N
N

N

HAL

open science

SQUARE: Scalable Quorum-Based Atomic Memory
with Local Reconfiguration

Emmanuelle Anceaume, Vincent Gramoli, Antonino Virgillito

» To cite this version:

Emmanuelle Anceaume, Vincent Gramoli, Antonino Virgillito. SQUARE: Scalable Quorum-Based

Atomic Memory with Local Reconfiguration. [Research Report] PI 1805, 2006, pp.39. inria-

00082274v2

HAL 1d: inria-00082274
https://inria.hal.science/inria-00082274v2
Submitted on 3 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00082274v2
https://hal.archives-ouvertes.fr

ISSN 1166-8687

PUBLICATION
INTERNE
N° 1805

Oszg/
&
&
(@)
@
(&
3

5
S
2)

<

SQUARE: SCALABLE QUORUM-BASED ATOMIC
MEMORY WITH LOCAL RECONFIGURATION

EMMANUELLE ANCEAUME VINCENT GRAMOLI
ANTONINO VIRGILLITO

m |RISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES
Campus de Beaulieu — 35042 Rennes Cedex — France

I R I S A Tél. : (33) 029984 71 00 — Fax : (33) 029984 71 71
» http://www.irisa.fr

SQUARE: Scalable Quorum-Based Atomic Memory with L ocal
Reconfiguration

* . Lk . T
Emmanuelle Anceaume Vincent Gramoli Antonino Virgillito

Systemes communi cants
Projets ADEPT et ASAP

Publication interne n° 1805 — June 2006 — 40 pages

Abstract: Internet applicationsrequire more and more resourcesto satisfy the unpredictableclients
needs. Specifically, such applications must ensure quality of service despite bursts of load. Dis-
tributed dynamic self-organi zed systems present an inherent adaptivenessthat can face unpredictable
bursts of load. Nevertheless quality of service, and more particularly data consistency, remains
hardly achievablein such systems since participants (i.e., nodes) can crash, leave, and join the system
at arbitrary time. The atomic consistency guarantees that any read operation returns the last written
value of adataand is generalizable to data composition. To guarantee atomicity in message-passing
model, mutually intersecting sets (a.k.a. quorums) of nodes are used. The solution presented here,
namely Square, provides scalability, load-balancing, fault-tolerance, and self-adaptiveness, while
ensuring atomic consistency. We specify our solution, prove it correct and analyse it through simu-
lations.

Key-words. Dynamic Distributed Systems, Self-Organization, Web Services, Quality of Service,
Scalahility, Performance Analysis.

(Résumé : tsvp)

“IRISA/INRIA, CNRS, Campus de Beaulieu 35042 Rennes, France.
" Itituto Nazionale di Statistica Via Cesare Balbo 16 - 00184 Roma, Italy

ks

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(umr 6074) Université de Rennes 1 — Insa de Rennes et en Automatique — unité de recherche de Rennes

SQUARE: Mémoire atomique de quorums avec reconfigur ation
locale pour systemes a grande échelle

Résumé: Les applications utilisées via internet nécessitent de plus en plus de ressources afin de
satisfaire les besoins imprévisibles des clients. De telles applications doivent assurer une certaine
qualitéde service en dépit des pics de charge. Les systemes distribués dynamiquescapablede s auto-
organiser ont une capacité intrinseque pour supporter ces pics de charge imprévisibles. Cependant,
la qualité de service et plus particulierement la cohérence des données reste tres difficile a assurer
dans de tels systemes. En effet, les participants, ou nceuds, peuvent rejoindre, quitter le systeme,
et tomber en panne de fagon arbitraire. La cohérence atomique assure que toute lecture renvoie la
derniére valeur écrite et larelation de composition la préserve. Afin de garantir I’ atomicité dans un
modele a passage de message, des ensembles de noauds s intersectant mutuellement (les quorums)
sont utilisés. La solution présentée ici, appelée Square, est exploitable a grande échelle, permet de
balancer la charge, tolére les pannes et s auto-adapte tout en assurant I’ atomicité. Nous spécifionsla
solution, la prouvons correcte et la simulons pour en analyser les performances.

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 3

1 Introduction

Internet applications suffer from unpredictable variation of load. Such applications must provide
high capacity to tolerate bursts of load implied by large scale in order to guarantee good quality of
service. Typically, webservices such as Wikipedia [1] suffer from their popularity and must readapt
their capacity to face growing interest. Moreover, high bursts of load might focus on a specific
data (or object) in a small period of time. For instance, auctions service such as eBay [2] provide
auctions where many participants can bid on an object during its auction lifetime. Popular objects
often experience a high burst of load during the very end of their auctions. Finally, congestion
and workload implied by centralized services might result in drastically increased latency and even
clients requests losses.

Large scale dynamic systems have gained a widespread diffusion in recent years. Their major
feature is an extreme dynamism in terms of structure, content and load. For instance, in p2p sys-
tems nodes perpetually join and leave during system’s lifetime while in ad-hoc networks the inherent
mobility of nodes induce a change in the size and topology of the system. These systems sponta-
neously organize, and desirable properties emerge from nodes collaboration [5]. This haslead to a
lot of research devoted to address the issues of communication efficiency and load balancing in such
systems.

High dynamism dramatically impacts on data availability [10]. Replication of data is thus nec-
essary. Mutually intersecting sets (ak.a. quorums) are a classical mean to achieve consistent data
access limiting the overall replication overhead: quorumsreduce the number of copiesor replicasin-
volved in reading or updating data at the same time preserving availability. Typically, Internet-scale
applications such as e-auction or e-booking require data consistency and availability: auctioneers
must be able to concurrently read and write their bids, while all the bids should be accessible at any
time despite departures of single nodes.

Providing atomicity in distributed systems is a fundamental problem. It guarantees that despite
concurrent operations invoked on a data/object, everything happens as if these operations were in-
voked in a sequential ordering preserving real-time precedence. In addition to this property, atomic-
ity (ak.alinearizability) preserveslocality [15]. A property islocal if the system as awhole satisfies
this property whenever each object satisfies it. Hence, locality enablesto design a concurrent appli-
cation in a modular way: objects can be implemented independently from other, without requiring
any additional synchronization among them to guarantee safety of the whole application. We denote
by atomic memory of an object the set of all nodes responsible of maintaining this object. Compo-
sition of multiple atomic memories is straightforward. Atomic memory is thus a basic service that
highly facilitates construction of higher services.

Finally, because of dynamism and unpredictable bursts of load, the active replicas maintaining
an object value might become overloaded. For instance if the number of replicas diminishes and/or
the request rate of a given object increases, then the replicas may become overloaded. Moreover,
if there are too many replicas in each quorums and/or the request rate decreases, then the operation
might be unnecessarily delayed. Addressing the resulting trade-off, between operation latency and
capacity needed to face load requires self-adaptiveness: self-adaptiveness aims at either replicating

Pl n° 1805

4 E. Anceaume & V. Gramoli & A. Virgillito

the object while existing replicas gets overloaded or removing replicas from quorums to minimize
operation latency.

1.1 Background

Dynamic Quorums Starting with Gifford [14] and Thomas [28], quorums have been widely used
in distributed systems for various applications [4, 18, 11, 27, 22]. More recently, quorums for dy-
namic systems appeared [15, 20, 13, 3, 25, 24, 12]. Herlihy [15] proposes quorum modification
to cope with failures. In [20, 13, 12] quorum systems are subsequently replaced by independent
ones to cope with permanent failures. In [3, 25, 24, 27], a quorum relies on a specific dynamic
structure, and quorum probes are said adaptive (they contact the quorum members successively in
a reactive manner). [3] proposes quorums that intersect with high probability using a dynamic De
Bruijn communication graph, [25] proposes a planar overlay where a node communicates with its
closest neighbor in the plane to probe a quorum, and [24] proposes a dynamic tree-structure where
And/Or primitives are used to determine quorum participants when descending into the tree. In[27],
the authors briefly describe strategies for the design of multi-dimensional quorum systems for read-
few/write-many replica control protocols. They combine local information in order to deal with
nodes dynamism and quorum sets caching in order to reduce the access latency.

AtomicMemory Emulation of shared memory in message-passing systems appeared in [8]. Since
then, [20, 13, 12] have implemented atomicity in dynamic systems. These approaches provide quo-
rum reconfiguration mechanisms to cope with permanent changes. switching from one predefined
quorum configuration [13] to another or deciding upon new configurations using a quorum-based
consensus [12]. These papers have a common design seed: they propose quorum system replace-
ment, thus replacing the whole quorums participants by others. Thisglobal change requires message
exchangesamong all participants of previous and new configurations.

The current work is based on SAM [6], an atomic memory for dynamic systems. SAM relies
on dynamic quorums and guarantees self-healing and self-adjustment using locking operations as
formally provedin [7].

1.2 Contributions

This paper presents a Scalable Quorum-based Atomic memory with local Reconfiguration, namely
SQUARE. Square is an on-demand memory ensuring i) atomic consistency, ii) fault-tolerance,
iii) scalability, iv) self-adaptiveness, and v) load-balancing.

To provide a distributed atomic memory, Square replicates each atomic object at distant nodes,
called replicas, organized into mutually intersecting sets, called quorums. To cope with nodes fail-
ures, the replicas of an object are organized in a logical overlay represented as atorus grid similar
to the two-dimensional coordinate space of CAN [26]. Thisgrid is divided into rectangle sub-zones
where each replica is responsible of one sub-zone. Zone division occurs when replicas are added
to the memory while zone merge happens after failures or leaves. Replicas responsible of zones of
the same row or column form a quorum—similar quorums have been proved optimal [9, 22]. For

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 5

scalability purpose, an overlay sizeisfar lower than the system size and communicationis restricted
to replicas responsible of two abutting sub-zones. To provide good quality of service, the overlay
self-adapts to the varying load implied by numerous clients: when the overlay gets overloaded an
active replication is triggered to diminish the global load while alow load results in reducing the
overlay size thus minimizing operation latency. Finaly, to balance the load, if a part of the overlay
gets overloaded, then the additional load is spread among less loaded replicas.

The idea at the core of Square has aready been published in [6]. In that work some informal
building blocks for a p2p architecture supporting a self-* atomic memory called Sam are presented
(their formal specification appearingin [7]); Square proposes a specification of these building blocks
and some valuable improvements for dynamic systems. Consequently, the contributions of Square
aretwofold: i) it specifies and simulates an algorithm supporting good properties already suggested
in Sam and ii) proposes substantial improvements to the seminal idea. Square improves on the
seminal idea by i) speeding up the operation executions, ii) providing atomic lock-free operations,
iii) specifying the resulting algorithm, iv) proving its safety and liveness, and v) experimenting its
behavior in asimulated large-scale dynamic system.

We prove Square correctness, that is, we show that read/write operation are atomic despite asyn-
chronism, replica dynamism and replicafailures. Furthermore, we show that under some reasonable
assumptions, liveness is guaranteed. Finally, we show through extensive simulations, performed
through a prototype implementation of Square, that scalability, fault-tolerance, |oad-balancing, and
self-adaptiveness are achieved under various access requests schemes.

Road Map The paper is organized as follows. The system context and the problem of the study
are presented in Section 2. Theformal description of Square appearsin Section 4. Section 5 presents
proofsof safety and liveness of our algorithm. Section 6 shows the properties of Square by extensive
simulations. In Section 7, we conclude and present some future research topics. The Appendix intro-
duces a detailed specification using the Timed Input/Output Automaton language [21] and presents
adetailed correctness proof.

2 Context and Problem

Here we present the context of the paper and the problem definition. The system consists of a set
of nodes, each uniquely identified. The system is dynamic, nodes can fail and join at arbitrary time
while the communication links remain reliable.

2.1 Clients

We consider a set of clients accessing a pool of shared data to consult or modify their content. In
the following we use the terminology object for data, read for consult and write for modify. These
clients can access these objects infinitely often, and concurrently. However during afinite period of
time, the level of concurrency isfinite. Thismodel is often referenced in the literature as the infinite
arrival process with finite concurrency model [23]. Each client is uniquely identified and does not

Pl n° 1805

6 E. Anceaume & V. Gramoli & A. Virgillito

necessarily know other clients. Clients can crash at any time during the execution of aread or write
operation it has invoked on an object.

