Convolution particle filters for parameter estimation in general state-space models

Fabien Campillo 1 Vivien Rossi 1
1 ASPI - Applications of interacting particle systems to statistics
UR1 - Université de Rennes 1, Inria Rennes – Bretagne Atlantique , CNRS - Centre National de la Recherche Scientifique : UMR6074
Abstract : The state-space modeling of partially observed dynamic systems generally requires estimates of unknown parameters. From a practical point of view, it is relevant in such filtering contexts to simultaneously estimate the unknown states and parameters. Efficient simulation-based methods using convolution particle filters are proposed. The regularization properties of these filters is well suited, given the context of parameter estimation. Firstly the usual non Bayesian statistical estimates are considered: the conditional least squares estimate (CLSE) and the maximum likelihood estimate (MLE). Secondly, in a Bayesian context, a Monte Carlo type method is presented. Finally these methods are compared in several simulated case studies.
Type de document :
Rapport
[Research Report] RR-5939, INRIA. 2006, pp.28
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00081956
Contributeur : Rapport de Recherche Inria <>
Soumis le : mardi 27 juin 2006 - 10:56:11
Dernière modification le : mercredi 11 avril 2018 - 02:00:16
Document(s) archivé(s) le : lundi 27 juin 2011 - 15:27:45

Fichiers

Identifiants

  • HAL Id : inria-00081956, version 2

Citation

Fabien Campillo, Vivien Rossi. Convolution particle filters for parameter estimation in general state-space models. [Research Report] RR-5939, INRIA. 2006, pp.28. 〈inria-00081956v2〉

Partager

Métriques

Consultations de la notice

266

Téléchargements de fichiers

555