Neumann, et al. Expires April 20, 2006 [Page 7]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [3].

 The terms "object" and "transport object" are consistent with the
 definitions in ALC [7] and LCT [8]. The terms "file" and "source
 object" are pseudonyms, but they are NOT pseudonyms for "object" like
 in FLUTE [10], since a file may be transmitted within an aggregated
 object, that is the only object that ALC needs to understand.

Neumann, et al. Expires April 20, 2006 [Page 8]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

3. The Generalized Grouping Mechanism

 The generalized grouping mechanism allows each file of a FLUTE
 session to be labeled as being part of none, one or several logical
 groups.

 Logical aggregation is performed by using the generalized grouping
 mechanism.

 Since there is a strong incentive to only physically aggregate files
 that are logically related (Section 1.1.2), physical aggregation may
 use this generalized grouping mechanism too, in addition to the
 scheme introduced in Section 4.

3.1 Syntax of FDT Instance with the Generalized Grouping Mechanism

 The grouping mechanism is achieved by adding the element "Group" to
 the FDT.

 The element "Group" can be added to a "File" element, an
 "aggregatedFile" element (introduced in Section 4.3) or to the "FDT-
 Instance" element. In the first two cases it specifies that the file
 (or aggregated file) is part of a group that is identified by the
 value of the element entry "Group". A "Group" entry at "FDT-
 Instance" level specifies that all files (and aggregated files)
 listed in the FDT Instance are part of that group.

 The extended FDT Instance XML schema is specified in Section 4.3.

3.2 A simple example

 With this simple extension any type of relationship between files can
 be expressed. As an example we want to express the hierarchical
 relationship depicted in Figure 1. A web site is composed of two
 html pages (file1.html and file2.html). file1.html contains the image
 file3.jpg, and file2.html contains the image file4.jpg.

Neumann, et al. Expires April 20, 2006 [Page 9]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 | WebSite |
 | -------------- -------------- |
	HtmlPage1		HtmlPage2	
	(file1.html,		(file2.html,	
	file3.jpg)		file4.jpg)	
-------------- --------------				

 Example of a hierarchical relationship for a web site.

 Figure 1

 The hierarchical relationship can be expressed as follow: All files
 are part of the group "WebSite"; file1.html and file3.jpg are part of
 the group "HtmlPage1"; file2.html and file4.jpg are part of the group
 "HtmlPage2".

 Other file relationships can easily be expressed with the generalized
 grouping mechanism.

 <Editorial note>
 The relations between groups are only implicitly expressed (e.g. it
 it not explicitly stated in the above example that "HtmlPage1" is a
 sub-group of "WebSite"). Is there a need to specify the relationship
 between groups explicitly in some way in the FDT?
 </Editorial note>

Neumann, et al. Expires April 20, 2006 [Page 10]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

4. The Physical File Aggregation Scheme

4.1 multipart/mixed MIME type object and multipart/related MIME type
 object

 An aggregated object is either a multipart/mixed MIME type object as
 defined in MIME Part two [2] or a multipart/related MIME type object
 as defined in [4]. The aggregated object includes several files,
 each one delimited by the boundary delimiter defined in the MIME
 header. One body part (in MIME terminology) corresponds to one
 aggregated file.

 Multipart/related MIME type objects should be used in cases where a
 logical dependence of the files being aggregated needs to be
 expressed (Multipart/related was initially developed to send entire
 web-page, i.e. including all images and related files part of that
 web-page). In all other cases multipart/mixed MIME type object
 should be used.

 There are no restrictions nor recommendations regarding the MIME
 header fields of each body part compared to what is specified in MIME
 Part two [2]. Empty header fields are sufficient (i.e. the body
 parts are only delimited by the boundary delimiter without any header
 field), but the header field may be filled with any additionally
 required information.

 In some cases adding additional information for each body part may be
 useful. Especially if we want to enable a receiver that is not aware
 of the aggregated object FLUTE extension to process the aggregated
 object and reconstruct aggregated files, it is RECOMMENDED to include
 the "Content-Location" attribute in each body part MIME header field.

4.2 Extending the FDT with Aggregated Object Information

 The Aggregated Object Information (AOI) describes the aggregated
 object and its structure. In this section we describe a logical view
 of all information needed to process an aggregated object, and in
 Section 4.3 we describe its implementation within the FDT Instances
 as a "File" element for the aggregated object and a set of
 "aggregatedFile" elements.

 The AOI must enable a receiver to:

 o identify that an ALC object is an aggregated object,

 o identify and have a description of the files being transmitted in
 an aggregated object,

Neumann, et al. Expires April 20, 2006 [Page 11]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 o know the position (i.e. offset) and length of each file within the
 aggregated object.