2.2 Atomic Objects

Each object can be accessed through read or write operations. From a client point of view, these are
the only two operations that can be invoked on the object. Each accessed object is atomic as defined
by Lynchin Lemma13.16 of [21]. Let H be a sequence of complete invocation and response events
of read and write operations, and < be an irreflexive partial ordering of all the operationsin H. Let
op1 and opo be two operationsin H. Then

1. for any operation, there are only finitely many operations preceding it (induced by second and
fourth points);

2. if the response event for operation op, precedesthe invocation event for op -, then it cannot be
the case that op2 < op1;

3. if op; isawriteand ops any operation then either ops < op; or op1 < op2, and

4. the value returned by each read operation is the value written by the last write that precedes
this read according to <. (This value is an initial value, if there is no such write. A basic
assumption is that objects have an initial value, so that the first read operation returns a valid
vaue.)

This makes atomicity a very important property since despite concurrent accesses on an object,
everything happens as if these operations were invoked sequentially. Another important property of
atomicity islocality. A property is local if the system as a whole satisfies this property whenever
each object satisfiesit [16]. Locality isvery important from both atheoretical and apractical point of
view. Indeed, this property allows to design a concurrent application in amodular way: every object
can beimplemented independently from the others, without requiring any additional synchronization
among them to guarantee the whole correctness of the application.

2.3 Atomic Memory

Atomic object defines an atomic memory abstraction. In this work, we consider that these atomic
objects are handled by nodes, or servers, that may join, and leave the system infinitely often. We
assume that each time a server joins, it joins with a new identity.

To face the dynamism of the environment, our atomic memory proposes two fundamental prop-
erties. First we provideself-healing. Self-healingisthe ability of the memory to preserve persistence
and availability of its objects without any external help. Practically, thisis achieved by dynamically
implementing each single object on several servers, and by replacing failed or left ones by new ones.
In the following we use the terminology replica to design the set of serversthat implement asingle
object. The second significant property of our atomic memory is self-adaptive. Self-adaptiveness
enables the atomic memory to face the unpredictability of the environment by dynamically adapting

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 7

the number of replicasto theload: the number of replicastemporarily increases during peaks of high
concurrency.

The load of the memory is defined regarding to the load of each of its replica as follows: Let
L;(t) be the number of operations that a replica has to execute at time ¢. £;(t) is referred in the
following as the local load of replicai at timet. Let B?,,,, and B, ., be two application dependent
parameters which define respectively a lower and upper bound of the load replica i can afford.
Replicai € I isoverloaded (resp. underloaded) iff £;(t) > B!, .. (resp. £i(t) < B¢,;,). From
this definition, self-adjustment guarantees that at any time, the load at any replica £ ;(¢) is such that
B:nzn < ‘Cl(t) < Bfnax'

Finally, by the locality property of atomic consistency, we limit the description of Square to a
single object. Implementation of multiple objects being identical.

3 Dynamic Horizontal/Vertical Quorum

The behavior of our atomic memory Square is emulated through a dynamic quorum system sampled
from a dynamic but deterministic traversal. A quorum system is a set of subsets of replicas, such
that every pair of subsets intersect. In the remaining we are interested in two types of quorums:
horizontal and vertical ones, such that any quorum of one type simply intersects any quorum of the
other type. In adynamic setting, changesin the quorum system occur over time in an unpredictable
way.

Before formally defining dynamic quorums, we briefly describe the organization of the replicas
in Square. Replicas share asamelogical overlay organized in atorustopology (asfor example CAN
[26]). Basically, a 2-dimensional coordinate space [0, 1) x [0, 1) is shared by al the replicas of an
object. A replicais responsible of a zone. The entrance and departure of a replica dynamically
changes the decomposition of the zones. These zones are rectangles (union of rectangles) in the
plane. Replicas of adjacent zones are called neighborsin the overlay and are linked by virtual links.
The overlay has a torus topology in the sense that the zones over the left and right (resp. upper and
lower) borders are neighbors of each other. Initialy, only one replicais responsible for the whole
space. The bootstrapping process pushes a finite, bounded set of replicas in the network. These
replicas are added to the overlay using well-known strategies [26, 25] which consist in specifying
randomly chosen points in the logical overlay, and the zone in which each new replicafallsis split
in two. Half the zone is left to the replica owner of the zone, and the other half is assigned to the
new replica. When a replica leaves the memory (either voluntarily or because it crashes), its zone
is dynamically taken over to ensure that the whole space is covered by rectangle zones, and each
zone belongs to only one replica. Because of horizontal or vertical division, zones are rectangles
in the plane and we refer to a zone as the product of two intervals: 17, = [z.xmin, z.zmax) and
Iz, = [z.ymin, z.ymaz).

Intuitively, we define dynamic quorum sets as dynamic tiling sets, that is sets of replicas whose
zones are pairwise independent and totally cover the abscissa and ordinate of the coordinate space
shared by the replicas. For each rea constant ¢ € [0, 1), the horizontal tiling set @ 1, . is made of
al the replicas whose ordinate is greater than or equal to ¢ and their ordinate is less than or equal to

Pl n° 1805

8 E. Anceaume & V. Gramoli & A. Virgillito

c. Similarly, the vertical tiling set @, . is made of all the replicas whose abscissa is greater than or
equal to c and their abscissaisless than or equal to c.

Definition 3.1 (Dynamic Quorum) Let ¢ be a real constant with 0 < ¢ < 1.
e The horizontal quorum @}, . is defined as the set of replicas satisfying {r.ymaz > ¢ >
raymin}.

e The vertical quorum @, . is defined as the set of replicas satisfying {r € I | r.zmax > ¢ >
r.amin}.

We define by 9@, and Q,, the set of horizontal and vertical quorums in the overlay.

Clearly, the composition of atiling set changes over time due to replicas joins and departures,
and for each real constant ¢ € [0, 1), the horizontal tiling set Q) 5, . and the vertical tiling set @, . is
defined.

Theorem 3.2 For any horizontal quorum @), . and any vertical quorum @, .+, the intersection prop-
erty holds: Qp.c N Qo # 0.

Proof: follows from the fact that it exists a node responsible for point (¢, ¢) in the space.

Next, we definean ordering relation on horizontal and vertical dynamic quorumsto characterizea
sequence of quorums. By definition of dynamic quorums, a single dynamic quorum may correspond
to different values of ¢. On the other hand, given a single value ¢, this completely characterizes a
single dynamic quorum, i.e., two dynamic quorums cannot co-exist “at the same time”. Thus to
define the notion of sequence of quorums, we introduce the “next” relationship between quorums.
Informally, a horizontal (resp. vertical) quorum @ is the next of another horizontal (resp. vertical)
quorum @', if one of) zones has an ordinate (resp. abscissa) greater than any of)’ zones.

Definition 3.3 (Dynamic Quorum Relation) Let larger be a total ordering on horizontal quorums
Qy, defined as: larger(Qn.c) = Qn,e ifand only if ¢ > ¢’. Then, next(Qp,) is defined as follows:

next(Qn,c) = Qne | =0, if larger(Qn,.) =0 (“borderline” of the torus),
nert(Qn.e) = Qn,er | ¢ =min{c” > c} ANQp,er # Qn,c, Otherwise.

Similarly we define larger and next on vertical quorums by replacing Q .. by Qy .

4 Square

Here, we present the Square algorithm. First, we explain the traditional idea of quorum-based read
and write operations as presented in [8]. Then, we present the two protocols that are at the heart
of our operation regquests. the thwart providing load-balancing among the memory replicas and
the traversal ensuring operation atomicity. Finally we present how Square adapts to environmental
changes, such asload and failures. For the detailed code of thisalgorithm, pleaserefer to Section A.1
of the Appendix.

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 9

4.1 Read/Write Operations

The chief aim of Square isto provide a shared memory for dynamic environments. As said before,
clients can access an atomic object of Square by invoking aread or awrite operation on any replica
this client knowsin Square. Thisinvocation is done through the Operation procedure. Pseudocode
of this procedureis shown in Algorithm 1. All the information related to this request are described
in parameter R. For instance, if the client requests a read operation then R.type is set to read, and
value R.value is the default value vg. For a write operation, type is set to write and value is the
value to be written. The other subfields of R are discussed bel ow.

Algorithm 1 Read/Write Operation
1: Operation(R):

2 if available then
3 if overloaded then
4 if first-time-thwart(R) then
5: R.starter «— i
6. Thwart(R,)
7 else
8 if first-time-traversal(R) then
9 R.initiator < 1
10: Consult(R, 7)
11: if R.type = write then
12: R.timestamp «—
13: (timestamp.counter + 1,1)
14: Propagate(R, ©)
15: Acknowledge(R)
16: else
17: R.timestamp «— timestamp
18: R.value «— value
19: if R.value has not been propagated twice then
20: Propagate(R, ©)
21: Return(value)

When such a request R is received by a replica, say 4, ¢ first checks whether it is currently
overloaded or not. Recall that areplicais overloaded if and only if it receives more requests than
it can currently treat. If 7 is overloaded then it conveys the read/write operation request to a less
loaded replica. This is accomplished by the Thwart process (cf. Line 6). Conversely, if i is not
overloaded then the execution of the requested operation can start and i becomesthe R.initiator of
this operation. Thus, ¢ startsthe traversal process: First, i Consults aquorum-lineto learn about the
most up-to-date value of the object and an associated timestamp (Line 10). As explained later, this
resultsin updating the local value-timestamp pair. From this point on, if the operation isawrite then
the counter of the request timestamp, R.timestamp, is Set to theincremented local one (Line 13) and
the request timestamp identifier is set to 4 to break possibletie. Second, ¢ Propagatesin the quorum-
column starting at 7 the new value and its associated timestamp to ensure this value will be taken
into account in later operation executions. In case of write, the R.value propagated is the value to
write, initialized by the client; whilein case of aread, it isthe value previously consulted (Line 18).
Finally, this consulted value is returned to conclude the read operation, as shown at Line 21.

Pl n° 1805

10 E. Anceaume & V. Gramoli & A. Virgillito

Observethat, if the operationisaread and the consulted val ue has already been propagated twice
at this replica, then the operation completes just after the Consult without requiring a Propagate
phase (see Fast Read paragraph hereafter).

4.2 Traversal/Thwart Protocols

The Square algorithm has at its core two fundamental mechanisms, namely the traversal and thwart
mechanisms. Briefly, the traversal mechanism consistsin travelling the overlay vertically or horizon-
tally in order to contact a quorum of replicas. Specificaly, it ensures that a quorum is aware of the
pending operation, and of the current object value. The thwart mechanism consistsin traversing the
overlay following adiagonal axisin order to contact at least one element of each quorum. Thisaims
at probing quorumsin order to identify the ones that are less loaded. Actually, if a non-overloaded
quorum is found, then the thwart stops and the operation is executed at this quorum. If al quorums
are overloaded, then the overlay is expanded. To summarize, the traversal is the elementary phase of
any read/write operation, while the thwart balances the load within the memory. Both mechanisms
are now detailed.

4.2.1 TheTraversal Mechanism.

The Traversal, presented in Algorithm 2, consists in two procedures as shown in Figure 1(a), called
respectively Consult and Propagate; the former consults the value and timestamp of a whole
quorum-line whereas the | atter one propagates a value and a timestamp to a whole quorum-column.
Each of these proceduresis executed (only if 7 is available, i.e., i isnot involved in adynamic event)
from neighbor to neighbor by forwarding the information about the request R, until both quorums
(i.e., the quorum-lineand quorum-column) have been traversed. The traversal endsoncethe initiator
of the traversal receives from its neighbor the forwarding request it initially sent (i.e., the "loop” is
completed). When Consult or Propagate completes, the initiator ¢ gets back the message (Lines 10
and 18), knowing that a whole quorum has participated. From this point on, 4 can continue the op-
eration execution. That is, by directly sending the response to the requesting client if operation R is
complete otherwise by starting a Propagate phase.

Remark. Note that quorums are built on the fly, meaning that they are built using an adaptive
routing: when a node receives the forwarding request from its neighbor, it becomes a member of
the quorum. Furthermore, elements of a quorum have only alocal knowledge of the quorums they
belong to. Specifically, the only members a node belonging to a quorum-line knows are its east
and west neighbors. Similarly, the only members a node belonging to a quorum-column knows are
its north and south neighbors. Thus the whole membership of a quorum is unknown: neither its
members nor the client that invoked the operation knowsit.

There are two differences between Consult and Propagate. First, the Consult gathers the most
up-to-date value-timestamp pair of al the quorum-linereplicas (Line 6) whereas the Propagate up-
dates the value-timestamp pair at all replicas of the quorum-column (Line 14). Second, the Consult

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 11

Algorithm 2 The Traversa Protocol

1: Prerequisite Functions:
next-horizontal-neighbor () returns the next vertical neighbor in the sense depending of the last message receipt,
to continue the propagation. If it received south-directed (resp. north-directed) message, it sends it in the south (resp.
north) sense.
other-next-vertical-neighbor() returns the next vertical neighbor in the opposite sense of the last message sending.
next-horizontal-neighbor () returns the next horizontal neighbor in the sense depending of the last message receipt,
to continue the consultation.

Consult(R, 1):
if available then

R.timestamp «— max(timestamp,
R.timestamp)

R.value «— max(value, R.value)

if =(R.initiator = i) then
Consult(R, next-horizontal-neighbor())

elseif ¢ has aready consulted then
End()

QOUXNDUATRWN

=

11: Propagate(R, 1):
12: if available then

13: timestamp «— max(timestamp, R.timestamp)
14: value «— maz(value, R.value)

15: if =(R.initiator = i) then

16: Propagate(R, next-vertical-neighbor())

17: elseif ¢ has aready propagated then

18: End()

19: else

20: Propagate(R, other-next-vertical-neighbor())

contacts each member of the quorum once following a single direction (Line 8), while the Prop-
agate contacts each member of the quorum twice with messages sent in both directions (Lines 16
and 20). Consequently, if the value has been propagated twice at node 7, then 7 knows that the value
has been propagated at least once to every other replica of its quorum-column. This permits later
read operation to complete without propagating this value once again.

Fast Read Operation. Not only, the traversal is lock-free compared to [6], but it does not require
the confirmation phase of [13, 12], while proposing fast read operations. This results directly from
the adaptiveness of our traversal mechanism. Minimizing atomic read operation latency suffers some
limitations. Indeed, to guarantee atomicity two subsequent read operations must return valuesin a
specific order. This problem hasbeenfirstly explainedin[19] asthe new/old inversion problem. That
is, when aread operation returns value v, any later (non-concurrent) read operation must return v or
a more up-to-date value. Square proposes read operations that may terminate after a single phase,
solving the aforementioned problem without requiring locks or additional external phase. For this
purpose, the Consult phase of theread operationidentifiesif the consulted val ue has been propagated
at enough locations. If the value v has not been propagated at all members of a quorum-column, a
Propagate phase is required after the end of the Consult phase and before the read can return v,

Pl n° 1805

12 E. Anceaume & V. Gramoli & A. Virgillito

otherwise a later read might not Consult the value. Conversely, if avalue v has been propagated at
a whole guorum-column, then any later Consult phase will discover v or a more up-to-date value,
thus the read can return v with no risk of atomicity violation.

o

Figure 1: (8) Thetraversal mechanism. (b) The Propagate Phase. (c) The thwart mechanism.

W

Thesolutionispresentedin Figure 1(b) and relies on overlapping messages during the Propagate
phase based on the fact that this phase is executed from neighbor-to-neighbor. Figure 1(b) presents
a quorum-column of the torus grid as a ring where each circle models a replica and a link models
arelation between two neighbors. The black circle represents the initiator of the Propagate phase.
Unlike the Consult phase, the Propagate phase starts by two message sends: one message in each
of the two senses (north and south senses in the grid). Those messages are conveyed in parallel from
neighborsto neighbors until the initiator receives them back.

The ideais simple: when a replica of the ring receives a first message it simply updates their
local value-timestamp pair with the one of the message, when the replica receives a second message
it deducesthat all the members of a quorum-columnhave updateditslocal pair to the propagated one.
During a Consult phase of aread operation, if the (most up-to-date) consulted pair (v ', ¢’) has been
found at areplicar that has received only one message containing (v’, t'), then a Propagate phase
must occur before the end of the read operation. If replicar has received two messages propagating
(v',t'), then the read can terminate immediately after the Consult phase. For instance, if r is one
of the two bottom replicas, then the read operation can return immediately, otherwise the read must
Propagate.

4.2.2 TheThwart Mechanism.

The Thwart, presented in Algorithm 3, relies essentially on two procedures, caled Thwart and
Forward. The Thwart is executed if 7 receives an operation request while it is overloaded (cf.
Line 6 of Algorithm 1). This mechanism checks the load of each quorum until it finds a non-
overloaded one. For this purpose a sequence of quorum representatives, and located on the same
diagond axis, are contacted in turn, as shown in Figure 1(c). Each of these representativeisareplica
subsequently denoted the target of the request R.target.

It is noteworthy that contacting subsequent replicas located on adiagonal axisleadsto contacting
al quorums. Furthermore, contacting only one representative per quorum s sufficient to declare that

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 13

Algorithm 3 The Thwart Protocol
1: Prerequisite Functions:
next-point-on-diagonal () returns the replica identifier responsible of the extreme north-east point of the zone of i.
closest-neighbor-of (R.point) returns the neighbor whose is responsibility is the closest to the coordinate point
given as an argument.

2: Thwart(R, 7):

3 if R.target =i A R.point € zone then

4 if R.starter = i then

5. Expand()

6 elseif overloaded then

7 R.point «— next-point-on-diagonal ()
8: j « closest-neighbor-of (R.point)
9 Forward(R, 7)
0) else
1 Operation(R)

12: Forward(R, 7):
13: if R.point € zone then

14: for j € meighbors do

15: if R.point € j.zone then
16: R.target — j

17: Thwart(R, R.target)

this quorum is overloaded or not. Indeed, referring to the definition of load (see Section 2), areplica
becomes overloaded because of too many read/write operation requests receipt, not because of the
"load” incurred by the forwarding operation. Consequently, a quorum is not overloaded whenever
itsinitiator is not overloaded. By definition, these replicas are not necessarily neighbors, and thus,
an intermediary replica j is smply asked to Forward the thwart to R.target without checking its
workload. Because of asynchrony, although areplica: sends a message to its neighbor 7, at thetime
j receivesthe message j might have modified its state and might no longer be i’s neighbor. (Because
anew zone may have been created between nodes: and j.) To encompass this, a R.point indicates
the final destination in the overlay coordinate space and a replica Forwarding or Thwarting first
checks whether it is still responsible of this point, as expressed Lines 13 and 3.

4.3 Adapting to Environmental Changes

Here, we present self-adaptive mechanisms of Square. If a burst of requests occurs on the whole
overlay the system needs to Expand by finding additional resources to satisfy the requests. Con-
versely, if some replicas of the overlay are rarely requested, then the overlay Shrinks to speed up
rare operation executions. Finally, when some replicas leave the system or crash, then a Failure-
Detection requires some of the replicas around the failure to reconfigure. Those three procedures
appear in Algorithm 4.

For some reasons (e.g., failure) a replica might leave the memory without notification. Despite
the fact that safety (atomicity) is still guaranteed when failures occur, it isimportant that the system

Pl n° 1805

14 E. Anceaume & V. Gramoli & A. Virgillito

reconfigures. To this end, we assume a periodic gossip between replicas that are direct neighbors.
Thisgossip serves aheartbeat protocol to monitor replicavivacity. Based on this protocol, the failure
detector identifies failures after a period of inactivity. When a failure occurs the system self-heals
by executing the FailureDetection procedure: atakeover nodeis deterministically identified among
active replicas according to their join ordering, as explained in [26]. This replica takes over the
responsibility region that has been left, it reassigns a constant number of responsibility zones to
make sure the responsibility-replica mapping is bijective, and it notifies its neighborhood before
becoming newly available.

Algorithm 4 Expand and Shrink Primitives

1: Expand: 9: Shrink:

2. availabale — false 10: NotifyNeighbor(z)

3 j < FindExternalNode() 11: status < node

4: ActiveReplication(5)

5. ShareLoad(j) 12: FailureDetection(y):

6: NotifyNeighbor(z) 13: awailabale < false

7 NotifyNeighbor(y) 14: TakeOver(j)

8 availabale «— true 15: NotifyNeighbor(j)
16: availabale «— true

Two other procedures, namely Expand and Shrink are used to keep a desired tradeoff between
load and operation complexity. When the number of replicas in the memory diminishes, fault tol-
erance is weakened and the overlay is more likely overloaded. Conversely, if the overlay quorum
size increases, then the operation latency raises accordingly. Therefore, it is necessary to provide
adaptation primitivesto maintain adesired overlay size. The Shrink procedure occurs when a node
i isunderloaded (i.e., 7 does not receive enough requests since a sufficiently long period of time). If
thisoccurs, i locally decidesto give its responsibility, to leave the overlay, and to become a common
node (i.e., anode that does not belong to the memory). Conversely, an Expand procedure occurs at
replica: that experienced an unsuccessful thwart. In other words, when the thwart mechanism started
at 7 fails in finding a non-overloaded replica (i.e., the thwart turns around the memory without find-
ing a non-overloaded replica), then ¢ decides to expand the overlay. From this point on, initiator 4
becomes unavailable (preventing itself from participating in traversals) chooses a common node j
(i.e., a node which does not belong to Square) and actively replicates its timestamp and value at ;.
From this point on, j becomes areplica, ¢ shares a part of its own workload and responsibility zone,
and j and 7 notify their neighbors begin newly available.

5 Correctness Proof

Here, we present a sketch of the correctness proof. For the detailed proof, please refer to Section A.2
of the Appendix.

Thefollowing theorem shows the safety property (i.e., atomicity) of our system. The proof relies
essentially on the fact that timestamp monotonically increases and on quorum intersection property.

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 15

Theorem 5.1 Square implements an atomic object.

Proof.[Sketch.] First, we show that a timestamp used in a successful operation is monotonically
increased at some location. In absence of failures, it is straightforward. Assume now that replica i
leavesthe memory and that areplica j takes over i’szone after aFailureDetection event or j receives
an Expand order: j becomes unavailable until it exchanges messages with its new neighbors (by
NotifyNeighborsevent), catching up with the most up-to-date value. Second we show that operation
ordering implied by timestamp respects real-time precedence. A write operation Propagates its
timestamp in any case while aread Propagatesit if it has not been propagated yet. That is, awhole
quorum-column is aware of the timestamps of ended operation. All operations contain a Consult
phase, and by quorum intersection (cf. Theorem 3.2), discover the last timestamp. Because each
written timestamp is unique and monotonically incremented, writes are totally ordered and since the
valueis always associated with its timestamp object specification is not violated. O

Here we show that our algorithm terminates under sufficient conditions. In order to allow the
agorithm to progress, we first assume that alocal perfect failure detector mechanism is available at
each replica. Such alow level mechanism, availablein CAN, enables areplicato determine whether
one of its neighbors has failed (i.e., crashed) by periodically sending heartbeat messages to all its
neighbors. Furthermore, as far as liveness is concerned, we are primarily interested in the behavior
of Square when failures are not concentrated on a same neighborhood. This leads to the following
environmental properties: i) neighbor-failure: between the time a replica fails and the time it is
replaced, none of its neighbors fail; and ii) failure-spacing: there is a minimal delay between two
failures occurring at the same point in the memory.

Theorem 5.2 Eventually, every operation completes.