 Therefore the AOI MUST contain the following attributes:

 o The Aggregated Object's TOI value

 o The Aggregated Object's content type value, that MUST either be
 set to "multipart/mixed" or to "multipart/related"

 o The URI of each file being aggregated

 o The offset of each file within the aggregated object (not
 considering the boundary delimiter and the MIME header)

 o The transfer length of each file within the aggregated object, or
 the content length if the file is not content encoded

 o The number of files aggregated in one aggregated object.

 The attributes of the AOI MUST be included in the FLUTE FDT. The FDT
 Instances containing AOI are referred as "extended" FDT Instances in
 this document. Since the AOI is just an extension added to the FLUTE
 version 1 FDT, it is delivered within the FDT Instances, as specified
 in FLUTE [10].

 The file aggregation scheme does not mandate any mechanism to carry
 the AOI, but it is RECOMMENDED that the AOI does not straddle several
 FDT Instances. A receiver can check if he knows the entire list of
 files of one aggregated object by checking if the number of described
 files is equal to the number of files specified in the AOI.

 <Editorial note>
 It has to be discussed if carrying the AOI within one FDT Instance
 can be mandated as mandatory. The attribute number of files is no
 longer required in that case.
 </Editorial note>

4.3 Syntax of FDT Instance with Aggregated Object Description
 Information

 The syntax of FDT Instances remains the same as the FLUTE version 1
 specification, with the addition of the following enhancements:

 1. An aggregated object has a "File" element entry in the FDT, like
 normal files.

Neumann, et al. Expires April 20, 2006 [Page 12]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 * All rules of the FLUTE version 1 specification for "File"
 elements apply to this entry.

 * The entry MUST have the attribute "Content-Type" and its value
 must either be set to "multipart/mixed" or "multipart/related"
 according to the MIME object type used for the aggregated
 object.

 * The "Content-Location" attribute SHOULD contain a relative URI
 reference [5], since aggregated objects may have no absolute
 URI (they are not regular files). An example of such a
 relative URI for the aggregated object is "/AO1".

 * To differentiate an FDT file entry of a normal file of type
 "multipart/mixed" or "multipart/related" from an FDT file
 entry of an aggregated object, the receiver has to check if
 there exists elements of type "aggregatedFile" whose "AOTOI"
 attribute value is equal to the TOI of the aggregated object.

 * The entry MUST have the attribute "Number-of-Files" and its
 value is the number of aggregated files within the aggregated
 object.

 2. The element "aggregatedFile" describing a file being aggregated
 is added to the XML Schema. For this element the attributes must
 be set according to the following rules:

 * The attribute "AOTOI", that identifies the TOI of the
 corresponding aggregated object, MUST be set.

 * The attribute "Content-Location" MUST be set and assigned a
 valid URI as defined in [10].

 * The attributes "Content-Length" (or "Transfer-Length" if the
 file is content encoded FLUTE [10]) and "Content-Offset" MUST
 be specified. "Content-Offset" specifies the offset of the
 file within the aggregated object. More precisely, this is
 the number of bytes (8 bit words) from the start of the
 aggregated object up to the first byte of the file, not
 considering the boundary delimiter and the MIME header.
 (Note, that the use of multipart MIME ensures that the files
 are byte aligned).

 * The attributes "Content-Encoding" and "Content-MD5" MAY be
 used. In that case these attributes MUST be used for the
 purpose as described in [10].

 The following specifies the XML Schema [11][12] for FDT Instance:

Neumann, et al. Expires April 20, 2006 [Page 13]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fl="http://www.example.com/flute"
 elementFormDefault:xs="qualified"
 targetNamespace:xs="http://www.example.com/flute">
 <xs:element name="FDT-Instance">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="File" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>
 <xs:element name="Group" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 </xs:element>
 <xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:attribute name="Content-Location"
 type="xs:anyURI"
 use="required"/>
 <xs:attribute name="TOI"
 type="xs:positiveInteger"
 use="required"/>
 <xs:attribute name="Content-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Transfer-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Content-Offset"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Number-of-Files"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Content-Type"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-Encoding"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-MD5"
 type="xs:base64Binary"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Encoding-ID"

Neumann, et al. Expires April 20, 2006 [Page 14]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Instance-ID"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="aggregatedFile" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>
 <xs:element name="Group" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 </xs:element>
 <xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:attribute name="Content-Location"
 type="xs:anyURI"
 use="required"/>
 <xs:attribute name="AOTOI"
 type="xs:positiveInteger"
 use="required"/>
 <xs:attribute name="Content-Offset"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Content-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Transfer-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Content-Offset"
 type="xs:unsignedLong"