Proof.[Sketch.] First, we show that a sent message is eventually received. Let i and j be two
neighborsand j failswhilei sendsamessage. Using itsfailure detector ¢ will discover j’sfailureand
areplica 7/ will take over j's zone. By neighbor-failure and failure-spacing assumptions, the next
message from 7 to j’ will be successfully received. Now, we show that the traversal and the thwart
mechanisms terminate. We consider the worst case scenario of the thwart: the thwart wraps around
the entire torus. First, observe that the overlay is atorus and the sense of subsequent messages does
not change: east, north, south or diagonal. Second, by the infinite arrival with finite concurrency
model we know that the number of Expand eventsduring afinite period of timeisfinite. Thisimplies
that the number of replicas to contact during a traversal or a thwart is finite and both mechanisms
converge successfully. O

Theorem 5.3 Infinitely often the memory is not overloaded

Proof.[Sketch.] By the infinite arrival with finite concurrency model, the level of concurrency is
bounded during a period of time sufficiently long. From the above theorem, operations terminate.
Thus eventually, the load on each replica: does not increase, i.e., ¢ is not overloaded, which makes
the atomic memory not overloaded by definition of the load (see Section 2). From the infinite arrival
with finite concurrency model, these periods of time occur infinitely often. Thus infinitely often the
memory is not overloaded. O

Pl n° 1805

16 E. Anceaume & V. Gramoli & A. Virgillito

6 Simulation Study

This section presentsthe results of asimulation study performed through a prototypeimplementation
of Square. Theaim of simulationsis to show Square properties. self-adaptiveness, scalahility, load-
balancing, and fault-tolerance.

The prototypeis implemented on top of the Peersim simulation environment [17]. Peersmisa
simulator especially suited for self-organizing large-scale system, which has proved its scalability
and reliability in several simulation studies. We used the event-based simulation mode of Peersim,
in order to simulate asynchronous and independent activity of nodes. The modular design of the
prototype clearly separates the implementation of Square from the simulator, representing a proof of
feasibility of our approach.

6.1 Environment

We simulate a peer-to-peer system containing 30,000 nodes. We recall that this is the maximum
number of nodes that can be potentially added to the overlay/memory. As we show, the actual
number of nodesin the memory during simulation is much lower. Here we describe the parameters
of the simulator:

e We lower bound the message delay between nodesto 100 time units (i.e., simulation cycles)
and we upper bound it to 200 time units.

e Any replicahasto wait 1500 time units without receiving any request before deciding to leave
the memory (Shrink).

e Each period of 2000 time units, replicas look at their buffer and treat the buffered requests,
deciding to forward them (T hwart) or to executethem (Traversal).

e We send from 500 to 1000 operation requests onto the memory every 50 time units. The exact
number of operation requests chosen depends on each of the following experiments.

e Each of the requested operationsis aread operation with probability 0.9 and awrite operation
with probability 0.1.

e The request distribution can be uniform or skewed (i.e., normal). Since the results obtained
with the two distributions do not present significant differenceswe present only those obtained
with uniform distribution.

e \We observe the memory evolution every period of 50 time units starting from time 0 up to
70, 000. Each curve presented below results, when unspecified, from an average measurement
of 10 identically-tuned simulations.

In all experiments requests are issued at some rate during a fixed period, after which the request
traffic stops. To absorb the load induced by the requests, the overlay replicates the object in var-
ious nodes of the system that are not yet in the memory. This self-adaptiveness occurs until the
memory reaches a willing configuration satisfying the tradeoff between capacity and latency. We

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 17

define an acceptable configuration as the configuration where the memory is neither overloaded,
nor underloaded. This happens when some replicas of the overlay shrink while other expand. More
specifically, this occurs between the first time the memory size decreases and the last time the mem-
ory sizeincreases for a given fixed rate.

6.2 Simulation results

Here, we present the results obtained during several executions of our simulator parameterized as
aforementioned.

6.2.1 Self-adaptiveness.

Figure 2 reports the number of nodes in the memory versus time. In particular, the dashed line
indicates the evolution of the memory size along time, showing the adaptiveness of Square to a
constant request rate. In Figure 2 the memory reaches the acceptable configuration at time 9350,
while the memory leaves the acceptable configuration at time 49, 200.

Now, we focus on the three resulting periods. Before time 9350, the memory grows quickly and
its growth slows down while converging to the acceptable configuration. Then, the small oscillation
in the acceptable configuration is due to few nodes either leaving the memory (Shrink) or actively
replicating (Expand). This meansthat Square is able to tune the capacity with respect to the request
load. After time 49, 200, the memory stops growing and when the last operations are executed, |oad
decreases drastically causing a series of memory shrinks until one node remains. Recall that, during
al three phases, although operation requests can be forwarded to other replicas, every operationis
successfully executed by the memory, preserving atomicity.

50 T T T T

T T
overlay size
ar quorum size ------- B
number of neighbors --------

40
35
30
25
20

Number of replicas

15
10

0 10000 20000 30000 40000 50000 60000 70000
Time (Simulation cycles)

Figure 2: Evolution of memory size, mean quorum size, and mean number of neighbors by replica.

Pl n° 1805

18 E. Anceaume & V. Gramoli & A. Virgillito

622 Scalability.

The solid linein Figure 2 plots the evolution of the average number of neighbors of each node along
time and depicts an interesting result. We recall that two replicas are neighborsif they are responsi-
ble of two abutting zones. Even though the number of zones keeps evolving, the average number of
neighbors per replica remains constant over time. Comparing to an optimal grid containing equally
sized zones, the result obtained is similar: we can see that the number of neighborsis less than 5
while in the optimal case it would be exactly 4. We point out again that this behavior is not exclu-
sively due to the uniform distribution of requests but it is aso obtained with the normal distribution.
Since only alocal neighborhood of limited-size has to be maintained, the reconfiguration needed to
face dynamism is scalable.

50 T T T T

IW/ thwart '
wo/ thwart ------- B

45
a0 .
s i i | 11.‘ | 1
0l o { i
25 i Pl .

20 |+ »1“ - i 1 -

Variance of the overlay size

15 1 | ; ,

g
] W R
10F 1B] o A ,
i ! oy wl by
! [|
i (T i R

| LA it (. | s
! ! i]
5F L 0 ! i LTt r !,
Bl " L

O Oy
0 10000 20000 30000 40000 50000 60000 70000
Time (Simulation cycles)

Figure 3: Impact of thwart on the variance of the memory size.

6.2.3 Load-balancing

The main contribution of the thwart mechanism is to balance the load. In order to highlight the
effects of the thwart, we ran 5 different executions of the simulations, and computed the variance of
the memory size. Results are reported in Figure 3. The dashed curve refers to executions where we
disabled the thwart process (i.e., when anode is overloaded while it receives requestsit directly ex-
pands the memory without trying to find a less-loaded replica of the memory), while the solid curve
refers to executions with the thwart enabled. This simulation shows that the variance of the memory
sizeis strongly affected by the thwart mechanism. Without the thwart, expansion might occur while
apart of the memory is not overloaded, that is, the replicas become rapidly heterogeneously loaded.
This phenomenon produces high variation in the memory size: many underloaded replicas of the
memory shrink while many overloaded replicas expand. Conversely, with the thwart mechanism
any replica balances the load over the memory, and verifies that the memory is globally overloaded
before triggering an expansion. This makes the memory more stable.

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 19

6.2.4 Fault-tolerance.

In order to show that our system adapts well in face of crash failures, we injected two bursts of
failures, while maintaining aconstant request rate, and observed the reaction of the memory. Figure4
shows the evolution of memory size as time evolves and as failures are injected. The first burst of
failures occurs at the 20, 000" simulation cycle and involves 20% of the memory replicas drawn
uniformly at random.

50 T T T T T T T,
Size

45 |
40 | E
35 E
30 E
25 E

Overlay size

20 R
15 - 1

10 - B

0 1 1 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Time (Simulation cycles)

Figure 4: Self-adaptivenessin face of important failures.

The second one occurs 20, 000 cycleslater (at simulation cycle 40, 000) and involves 50% of the
memory replicas. At simulation cycle 20, 000, we clearly observethat the overall number of replicas
drastically diminishes. Then, few cycles later, the number of replicas starts increasing, trying to
newly face the constant request rate. This phenomenonis even more important at time 40, 000 when
50% of the replicas fail. In both cases the system is able to completely return to an acceptable
configuration without blocking, even after alarge amount of failures has occurred.

6.2.5 Operation latency.

Experiment of Figure 5 is composed of 5 simulations with different request rates and indicates how
Square minimizes read operation latency. First, recall that the fast-read operation contains only a
Consult phase, thus the quorum-line size impacts more on read operation latency than quorum-
column size does. We tuned Square such that a replica that receives more read requests than write
reguests tends to split horizontally its responsibility zone, when an expansion occurs. Since an op-
eration is of type read with probability 0.9, replicas choose more frequently (in average) to split
horizontally than vertically, consequently quorum-lines are smaller than quorum-columns, as de-
picted in the 5" and 6" columns of Figure 5. Increasing the request rate—indicated in column
1—strengthens this difference: increasing request rate enlarge the amount of operations, thus the
phenomenon becomes more distinct. Furthermore, the 2™ and 3" columns confirm our though:

Pl n° 1805

20 E. Anceaume & V. Gramoli & A. Virgillito

read operation latency is far lower than write operation latency. To conclude, even though self-
adaptiveness implies that latency increases when load increases, Square minimizes efficiently read
operation latency.

request | read latency | writelatency | max. memory | max. quorum-line | max. quorum-

rate (inavg) (inavg) size size column size
1/250 478.6 733.3 10 5 6
1/200 621.8 812.5 14 4 8
1/100 1131.8 1395.8 24 3 14

1/50 1500.7 21735 46 8 23

1/25 2407.9 3500.9 98 11 51

Figure 5: Trade-off between operation latency and memory size

7 Conclusion

This paper has proposed Square a self-adaptive atomic memory for large scale distributed systems.
We have presented the two protocols that are at the heart of Square: the thwart protocol providing
|oad-balancing among the memory replicas and the traversal protocol ensuring operation atomicity.
The originality of our approach is based on the self-adaptiveness of the memory to face the extreme
dynamism of these systems. On the one hand, by spontaneously expanding its size when replicas
become overloaded, Square supports bursts of load. On the other hand, by quickly shrinking to the
minimal number of replicas when load decreases, Square minimizes operation latency. By providing
fast reads, Square is fully adapted to applications in which consultations are more common than
modifications. Despite the complexity of these systems, we have shown that atomic consistency
is achievable without jeopardizing scalability, |oad-balancing, fault-tolerance and sel f-adaptiveness.
Proof of feasibility of our approach has been shown through extensive simulations.

Acknowledgment

We want to thank Maria Gradinariu for her participation in this work. Her contribution to Sam and
our subsequent fruitful discussions havelead to thiswork. We are also grateful to Romaric Ludinard
and Sylvestre Cozic for their participation in the development of the simulation tool.

A Appendix
The solutionis specified in Timed I nput/Output Automaton (TIOA) language (cf. Chapter 23 of [21])
as the composition of multiple TIOA automata. This allows us to decompose the algorithm spec-

ification into several parts, each presenting a specific role of any node in the system. TIOA pro-
vides theoretical tools to formally prove correctness of algorithm. The Load-Balancer ; automaton

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 21

represents the module of 7 responsible of dealing with load burst while the Traversal ; automaton
represents the module responsible of overlay consistency and operation execution. Each replica
1 communicate through an unreliable communication channel whose automaton is not presented
here, since its behavior is trivial: it receives and sends messages, and models message loss. The
Traversal; automaton uses perfect Failure-Detector; and a Takeover; to detect failures and to find
active replicas in the memory, respectively. These two additional automaton are not specified here;
the Failure- Detector; can be seen as an oracle answering, when asked, whether areplicais failed
or not; the Takeover; models the process of choosing a node among memory replicas to take over a
failed zone.

Findly, £LBS, TS, Failure-Detector, and Takeover results from the composition of
Load-Balancer;, Traversal;, Failure-Detector;, and Takeover; for any ¢ in I, respectively, and
Square results from the composition of LBS, 7S, Failure-Detector, Takeover and the communi-
cation channel.

A.1 Detailed Specification

In the following we detail Square specification using the TIOA Language. First, we define several
domain notations, required for the specification of Square modules, as it appearsin Figure 6. Let 1
be the set of node identifiers. We refer to V, 11, and M as the sets of respectively all possible object
values, operations, and messages. Finally let atag be a counter, indicating the version of the object
value, coupled with anode identifier to break tie, and let 7" be the set of tagsin the system.

[Variables [Description |
ICN the set of node identifiers.
|4 the set of all possible values of an object.
11 the set of all possible operations.

T CIxN | thesetof al tags.
the set of all possible messages.
the set of al possible requests.

==

Figure 6: Domain

A.1.1 Load-Balancer

In this paper, the Square Load-Balancer module aims simply at balancing the load among partici-
pants of the memory, ak.a. replicas. Algorithms 5 and 6 represent the Load-Balancer automaton,
its signature appearsfrom .1 to 1.16, its state appears|.17—33, and its transitions appear 1.53—146.

State Inthe following we describe the state of the module, before explaining its behavior through
its transitions. Observe that the main state variable is the request r¢st. This variable is a record
indicating the request id, its sender (the requester), its type, the next targeted coordinates of the
request, the first targeted point of the request (str-pt), and the value possibly returned to the sender
at the end of the request execution. A replicai receives some requests, before having to respond to
them, to treat them, or to forward them. These request sets are denoted by respectively the batch,

Pl n° 1805

22 E. Anceaume & V. Gramoli & A. Virgillito

Algorithm 5 LoadBalancer; — Signature and state

1: Signature: 28 replica aboolean indicating whether it is areplica or not
2. Input: 29: batch the set of requests received

3 read-write-ack(v, id);, 1, id € I, type € {read, 30: to-treat the set of requests that must be treated

4: write}, v € V. 31 treating the set of requests being treated

5 rev(rgst); g, i, j € I, rqst arequest 32: to-fwd the set of requests that must be forwarded

6: fail;, i € I 33: to-rspd the set of requests to which respond

7 share-load-rev(b); s, ¢ € I, banarray of requests

8. Internal: 34: Derived Variables:

9: load-balance(rgst);, i € I, rgst arequest 35: overloaded = (¢ < |{r € to-treat U treatingU
10: Output: 36: batch}|), where c € N~ isthe capacity.
11: read-write(type, v, id);, i, id € I, type € {read,
12 write}, v € V. 37: Initial States:
13: snd(rgst)i,j, 4,5 € I, rgst arequest 38 rgst.sender initialized by the requester asits own identifier
14: shrink;, i € I 39: rgst.type initidized by the requester to read or write
15: expand(j)i, 4,5 € I 400 rast.t = |

X . X qst.targe
16: share-load-snd(b);,;, i € I, banarray of requests 41 rgst.mest — L
42: rqst.str-pt = L

17: State: 43: wal = vy initialized asthe value to write or to 0 (if the
18: rgst arecord with fields 44 request refers to aread operation)
19: sender € I,theid of the requester 45 failed = false

20: type € {read, write} 46: expanding = false

21 target € R?, the next requested coordinate 47 replica, true if the node maintains avalue of the object, false
22: next € R?, thepoint of the next replica (on the pathto the 48: otherwise

23: target). 49: batch =0

24: str-pt € R?, thefirst requested coordinate 50: to-treat = 0

25: val € V,the value returned by the request 51: treating = 0

26: failed aboolean 52: to-fwd =0

27. expanding aboolean

to-rspd, to-treat, and the to-fwd fields. An additiona treating field contains operation that are
currently being treated. Finally the failed boolean indicates whether i is failed, the ezpanding
boolean indicates whether i is expanding, and the overloaded boolean indicates whether or not the
number of requests received is higher than the capacity of i.

Transitions Next, we focus on the transitions (1.53—146) of the Load-Balancer module. A re-
quest is received at replica s through an input rcv; action, and its end is acknowledged by a corre-
sponding output snd event, that might occur at a different location.

Replicai balances the load by forwarding the request to another replicain caseit is overloaded.
That is, the snd; action role is twofold: either to forward a request or to respond to the requester.
The choice of forwarding or treating the request received is made by i through the load-balance ;
action. When ¢ decidesto treat arequest, it addsit to its to-treat set and aread-write; action makes
the Traversal; moduletreat it. When the 7S treatment is complete, an input read-write-ack; event
triggered by the 7S informsthe LB module that 7 can respond to the requester.

The Load-Balancer module chooses also to shrink and expand the memory, by removing and
adding areplica, respectively. If theload is null since a sufficiently long period of time (namely the
unloaded-period), thenit shrinks, whereas if the memory is overloaded, it expands. Replica: knows
that the memory is overloaded after receiving the forwarded request it sent. This receipt means that

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration

23

Algorithm 6 LoadBalancer; — Transitions

53: Transitions:

100:

Input rev(rgst);
Effect:
if ~failed A rgst.next € zone then

if rqst.str-pt € zone then
expanding «— true
batch «— batch U {rgst}
last-request-time «— oo

elseif rqst.target = L then
rqst.str-pt «— pt|pt € zone
batch «— batch U {rgst}
last-request-time «— oo

eseif rgst.target € zone then
batch «— batch U {rqst}
last-request-time «— oo

else
rqst.next = closest-pt(rgst.target)
to-fwd «— to-fwd U {rgst}

Output read-write(type, v, id);
Precondition:
—failed
—expanding
rqst € to-treat
type = rgst.type
v = rgst.val
id <« rgst.sender
Effect:
treating «— treating U {rqst}
to-treat «— to-treat \ {rgst}

Output snd(rgst);,
Precondition:
—failed
—expanding
(rgst € fwd
Argst.next = closest-pt(rgst.target))

AJj = nbr(rgst.next) V (rgst € to-rspd

Aj = rgst.sender)
Effect: none

Input fail;
Effect:
failed < true

time-passage(t)
Precondition:
if =failed then
now + t < last-request-time
Effect:
now «— now + t

Internal load-balance(rgst);

101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:

115:
116:
117:
118:
119:
120:
121:

122:
123:
124:
125:
126:
127:

128:
129:
130:
131:
132
133
134:
135:
136:

137:
138:
139:
140:
141:

142:
143:
144
145:

146:

Precondition:
—failed
—expanding
rqst € batch

Effect:
if overloaded then

rqst.target < next-pt-on-diag(rgst.str-pt)

to-fwd «— to-fwd U {rqgst}
else
to-treat «— to-treat U {rqst}
batch < batch \ {rgst}
if batch = @ then
last-request-time «— now
+unloaded-period

Input read-write-ack(v, id);
Effect:
if —failed then
if rqst € treating A rqst.id = id then
rqst.val < v
treating < treating \ {rgst}
to-rspd «— to-rspd U {rqst}

Output expand(5);
Precondition:
—failed N\ expanding
j +— any-active-node
Effect:
replicating < replicating U {j}

Output share-load-snd(b);, ;
Precondition:
—failed N\ expanding
J € replicating
b <« second-half(batch)
Effect:
expanding <« false
batch « first-half(batch)
replicating < replicating \ {7}

Input share-load-rev(b); ;
Effect:
if —failed N status = idle then
batch < b
last-request-time «— oo

Output shrink;

Precondition:
last-request-time < now
—failed

Effect: none

at least one replica in each quorum of the memory is overloaded. Expanding the memory through
the expand, action resultsin sharing the load of ¢ with anew replica

Pl n° 1805

24

E. Anceaume & V. Gramoli & A. Virgillito

A.1.2 Traversal

Algorithm 7 Traversal; — Signature and state

63:
65:
67:

e I
WNRPOOONOORWNE

Signature:
Input:

read-write(type, v, id);, i, 4d € I, type € {read,
write},v € V

rev(msg)j.i, t,5 € I, msg € M

fail;, i e I

expand(j):, i, € I

shrink;, 1 € T

failure-detect(j);, ¢ € T

notify-rev(t, v, z,n, gn)ji, 4,5 € [, t € T,v € V,
nel* gneN

takeover-rsp(j, k)i, i,j,k € I

replicate-rev; ;, 4,7 € I

T State:

op an record with fields
id € N x I, theoperation id
intr € I, theinitiator replicaof op
type € {read, write}
phase € {idle, cons, update, prop, end}
tag, arecord with fields
ct € N, acounter
idelu{l}
val € V
msg, arecord with fields
op € II, the operation msg is part of
sense € {north, south, east}, the message sense
intvl € {east, south, north} — R X RR, given asense,
theinterval of abscissas or ordinates the message covers
tag, arecord with fields
ct €N
id eI

Initial state:
op.(id, intr, type, phase) = (L, L, 1, 1)
op.tag.ct = 0and op.tag.id = L
op.val = v, the default value of the object.
failed = false

Output:
snd(msg)i j, i, € I, msg € M
read-write-ack(v, id);, i,id € I,v € V
is-failed(5);, 4,7 € I
notify-snd(t, v, z,n, gn)ij, ¢, € I,t € T,v € V,

nel* gneN

takeover-qry(j):, i,7 € I
replicate—sndiwj, i,j eI

Internal:
cons-upd-init(op)i, 7 € I, op € II
prop-init(op);, i € I, op € II
cons-upd-end(op);, i € I, op € 11
prop-end(op);, ¢ € I, op € I1

val € V,initidly vo
failed, aboolean
propagated, aboolean
/I The state for the adjustment follows
leaving C I
changed C I
rcvd-from C I
nbrs C I
detect-time € R™°
detect-period € R™°, aconstant
notif-time € R>°
notif-period € R~°, aconstant
zone € R*, azone
nbrs, aset of replicaids
gnum € N
replica arecord with fields

id, thereplicaid

zone, the replicazone

propagated = true

leaving, changed, rcvd-from, nbrs, zones = ()
clock, the clock value at the beginning

notif-time, notif-period = 0

gnum = 0

Here we present the IOA specification of the Traversal module of Square. The signature and

state of the corresponding Traversal; IOA are described in Algorithm 7 from line 1 to line 47. Then
Traversal; specifies two modules: the operation handler and the overlay adjuster. For the sake of
simplicity, first we describe states and transitions used for handling operations, then we describe the
states and transitions used for adjusting the overlay.

Operation Handler of the Traversal Automaton.
operation field op, (ii) the message field msg, (iii) the tag field tag, (iv) the value field val, (v) the

Each node state contains six fields: (i) the

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 25

Algorithm 8 Traversal; — Operation transitions

73 Operation Transitions:

74: Input read-write(type, v, id); 116: Internal cons-upd-end(op);
75: Effect: 117: Precondition:
76: if ~failed A status # idle then 118: —failed A status # idle
1T op.type «— type 119: msg € rcvd
78: if type = read then 120: op = msg.op
79: op.phase < cons 121: op.phase € {cons, upd}
80: op.(tag,val) < (tag, val) 122: Effect:
8l: elseif type = write then 123: op.(tag, val) « update(op.(tag, val), (tag, val))
82: op.phase — upd 124: rcvd «+— revd \ {msg}
83: op.(tag,val) — (L,v) 125: if zone C msg.intvl[east] then
84: op.intr «— i 126: /I i has already participated
85: ops «— ops U {op} 127: if propagated A op.type = read then
128: op.phase = end
86: Internal cons-upd-init(op); 129: else
87 Precondition: 130 op.phase = prop
88: —failed A status # idle 131: if op.type = write then
80: op € ops 132: increments(op.tag)
90: op.phase € {cons, upd} 133: ese
91: Effect: 134: msg.op < op
92: msg.op — op 135: msg.sense «— east
03: msg.sense «— east 136: to-send «— to-send U {msg}
94. msg.trajectory «— (ymaz — ymin)/2 137: msg.intvl|east] « msg.intvl[east] U zone
95: to-send + to-send U {msg}
138: Internal prop-end(op);
96: Internal prop-init(op); 139: Precondition:
97: Precondition: 140: —failed A status # idle
98: —failed N status # idle 141: msg € rcvd
90: op € ops 142: op = msg.op
100: op.phase = prop 143: op.phase = prop
101: Effect: 144: Effect:
102: msgl.op «— msg2.op < op 145: (tag, val) «— op.(tag, val)
103: msgl.sense < south 146: if (zone C msg.intvl[north]
104: msg2.sense < north 147: Azone C msg.intvl[south]) then
105: msg.trajectory «— (zmaz — zmin)/2 148: /I i has already participated twice
106: mrev[op.id] < 0 149: op.phase — end
107: to-send «— to-send U {msgl, msg2} 150: ese
151: msg.intvl[msg.sense] < msg.intvl[msg.sense]
108: Output read-write-ack(v, id); 152: _ Uzone
109: Precondition: 153: if (zone C msg.intvl[north]
110: —failed A status # idle 154: Azone C msg.intvl[south]) then
111: op € ops 155: /I ¢ participates for the second time
112: op.phase = end 156: propagated «— true
113: v = op.val 157: msg.op < op
114: Effect: 158: to-send «— to-send U {msg}
115: op.phase «— idle 159: revd «— rcvd \ {msg}

propagated, and (vi) the failed fields. The operation field op is a record containing the whole
information defining an operation: its id, theid of the initiator node that trigs this operation, namely
intr, its type, its current phase, and the (tag, val) pair indicating the state of the object from this
operation standpoint. The msg € M refers to any possibly sent/received message. Next, the val
field, its associated tag field, and the propagated flag, al rely on an object: they express the object
state from 's standpoint. The value val is its current value, the associated tag is the time-stamp

Pl n° 1805

26 E. Anceaume & V. Gramoli & A. Virgillito

or version number of this val, and the flag propagated simply informs about the (tag, val) pair:
whether it has been propagated or not yet. Thisflag hasamajor role sinceit testifies about the end of
thewrite operation: aread can safely return apropagated tag when consulted while a non-propagated
tag has to be propagated. (See the new/old inversion problem mentioned by Lamport [19].)