Neumann, et al. Expires April 20, 2006 [Page 15]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 use="optional"/>
 <xs:attribute name="Content-Type"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-Encoding"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-MD5"
 type="xs:base64Binary"
 use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 </xs:element>
 <xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:sequence>
 <xs:element name="Group" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 </xs:element>
 <xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 <xs:attribute name="Expires"
 type="xs:string"
 use="required"/>
 <xs:attribute name="Complete"
 type="xs:boolean"
 use="optional"/>
 <xs:attribute name="Content-Type"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-Encoding"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Encoding-ID"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Instance-ID"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
 type="xs:unsignedLong"

Neumann, et al. Expires April 20, 2006 [Page 16]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 use="optional"/>
 <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 </xs:element>
 </xs:schema>

4.4 Symbol alignment of aggregated files

 In uses cases where the the aggregated files within the aggregated
 object needs to be symbol aligned, the mechanism described in this
 section SHOULD be used. The mechanism stays compatible with the MIME
 object format and allows symbol alignment in the same time.

4.4.1 MIME compatible padding

 We define a new MIME header field, that allows to add padding within
 the MIME part header.

 The field is defined as follows (it refers to several syntax rules
 that are defined by [1]):

 extension-field = "Padding" ":" *LWSP-char

 where *LWSP-char is filled with an appropriate number of whitespaces
 to achieve symbol alignment of the following file.

 Receivers that are not aware of this header field can process the
 MIME object anyhow, by just skipping process this field (this is the
 default behavior for unknown header fields).

4.5 Recovering files at FLUTE receiver supporting physical file
 aggregation

4.5.1 Recovering files before the entire reception of the aggregated
 object

 Aggregated objects SHOULD NOT be content encoded in order to enable
 file recovery from an aggregated object before the whole aggregated
 object is received/reconstructed. Content encoding largely restricts
 the ability to access the individual files within the aggregated
 object before content decoding was successful. Therefore we do not
 recommend content encoding of aggregated objects when partial

Neumann, et al. Expires April 20, 2006 [Page 17]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

 reliability is required. Conversely individual aggregated files may
 be content encoded.

 The information provided with the FDT Instances allows a receiver to
 identify all source blocks and source symbols for each aggregated
 file. File recovery is done, for each aggregated file, by:

 1. Identifying the corresponding aggregated object using the "AOTOI"
 attribute, and thus the ALC object carrying the aggregated
 object.

 2. Identifying the source symbols (and their corresponding source
 blocks) carrying the file data, using the relevant blocking
 algorithm and any related FEC-OTI parameters. The "Content-
 Offset" attribute is used to calculate the first transport object
 symbol and its corresponding source block of the file. The
 "Content-Length" (or "Transfer-Length") attribute is used to
 identify the remaining symbols (and their corresponding source
 blocks) of the file. Note that the start-of-file and end-of-file
 boundaries do not necessarily correspond to symbol boundaries, if
 the symbol alignment mechanism of Section 4.4 is not used. If
 the mechanism is used, we are ensured that the start-of-file
 corresponds to a symbol boundary.

 3. Waiting until all symbols have been received or decoded to
 reconstruct the aggregated file.

4.5.2 Recovering files after the entire reception of the aggregated
 object

 After the entire reception of the aggregated objects the receiver is
 assured that he received all symbols and source blocks to reconstruct
 all aggregated files. As in the previous section the information
 provided with the FDT Instances allows a receiver to identify for
 each aggregated file the symbols carrying the file data, and
 therefore reconstruct the individual files.

4.6 Recovering files at FLUTE receiver that does not support physical
 file aggregation

 A receiver that does not support physical file aggregation can
 recover aggregated files after full reception of the aggregated
 object, if enough information is carried within the aggregated object
 (see Section 4.1). In that case a MIME reader can interpret the
 file, and extract the aggregated file out of it.

Neumann, et al. Expires April 20, 2006 [Page 18]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

4.7 Limitations

 The following limitations have to be considered when using object
 aggregation:

 1. No individual file can be modified within an aggregated object.
 If an update is required at least two possibilities exist. Other
 mechanisms may be used, but are out of scope of this
 specification: (1) a brand new aggregated object is created and
 replaces the previous aggregated object whose transmission MUST
 stop; or (2) the new file is sent individually by FLUTE along
 with an FDT entry that shows that it out dates the previous
 version. If a File URI appears on a "higher" TOI than an
 aggregated object carrying it, the receiver SHALL assume that the
 individual file is the newer version. Also, an aggregated object
 on a higher TOI which contains a file previously described on a
 lower TOI SHALL be assumed to contain a newer (or equal) version.