Algorithm 9 Traversal; — Communication transitions

160: Output snd(msg);,; 168: Input rcv(msg);,i

161: Precondition: 169: Effect:

162: —failed A status = participating 170: if —failed A status # idle A msg.next € zone then
163: msg € to-send 171: revd «— revd U {msg}

164: msg.next < next-pt-on-line(i, msg.sense, 172: ops « ops U {msg.op}

165: msg.trajectory)

166: J = nbr(msg.neat) 173: Input fail;

167: Effect: none 174. Effect:

175: failed «— true

The behavior of replicai related to the Traversal moduleisformally specified in Algorithms 8
and 9 (1.73-175) A read/write operation isinitiated by an input read-write(x, *, id) ; action activated
form Load-Balancer; and ends with a potentialy distant read-write-ack(x, id) . action. Each oper-
ation is divided into one or two phases. A write operation starts with an update (upd) phase, then
comes the prop phase before completing. Unlike write, read operations can complete after asingle
consultation phase, namely the cons phase. However, when a write has started propagating a value
but has not yet complete at a replica consulted by a read, an additional prop phase is required by
theread. The cons-upd-init; action initiates the first messages of the consultation and update phases
initiating at replicas, while the prop-init, action initiates the first propagation phase messages. Next,
the cons-upd-end,; and prop-end, actions terminate respectively phases cons and upd, and phase
prop.

A.1.3 Overlay Adjuster of the Traversal Automaton.

The behavior of replica i related to the adjuster module is formally specified in Algorithm 10. The
additional states used for adjusting the memory appear in Algorithm 7 (1.49-.62): Overlay modifica-
tion impacts on replica zone and set of neighbors nbrs. The leaving set contains the replicas whose
departureis known by 4. After modification, affected replica are included in the changed set before
updating their nbrs and zone information. Thisis done by receiving newly sent information from
some neighbors. The set of informing neighborsis rcvd-from and in order to ignore stale message
from up-to-date ones, messages contain a version number called gnum.

The leaving field represents the set of replicathat as been detected as leaving by . Observethis
can be i itself if it decides to shrink. The changed field contains replicas whose state might be no
longer consistent. Such areplica needsto receive information from its neighbor before participating
again. The set of replicafrom which i has aready received information is denoted rcuvd-from and
gnum indicates if the information received is stale or up-to-date. The notification occurs with a
constant period of notif-period, its timeout is modeled by variable notif-time. The zone field
represents the responsibility of the replica.

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 27

Algorithm 10 Traversal; — Adjustment transitions

176: Adjustment Transitions:

177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:

189:
190:
191:
192:

193:
194
195:
196:

197:
198:
199:
200:
201:
202:

203:
204:
205:
206:
207:
208:
209:

210:
211:
212:
213:
214:
215:
216:
217:
218:
219:

220:

Input expand(j);
Effect:

if —failed N status # idle then
z = zone [l we choose a zone to split
j.zone «— second-half(z)
update(j.nbrs, (j, j.zone, nbrs, 0))
zone «— first-half(z)
update(nbrs, (i, zone, nbrs, 0))
changed «— changed U {j}
rcvd-from «— ()
gnum «— gnum + 1
status «<— expanding

Input shrink;
Effect:
if —failed A status # idle then
leaving «— leaving U {i}

Input failure-detect(5);
Effect:
if —failed A status # idle then
leaving < leaving U {j}

Input notify-rev(t, v, z,m, gn)j;
Effect:
if —failed then

update((tag, val), (t, v))

update(nrbs, (4, z,n, gn))

if abut(Uy ke, eoaprom k-20nes, zones) then
/I i heard from all its north and
/I south neighbors
status «— participating

if gn > gnum then
gnum «— gn
rcvd-from «— rcvd-from U {j}
notif-time «— now + notif-period

Output notify-snd(t, v, z,n, gn); ;
Precondition:
—failed N status # idle
notif-time < now
t = tag
v = val
gn = gnum
j € nbrs
z = j.zone
z = j.nbrs
Effect: none

221:
222:
223:
224:
225:
226:
227

228:
229:
230:
231:
232:
233:

234:

235:
236:
237:
238:
239:
240:
241:
242:
243:
244:

245:
246:
247:
248:
249:
250:
251:

252:
253:

255:
256:
257:
258:
259:
260:
261:

262:
263:

265:
266:
267:
268:

time-passage(t)
Precondition:
if —failed then
now + t < notif-time
now + t < detect-time
Effect:
now <« now +t

Output takeover-qry(j);
Precondition:
—fatled N status # idle
/[either 7 is in charge of looking for
/I the takeover or it is shrinking
j € leaving Ai = min{k € nbrs(j)}) Vi=j
Effect: none

Input takeover-rsp(j, k);
Effect:
if —failed N status # idle then

k.zone < j.zone

k.nbrs < j.nbrs

if j = ithen
/I the leaving replica is the current one
status «— idle

changed «— changed U {k}

leaving — leaving \ {j}

Output replicate-snd(t, v, z,n); ;
Precondition:
—fatled N status # idle
j € changed
z = j.zone
n = j.nbrs
(t,v) = (tag,val)
Effect: none

Input replicate-rev(t, v, z,m); 5
Effect:
if —failed then
zone «— z
tag «— t
val <+ v
update(nrbs, (j, z,n,0))
rcvd-from «— ()
gnum «— gnum + 1

Output is-failed(j);
Precondition:
—failed N status # idle
detect-time < now
j € nbrs
Effect:
detect-time < now + detect-period

Transitions. Here we describe the adjustment part. First recall that Square has self-adjusting ca-
pabilities, thus, it is able to expand or shrink according to some changes of its local state variables.

Pl n° 1805

28 E. Anceaume & V. Gramoli & A. Virgillito

For instance, when a replica fails the Adjuster detects it must adapt the overlay regarding to the
modification. For this purpose we employ a Failure- Detector ; as an external automaton. The role
of thisautomaton at location i is simple: when afailure occursat replicaj, it informsthe Traversal ;
of this failure location. More formally this failure detector is classified by Chandra and Toueg as
eventualy perfect (O P).

Takeover. When such a failure location is found, the Adjuster looks for a replacing replica that
would take over the lost zone. We use here the takeover mechanism proposed in CAN. Automaton
Takeover aimsat finding the takeover replica. One can consider the overlay asabinary tree structure
where replicas are represented by the leaves of the tree. Initialy, the responsibility of the object
is shared among severa replicas. When an additional replica j enters the overlay, it contacts an
existing replica i to take part of i's responsibility. When it occurs, the location of ¢ in the tree
structure is replaced by a virtual node whose sons are ¢ and j, that is the entering replica and the
arriving one become siblings. When a replica leaves, areplicais chosen to take its position in the
tree (i.e., its responsibility). This choice is made deterministically either by taking the sibling of
the departing replica (if it exists) or by making a depth first search from the father of the departing
replica (descending first through the branch at the opposite side of 7).

Automata Communication. More specifically, the failure detector and the load bal ancer at replica
1 trigger adjustments from location 7. Automata communicate to each other through input/output ac-
tions that have the same name. When a replica fails, a failure-detect; action is executed in the
Failure-Detector; and Traversal; automata. Likewise, when ¢ becomes overloaded (resp. under-
loaded) an expand; (resp. shrink;) event occursin the Load-Balancer,; and Traversal; automata.
When replica : detects a failure (failure-detect; occurs) or decide to leave (shrink; occurs), then a
takeover replica has to be chosen. That is 4 recordsits departure or j's failure by inserting the leav-
ing replica identity into the leaving; set. Let ;' be the leaving replica. If 7 is alowed to start the
takeover, takeover-qry; action query the Takeover; automaton to find areplacing replicato j'. The
corresponding response from the Takeover ; contains the takeover replicaidentity, say k, and arrives
through a takeover-rsp, action. At this point, neighbors of ;' have to be informed that % is taking
over the responsihility of j'—those neighbors become then neighbors of &.

Expansion. When an expand(); event occurs, an outside node j is integrated in the overlay and
the responsibility zone of 7 is split in two. One half is removed from i’s responsibility and given
to j. Next, i replicates the object at j and informs j about its neighbors. This is done using the
replicate-snd, ; action at location i and the corresponding replicate-rcv,; ; action occurring at loca-
tion j.

A.2 Detailed Correctness Proof

In this section, we use an assertional approach to show that the Square algorithm implements the so-
Iution. We show that the trace of the automata used in our Square composition verifies the properties

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 29

mentioned above. More precisely, we show that the Load- Balancer finds an underloaded quorum if
such a quorum exists, while the Traversal guarantees atomic consistency.

Theindicei € I of any state variable representsthat the variableis related to state of node 7, that
is rgst; istherequest variable rgst of node.

A.21 Proof of Load-Balancing

Execution Well-Formedness. We assume that any sequence of external actions for object z is
well-formed.

e Foranyi e I:
— Thefirst event of the sequenceis either arcv(x); event or afail; event.
e Inany well-formed execution « the following holds:

— No fail; event precedes any other event.

— Aninput rcv; event isimmediately followed by an internal load-balance; event (with no
time passing).

— Aninternal load-balance; event putting arequest in the to-treat set isimmediately fol-
lowed by an ouput read-write; event.

Notations Foranyi € I:

e closest-pt(target € R?) returnsthe closest point abutting i’s zone and the responsible of point
target. Thisis done by investigating the zone of the targeted replica and choosing a neighbor
among the neighbor set according to its zone.

e next-nbr(sense € {east,north,south}, trajectory € R);: returns the id of the neighbor
whose zone is the next in the east sense and trgjectory y = trajectory, or in the north or
south sense and trgjectory « = trajectory (depending on the value of argument sense). Note
that this neighbor may be located at the opposite edge of the torus.

e next-pt-on-diag(str-pt € R?);: returnsthe next point (out of the current replica zone) which
isonthey = x + (str-pt.y — str-pt.z) line and which has larger abscissa, ordinate or both
than the current replica zone.

o first-half(batch C II);: Let batch bean array of size s. Thisreturnsthe [s/2] first elements
of the batch array.

e second-half(batch C II);: Let batch beanarray of size s. Thisreturnsthe | s/2] last elements
of the batch array.

The proof starts with the proof of an invariant using an inductive reasoning on the length of a
finite execution «.. We denote the state just before and after an event by respectively s and s’.

Invariant A.1 The size of to-treat; is upper bounded by the capacity ¢; of replica i.

Proof. Initidly, to-treat is empty, thus |to-treat| = 0 while ¢ > 0, and the result holds.