 To that purpose, the TOI assigned by the sender to each object
 MUST start with at least 1 and be incremented by one for each new
 object. This ensures that the receiver can unambiguously
 determine which instance of a certain file URI is not (obsolete
 (the one with the logically highest TOI). This has no
 implication on sending or receiving order, only on allocation.

 2. The physical file aggregation scheme offers a limited per-file
 filtering. The limitation is that a large part of the aggregated
 object may have to be received and processed before a FLUTE
 receiver can extract an individual file from it, when only a
 small subset of the aggregated files are of interest to a FLUTE
 receiver. It is therefore the responsibility of the FLUTE sender
 to create an homogeneous aggregation. The criteria to decide
 what files can be aggregated or not are out of scope of this
 document.

Neumann, et al. Expires April 20, 2006 [Page 19]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

5. FLUTE version 1 backward compatibility

 The XML Schema described in Section 4.2 is not backward compatible
 with the XML Schema described in the FLUTE version 1 specification.
 FLUTE version 1 does not allow the addition of new types of elements
 in the XML Schema.

 An extra redirection to "extended" FDT Instances is introduced to be
 backward compatible with FLUTE version 1 specifications. This
 enables the combined use of FLUTE version 1 FDT Instance
 specifications in combination with the extended FDT schema of this
 specification. Yet if all receivers support this document's extended
 FDT schema, then the redirection mechanism is not required.

5.1 Redirection mechanism

 The backward compatibility mechanism consists carrying the extended
 FDT Instances on a non-'0' TOIs. The TOI of the extended FDT
 Instances is signaled to the receivers with a new attribute,
 "FDTInstanceRedirection". The value of that attribute MUST remain
 the same during an entire file delivery session.

 o A receiver that only accepts FDT Instances conforming to the FLUTE
 version 1 specifications and that is not aware of the physical
 file aggregation scheme skips processing of the
 "FDTInstanceRedirection" attribute and therefore does not process
 the extended FDT Instances carried on the non-'0' TOI.

 o A receiver that is aware of the "file aggregation extension"
 processes the FDT redirection attribute, and therefore receives
 and processes the extended FDT Instances.

 The extended FDT Instances, carried on a non-'0' TOI, have, as the
 non-extended FDT Instances, an FDT Instance ID. The FDT Instance ID
 is signaled to the receivers with an FDT Instance header as specified
 in FLUTE version 1.

 FDT Instances on TOI '0' and on non-'0' TOI share the same FDT
 Instance IDs space. That means that an FDT Instance ID used on one
 TOI MUST NOT be used anymore for any other FDT Instance on any TOI.
 The FDT Instance ID MUST be incremented by one instead (wraparound
 considerations are the same as for FLUTE version 1). With this
 mechanism the most up-to-date (extended or non-extended) FDT Instance
 has always the greatest FDT Instance ID value. A consequence is that
 the FDT Instance ID values for one TOI are not necessarily
 contiguous.

Neumann, et al. Expires April 20, 2006 [Page 20]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

6. Security Considerations

 The security considerations that apply to FLUTE version 1, also apply
 to this document.

 A malicious attacker may send forged FDT Instances. He could use the
 redirection mechanism (redirecting to false TOIs) or directly send
 forged FDT Instances, with false descriptions of aggregated objects.
 The attacker may use this mechanism to send malicious active content
 like a Trojan horse or some other type of virus within one aggregated
 object (as a whole) or within the aggregated files. It is thus
 STRONGLY RECOMMENDED that the FLUTE delivery service at the receiver
 does not have write access to the system files or directories, or any
 other critical areas, and that authentication schemes be used.

Neumann, et al. Expires April 20, 2006 [Page 21]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

7. IANA Considerations

 No information in this specification is directly subject to IANA
 registration. However, building blocks components used by ALC may
 introduce additional IANA considerations.

Neumann, et al. Expires April 20, 2006 [Page 22]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

8. Acknowledgments

 The authors gratefully acknowledge the contributions of Nabil
 Layaida. Thanks also for the helpful comments of Michael Luby and
 Thorsten Lohmar.

Neumann, et al. Expires April 20, 2006 [Page 23]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

9. References

9.1 Normative References

 [1] Crocker, D., "Standard for the format of ARPA Internet text
 messages", STD 11, RFC 822, August 1982.

 [2] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Levinson, E., "The MIME Multipart/Related Content-type",
 RFC 2387, August 1998.

 [5] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [6] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [7] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L., and J.
 Crowcroft, "Asynchronous Layered Coding (ALC) Protocol
 Instantiation", RFC 3450, December 2002.