Pl n° 1805

30 E. Anceaume & V. Gramoli & A. Virgillito

Now assume that the property holds in some state s, that is, |s.to-treat| < ¢, we show that it
holdsin state s’. For this purpose we focus on the actions modifying variable to-treat ;: read-write;
and load-balance;. First, assume that read-write; occurs, that is, |s’.to-treat| < |s.to-treat| since
an element isremoved from this set. Second, we focus on the load-balance; action. If s.overloaded ;
istrue then |s’.to-treat| = |s.to-treat|. However, if itisfalse, |s".to-treat| = |s.to-treat| + 1. Next,
by definition of overloaded, we know that |s.to-treat| < ¢. Combining this inequation with the
previous equation leads to theresult: |s'.to-treat| < c. O

The following Lemma shows that if request is forwarded from i and it is received by j such that
j considersit, then 5 belongsto the next horizontal quorum and to the next vertical quorum of 4. This
Lemma is necessary to show that the look-up goes through all dynamic quorums Ve, 0 < ¢ < 1,
QnecandVe,0 < <1,Qye-

LemmaA.2 If r.target; € id.zone or r.target; = L and owverloaded; is true when a
load-balance(r); occurs, then the next rcv(r) of a occurs at location j with r.next € j.zone and
r.target € j.zoneissuchthat3c:i € Qp Aj € next(Qnc)and I’ 1 i € Q.o AJ € next(Qy o).

Proof. Assumethat r.target, € i.zone, overloaded,; = true and load-balance(r); occurs. Assume
also that the next rcv(r) event of « occursat j with r.next € j.zone and r.target € j.zone.

Assuming this, the snd(r); event occurring at ¢ forwards r € to-fwd,; with r.target; =
next-pt-on-diag(r.str-pt,;). By definition of the next-pt-on-diag function, we know that r.target
isthe point (zone.xmax;, zone.ymaz,).

Assume, by absurd, that there is no c verifyingi € Q.. A j € next(Qp.). Let Qn o be
next(Qn.c), thatis, ¢ # min{c”" > ¢} : Qn,e # Qn,c. Now assume ¢’ > ¢ is not the minimum
suchthat Qp. e # Qn.e, then 3¢, ¢ < ¢ < ¢ suchthat Qp, v # Qn,. By examination of the
rcv, ; action, r.next ¢ zone; contradicting assumptions, thus, 3¢ : i € Qp.c A j € next(Qp,c)-
The proof for the vertical quorumsis similar. =]

The following Theorem and corollary shows that Load- Balancer baancesthe load.

Theorem A.3 If 5 is a trace of LB.S that satisfies the £B.S environment assumptions, then (3 sat-
isfies the following conditions:

1. If i is overloaded when a request (whose target is 7) is received, then the request is forwarded.
2. If i is not overloaded when a request (whose target is 7) is received, then the request is treated.
3. If arequest is forwarded, then it is forwarded to (at least) the next quorums.

Proof. We show each of the three properties separately. For Property (1), we show that request
is added to the to-fwd set, for Property (2) we show the request is added to the to-treat set. For
Property (3), we prove that the target is set to a replica belonging to the next quorums and that
the request is forwarded to an intermediary replica putting it in its to-fwd set. Finaly by well-
formedness assumptions, we know that treatment or forward eventually occursif it isdecided locally,
thus the three properties hold.

1. To ensure Property (1), an overloaded replica receiving a request must forward it. That
is assume that client j sends a request to the memory and the corresponding rcv(rgst) ;;

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 31

event occurs at replica ¢ while i is overloaded. Observe that if the request target is defined
(# L) andisnot 4, then i simply forward the request instantaneously: rqst is added to the
to-fwd set. Now, assume that rq¢st is added to the batch set. By well-formedness condition a
load-balance(rgst); immediately occurs. Since no interleaving action occur, the treating and
to-treat setsremain unchanged. That is, ¢ is still overloaded, thus Invariant A.1 implies that
rqst is added to the to-fwd set.

2. For Property (2) the proof is similar to the one mention above. We ignore the case where rgst
is added to the to-fwd set during the rcv(rgst); . event. Thus, assume that r¢st € batch. By
well-formedness conditions and examination of the load-balance(rgst) ; action rqst is added
to the to-treat action.

3. For Property (3), assume that the request rgst is forwarded. Request r¢st is added to
the to-fwd set either by a rcv(rgst); action or by a load-balance(rgst); action where
overloaded; = true.

e rcv(rgst) : when this action occurs the rgst.target is unchanged and the rgst.next is
reset to the closest point to the target. That is, the receiver of the request has been set
during an earlier event.

e |oad-balance(rgst) : when this action occurs, arcv(rgst) event has previously occurred
where rqst.target € i.zone or rqst.target = 1. By LemmaA.2, we know that the r¢st
isforwarded to areplicaj belonging to next quorums.

By well-formedness assumptions, requests of the to-treat set are effectively treated while the re-
quests of the to-fwd set are effectively forwarded. Consequently, the three properties hold and an
execution 3 satisfying £BS assumptions, satisfies the load-balancing condition. |

Next, we define the quorum underload and quorum overload.

Definition A.4 (Quorum Overload/Underload) Let Q C I be a quorum. @ is overloaded (resp.
underloaded) if the node ¢ € @ contacted during the thwart is overloaded (resp. underloaded).

Corollary A5 Let P = {S C I} be a set of specific subsets of replicas in the memory. Assume
the look-up procedures terminates. It exists a non-overloaded set S € P in the memory, then the
look-up procedure returns an element of it.

Proof. The proof is based on the results of A.3. First-of-all, we consider that the quorum(s) returned
is(are) the quorum(s) where the operation is executed. By assumption we know that the number of
quorumsin the memory is finite. Observe that there is atotal order on quorum sets in the memory
(cf. Definition 3.3). That isand by Propositions (1) and (3), we know that there are two cases. either
(i) the procedure does not complete, or (ii) if an overloaded replica is encountered, then the next
quorum set is contacted. That is eventually, all quorums are contacted. Note that if the contacted
replicais overloaded, then its quorums (the quorumsthis replica bel ongs to) are also overloaded (cf.
Definition A.4). Finally, by Proposition (2) if a contacted replicais not overloaded, then it treats the
request, thus the procedure returns the quorum it belongsto. |

Pl n° 1805

32 E. Anceaume & V. Gramoli & A. Virgillito

A.2.2 Proof of Atomicity

The complete implementation of the 7.5 System, namely 7S, is given by the composition of the
Traversal;, the Takeover; and the Failure-Detector; automata for al ¢, with the communication
channels.

Execution Well-Formedness. We assume that any sequence of external actions for object z is
well-formed.

e Foranyi e I:

— Thefirst event of the sequence is either a read-write; event, a replicate-rcv, event, or a
fail; event.
— No fail; event precedes any other events.

e Inany well-formed execution « the following holds:

— At most one read-write(*, *, id) . event occurs. That is, an operation is uniquely identi-
fied, whatever the location the operation is requested.

— Every read-write(x, , id), event has a corresponding read-write-ack(x, x, id) . event
following it.

Notations Foranyi € I:

e tag ordering relation: Let >,, be an ordering relation on 7" such that for al t; € N x I,
to € N x I, t; > to if oneof the following conditions hold:

— t1.counter > to.counter
— ty.counter = ty.counter Aty.id > to.id
e update(nbrs C I,(j € I,z € R* n C I, gn € N));: updates the neighbors array of replica
1 using j's zone, z, and j's neighbors, n. This update is done regarding to these information
timestamp (gn).
e update({tag € N x I,val € V), (t € N x I,v € V)),;: updatesthe local pair (tag, val) of
with (¢, v). If t >7 tag then (tag, val) «— (t,v), else nothing happens.
e nbr(i € I, sense € {east, north,south});: returnsareplicaidentifier of i’s neighbors whose
zone abuts sense edge of azone of i.
e abut({pt € R}, {z € R*});: returns a boolean indicating whether or not the set of points pt
abuts the lower or upper edge of each zone z.
e increments(tag € N x I): modifies tag such that its counter subfield is incremented. For
instance let tag = (ct, i), the function modifiesit such that tag = (ct + 1, 1).

Invariant Assertions The following invariant shows that for a given replica, its tag never de-
creases. This is due to the fact that during a propagation phase, the tag is modified only if the
propagated tag is larger than the local one.

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 33

Invariant A.6 Local tag is larger than any other tags encountered so far. In other words, every
replica tag is monotonically increasing.

Proof. First, we show that any tag is unique. Observe that any tag is associated with alocal counter
such that every new tag gets assigned a different value. In order to break tie among distant node, a
tag gets assigned the identifier of the node creating it as alow-weight number.

Then, we focus on actions modifying the state of the tag variable: replicate-rcv;, notify-rev;,
and prop-end,. Each of these operations updates tag and value. The update(p1, p2) function sets
theloca p; tag-value pair to p, only if ps.tag > py.tag tag (i.e., only if po is more up-to-date than
p1). Asaresult, p; value might increase but can not decrease. |

Adjustment Guarantees Next, we show that despite adjustment transitions, the tag that has been
propagated at some place is non-decreasing. The core of this proof relies on the adjustment modifi-
cations. By Invariant A.6, we know the tag is non-decreasing locally. However, if the replicaleaves
or expandsthe memory, it is not straightforward that the new responsibl e of the same coordinate gets
not a stale tag-value pair (i.e., with alower tag).

For instance, assume that a propagation targets a point pt, thus, the tag of the responsible of
pt isset to ;. Next, suppose that a subsequent propagation occurring through points close to pt
changesits responsible tag to 5. If this replica expands, then it is possible that the entering replica
becoming responsible of pt might contact al its north and south neighbors learning about ¢ o # ¢
suchthat ¢y < ¢;. Inthiscase, atag at alocation might decrease. Next, we show that the tag freshly
propagated at some point is not decreasing at this point. In the following we say areplicais part of
memory, if and only if its statusis participating.

LemmaA.7 Let S be the set of points targeted by the last completing propagation. The tag of the
replicas responsible for S is non-decreasing.

Proof. First-of-all by Invariant A.6, for a specified replicaits tag is monotonically increasing.
Initially any node status is idle and when an expand; event occurs status is set to
idle. In order for the replica to be part of the memory, a notify-rcv ;; must occur, where
abut(Uykercvd.from K-zones, zones). This means that the north or south edge of the zones are
entirely covered by the zones of all answering neighbors k. In order for a replica to be added to
the rcvd-from set, the message received when the rcv occurs, must contain an up-to-date gossip
number gn, i.e., a gn number at least as large as the local gnum number that has been previously
sent. The gnum value is updated if alarger one is received or it is incremented during an expand
or areplicate-rcv event. These two last events are obviously followed by a notify-snd ; ; contain-
ing the new gossip number gnum and the corresponding reply notify-snd ; ; before status becomes

participating. O

Phase Guarantees Next we show, that if the consulted tag is fully propagated, then the sequence
of consulted tag is non-decreasing.

Pl n° 1805

34 E. Anceaume & V. Gramoli & A. Virgillito

LemmaA.8 Let ¢; be a propagation phase such that tag(¢ 1) has been fully propagated. If a phase
¢- starts after ¢, ends, then tag(¢2) > tag(41).

Proof. If the tag is fully propagated, then Lemma A.7 implies that this tag is non-decreasing at the
point targeted by the propagation despite dynamism. The proof aims at showing that there exists
such a point consulted by ¢-.

For any msg, of aphase, its trajectory and sense sense are unchanged during the whole phase
execution. This comes directly from the fact that cons-upd-init or the prop-init occurs once in any
phase. When a message is sent from ¢ to j (asnd; ; event occurs), the receiver is chosen among
neighbors of 7 such that the zone of j abuts the zone of ¢ at the intersection between sense edge and
the trajectory line. Now assume that a message is sent from 4 to j, that is, no expansion is pending
since status must be participating. Furthermore, i did not leave the system yet (neither by failing
nor by shrinking) for the same reason. Because of this status field, either anodeis not participating
or its neighbors are up-to-date. By examination of the cons-upd-end; (or prop-end;) action, we
know that the phase completes when its msg reaches back the starting point after wrapping around
the torus grid. By examination of the code, when arcv; ; event occurs, observe that either j's zone
abuts the one i had when the message has been sent, or rgst.next ¢ zone ;, and nothing happens
during this event. That is, when the consultation/update (resp. propagation) phase ends, replicas of
all zoneslocated onthe line of equationy = trajectory (resp. x = trajectory) have been contacted.
Because of the column-lineintersection and LemmaA.7, the tag consulted by ¢ » is at least aslarge
as the tag propagated during phase ¢ . O

In the main theorem, we show that the tag orders the operations as mentioned in Section 2.2.