 [8] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L., Handley, M.,
 and J. Crowcroft, "Layered Coding Transport (LCT) Building
 Block", RFC 3451, December 2002.

 [9] Luby, M. and L. Vicisano, "Compact Forward Error Correction
 (FEC) Schemes", RFC 3695, February 2004.

 [10] Paila, T., Luby, M., Lehtonen, R., Roca, V., and R. Walsh,
 "FLUTE - File Delivery over Unidirectional Transport",
 RFC 3926, October 2004.

 [11] Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn, "XML
 Schema Part 1: Structures", W3C Recommendation, May 2001.

 [12] Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes",
 W3C Recommendation, May 2001.

Neumann, et al. Expires April 20, 2006 [Page 24]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

9.2 Informative References

 [13] Roca, V. and C. Neumann, "Design, Evaluation and Comparistion
 of Four Large Block FEC Codecs, LDPC, LDGM, LDGM Staircase and
 LDGM Triangle, plus a Reed-Solomon Small Block FEC Codec",
 INRIA Research Report Number 5225, June 2004.

 [14] Byers, J., Luby, M., Mitzenmacher, M., and A. Rege, "A digital
 fountain approach to reliable distribution of bulk data", ACM
 SIGCOMM 98, August 1998.

Authors' Addresses

 Christoph Neumann
 INRIA Rhone-Alpes
 655, av. de l'Europe, Montbonnot
 St Ismier cedex, 38334
 France

 Phone: +33 4 76 61 52 69
 Email: christoph.neumann_(at)_inrialpes.fr

 Vincent Roca
 INRIA Rhone-Alpes
 655, av. de l'Europe, Montbonnot
 St Ismier cedex, 38334
 France

 Phone: +33 4 76 61 52 16
 Email: vincent.roca_(at)_inrialpes.fr

 Rod Walsh
 Nokia
 Visiokatu 1
 Tampere, 33720
 Finland

 Email: rod.walsh_(at)_nokia.com

Neumann, et al. Expires April 20, 2006 [Page 25]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

Appendix A. Example of FDT Instance (informative)

 <?xml version="1.0" encoding="UTF-8"?>
 <FDT-Instance xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:fl="http://www.example.com/flute"
 xsi:schemaLocation="http://www.example.com/flute-fdt.xsd"
 Expires="2890842807">
 <File
 Content-Location="http://www.example.com/menu/tracklist.html"
 TOI="1"
 Content-Length="200"
 Content-Type="text/html">
 <Group>MP3_tracks</Group>
 </File>
 <File
 Content-Location="http://www.example.com/tracks/track1.mp3"
 TOI="2"
 Transfer-Length="6100"
 Content-Type="audio/mp3"
 Content-Encoding="gzip"
 Content-MD5="+VP5IrWploFkZWc11iLDdA=="
 Some-Private-Extension-Tag="abc123">
 <Group>MP3_tracks</Group>
 </File>
 <File
 Content-Location="http://www.example.com/index.html"
 TOI="3"
 Content-Length="100"
 Content-Type="text/html">
 </File>
 </FDT-Instance>

 A simple FDT Instance using the generalized grouping mechanism. The
 files on TOI='1' and TOI='2' are part of the group "MP3_Tracks".

Neumann, et al. Expires April 20, 2006 [Page 26]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

Appendix B. Example of FDT Instance (informative)

 <?xml version="1.0" encoding="UTF-8"?>
 <FDT-Instance xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:fl="http://www.example.com/flute"
 xsi:schemaLocation="http://www.example.com/flute-fdt.xsd"
 Expires="2890842807">
 <File
 Content-Location="/AO1"
 TOI="1"
 Content-Length="830"
 Content-Type="multipart/mixed"
 Number-of-Files="2"/>
 <aggregatedFile
 Content-Location="http://www.example.com/menu/description.html"
 AOTOI="1"
 Content-Length="210"
 Content-Offset="100"
 Content-Type="text/html"/>
 <aggregatedFile
 Content-Location="http://www.example.com/menu/details.html"
 AOTOI="1"
 Transfer-Length="500"
 Content-Offset="320"
 Content-Encoding="gzip"
 Content-Type="text/html"/>
 </FDT-Instance>

 A simple FDT Instance using the physical file aggregation scheme.
 The files "http://www.example.com/menu/description.html" and
 "http://www.example.com/menu/details.html" are carried within the
 aggregated object, which has an TOI='1'.

Neumann, et al. Expires April 20, 2006 [Page 27]

Internet-Draft A File Aggregation Scheme for FLUTE October 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Neumann, et al. Expires April 20, 2006 [Page 28]