Theorem A.9 If 3 is atrace of 7.5 that satisfies the 7S assumptions, then [satisfies the atomicity
definition.

Proof. We show each property separately.

For property (2), assume first that there is a propagation phase in operation 7. If the re-
sponse point of operation 7w, precedes the invocation point of operation 7o then propagation phase
¢, of w1 completes before consultation phase ¢ of mo starts. That is, Lemma A.8 implies that
tag(é1) < tag(gp2). Now assume that there is no propagation phase in ;. Because of operation
termination, this implies 7, is a read operation and the consulted tag-value pair is propagated (cf.
1.128 and 127 of Alg.8), indicating it exists a propagation ¢ ,, that has successfully completed earlier
such that tag(¢1) = tag(¢,). Since ¢ response precedes ¢- invocation, ¢,, response precedes also
@2 invocation and LemmaA.8 impliesthat tag(¢,) = tag(¢1) < tag(p2).

Property (3) follows from the fact that the tag of a write operation is incremented. By examina-
tion of the cons-upd-end if the consultation phase ends while the operation is a write, then the tag
isincremented.

Property (4) observe that the value returned during a read operation 7 is the one associated with
tag(m). That is, the result is straightforward from Properties (2) and (3).

For Property (1), observe that any response of operation 71 must be preceded by a finite num-
ber of invocations. Let II’ be the finite set of operations corresponding to such invocations. By
Property (2) thereis no operation 7o ¢ IT’ such that o < 7. O

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 35

A.2.3 Proof of Liveness

In this section we prove that Square terminates. That is, we give assumptions ensuring that the
algorithm terminates. In other words we prove that operations of the 7 S automaton and the look-up
process of the LBS eventually completes.

The goal is to show that the routing process—at the core of operation and |ook-up—converges.
For this purpose, we assume that the system eventually stabilizes and message delays becomes
bounded.

Assumptions. In the following we consider the global automaton S quare as the composition of
LBS and 7 S. Let o be an execution of the global system Square, and let o’ be afinite prefix of «
where the system can be unstable. We refer to (time(a’) asthe time when the last event of o’ occurs
and when the system stabilizes.

While information is routed among replicas, coordinates are used to make sure the receiver
corresponds to the up-to-date target. We refer to pt, as the current point reached by the routing
mechanism. Assume pt, is the next point to contact during the routing and pt¢ ,, is the target point
where the routing ends.

We need to make two lists of assumptions about (i) communication constraint, (ii) dynamism
constraint inside the memory.Preliminary, we define timing bounds on some elementary procedure.
We assume that the time required for afailureto be detected is upper bounded by fd-time. Moreover,
we upper bound the time of alocal reconfiguration including the takeover mechanism by rf-time.
Finally, we upper bound the time for an expansion to complete by exp-time .

We give some assumptions on communication link.

1. communication-bound: If asnd; ; event occursat time d and j is active at time ¢ 4 d, then a
corresponding rcv ; ; occurs at time ¢ + d.

2. communication-frequency: We assume that when snd; .. and notify-snd, , preconditions are
satisfied, these events occur with a d frequency. If anotify-rev, ; event occurs, then a snd;
and a notify-snd, , occursimmediately.

Note that property (1) is important since it implies that the overlay is never partitioned but re-
mains connected. We assume several constraints of the replica dynamism in the memory. Assuming
that replica failures and replica expansions are finite, routing among nodes becomes possible.

1. neighbor-failure: Between the time areplicafails and thetimeit is replaced, at least all zones
abutting a vertical edge of the current one have active responsible.

2. failure-spacing: Thereis at least fd-time + rf-time + exp-time + 2d + € between two sub-
sequent fail event occurring at replicas responsible of pt¢, point and no failure occurs at the
current replica (the oneresponsible of pt).

First we show that the algorithm of the £LBS terminates, that is, when the requested replica
is overloaded, then the propagated request is eventually treated by some replica of the memory.
Second, we show that an operation resulting from atreated request eventually completes. Lastly, we
conclude that any request invoked by a client completes.

Pl n° 1805

36 E. Anceaume & V. Gramoli & A. Virgillito

The following lemma states that the routing progresses. It shows that if asnd; . occurs while
node ; does not fail during sufficient amount of time (maz (t + Ctime(a’)) + fd-time + rf-time +
exp-time + d), then acorresponding rcv . ; occurs.

LemmaA.10 If a snd event occurs at time ¢ then a rcv event occurs before time max(t +
Ltime(a')) + fd-time + rf-time + exp-time + 2d.

Proof. Attimet’ = max(t,ltime(a’)), the system is stable and snd; occurs. Let i and j be the
replicas responsible of pt, and pt1, respectively, at time ¢’. Assume a fail; event occurs at time ¢’.
Thatisnolater thantimet” = t'+ fd-time+rf-time another replicahastaken over j'sresponsibility.
Let j/ bethisreplica. By failure-spacing assumption, we know that no fa:l event can occur at 4 or ;'
until time t” + ezp-time + 2d + ¢. Because of communication-bound assumption, at time ¢” + d,
notify-rcv, ; occurs and i neighbors set becomes up-to-date. Since the snd; ;» action was enable at
time ¢’ and an expansion lasts less than exzp-time, message is sent at timet” + exp-time + d, then
thercv, ;, event occursat timet” + exp-time + 2d. O

Here we show that a message of the £LB.S can not be forwarded infinitely often.

LemmaA.11 If a snd(r).. event occurs in any LBS execution, then eventually either = is put in
to-treat Or an expand event occurs.

Proof. For this proof observe that messages relying on the same request follow the sametrajectory.
The starting point, r.str-pt is set when the request is received for the first time from the client
(i.e,, when r.target = 1) at i. Because of communication-bound assumption, this information is
conveyed through every messages of the £B.S automaton, and no replicawill ever modify it. That
is, r.target is set once and remains unchanged thereafter.

Forwarded messages target the responsible of point next-pt-on-diag(r.str-pt). In order to reach
this target, messages go through the replica responsible of the closest-pt to the target. Observe that
next-pt(r.str-pt) is chosen as the next point on axis of equationy = = + r.str-pt.y — r.str-pt.z
and LemmaA.10 implies that a message sent is eventually received. Observe that the infinite arrival
process with finite concurrency model prevents the number of expand from being infinite during a
closed interval of time. Since the overlay is atorus and te finite number of expansionsimplies that
the number of replicas to contact is finite, a never treated request is forwarded back to r.str-pt. If
this occurs, the rcv event implies an expansion. O

Next Theorem shows that the look-up procedure, which is at the core of the £B.S automaton,
terminates. Hence, if arequest r isforwarded in LBS, r is eventually treated in 7S

Theorem A.12 Ifasnd(r); . occurs where requestr € to-fwd then eventually a read-write (s, *, id)
occurs with r € to-treat, and «d = r.sender.

Proof. First, we show that either a replica treats the request it receives or forwards it. By well-
formedness assumptions, we know a request is eventually treated and forwarded when put in the
to-treat and to-fwd sets, respectively. The rcv(r) action put it in the batch or the to-fwd set if 4
isnot failed. Assume that » € batch just after this event occurs. Then the load-balance; action

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 37

preconditionsare satisfied. Asaresult of this action execution, » € to-treat U to-fwd leading to the
result. By LemmaA.11, we know that a request can not be infinitely forwarded. It follows that the
process compl etes. m]

In the following Theorem, we show that the operation execution, which is at the core of the 7S
automaton, terminates.

Theorem A.13 If a read-write(*, *, id) input event occurs, then eventually the corresponding
read-write-ack(x, *, id) output event occurs.

Proof. First we focus on showing that a consultation phase terminates. At the beginning of the
consultation or update phases the trajectory is set to a horizontal axis and senseis set to east sense.
Observethen that the trgjectory and sense of messages never change within the considered phase. By
Lemma A.10 and the finite expansions induced by our model, we know that the routing converges,
thus, the starting point of the phase is reached back. When the cons-upd-end event occurs at the
replica responsible of the starting point, zone € msg.intrvl[east] and the phase ends. Second we
focuson the propagation phase. The proof issimilar, though messages are sent in two opposite senses
namely north and south. That is the fix-point is not reached until both zone € msg.intrvl[north]
and zone € msg.intrul[south], meaning both type of messages wrapped around the torus and went
back to the starting point. When a prop-end occurswhile thisis satisfied, the phase ends. O

Corollary A.14 The system verifies the two following properties:

1. Eventually every operation completes,
2. Eventually the system gets non-overloaded.

Proof. Property (1) followsdirectly from Theorem A.12 while the property (2) followsdirectly from
Theorem A.13. That is, Square terminates.]

References
[1] eBay. http://www.wikipedia.org/.
[2] Wikipedia. http://www.ebay.com/.

[3] I. Abraham and D. Malkhi. Probabilistic quorums for dynamic systems. In Faith Ellen Fich,
editor, Distributed algorithms, volume 2848/2003 of Lecture Notes in Computer Science, pages
60-74, 2003.

[4] D. Agrawa and A. El Abbadi. Efficient solution to the distributed mutual exclusion problem.
In Proc. of the 8th annual symposium on Principles of distributed computing (PODC), pages
193-200, 1989.

Pl n° 1805

38

E. Anceaume & V. Gramoli & A. Virgillito

(5]

6]

[7]

8]

[9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

E. Anceaume, X. Defago, M. Gradinariu, and M. Roy. Towardsatheory of self-organization. In
Proceedings of 9th International Conference on Principles of Distributed Systems (OPODIS).
Springer-Verlag, Dec. 2005.

E. Anceaume, M. Gradinariu, V. Gramoli, and A. Virgillito. P2p architecture for self* atomic
memory. In Proceedings of 8th International Symposium on Parallel Architectures, Algorithms
and Networks (1-SPAN), pages 214219, Dec. 2005.

E. Anceaume, M. Gradinariu, V. Gramoali, and A. Virgillito. Self-adjusting atomic memory
for dynamic systems based on quorums on-the-fly. correctness study. Technical Report 1795,
IRISA/INRIA-CNRS Campus de Beaulieu, Rennes, France, 2006.

H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems.
Journal of the ACM, 42(1):124-142, 1995.

B. Awerbuch and P. Vitanyi. Atomic shared register access by asynchronous hardware. In
Proc. of 27th IEEE Symposium on Foundations of Computer Science (FOCS), pages 233-243,
1986.

Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency control and re-
covery in database systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1987.

S. Y. Cheung, M. H. Ammar, and M. Ahamad. The grid protocol: A high performance scheme
for maintaining replicated data. IEEE Trans. Knowl. Data Eng., 4(6):582-592, 1992.

G. Chockler, S. Gilbert, V. Gramoli, P. M. Musia, and A. A. Shvartsman. Reconfigurable
distributed storage for dynamic networks. In Proceedings of 9th International Conference on
Principles of Distributed Systems (OPODIS). Springer-Verlag, Dec. 2005.

S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. GeoQuorums: Implementing
atomic memory in ad hoc networks. In Proc. of 17th International Symposium on Distributed
Computing (DISC), pages 306320, 2003.

D. K. Gifford. Weighted voting for replicated data. In Proc. of the 7th ACM symposium on
Operating systems principles (SOSP’79), pages 150-162. ACM Press, 1979.

M. P. Herlihy. Dynamic quorum adjustment for partitioned data. ACM Trans. on Database
Systems, 12(2):170-194, 1987.

M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Trans. on Programming Languages and Systems (TOPLAS), 12(3):463-492, 1990.

Mérk Jelasity, Alberto Montresor, and Ozalp Babaoglu. A modular paradigm for building self-
organizing peer-to-peer applications. In Engineering Self-Organising Systems: Nature-Inspired
Approaches to Software Engineering, number 2977 in Lecture Notes in Artificial Intelligence,
pages 265-282. Springer-Verlag, April 2004.

Irisa

SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration 39

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

A. Kumar. Hierarchical quorum consensus: A new algorithm for managing replicated data.
IEEE Trans. Computers, 40(9):996-1004, 1991.

Leslie Lamport. On interprocess communication. Distributed Computing, 1(2):77-101, 1986.

N. Lynchand A. Shvartsman. RAMBO: A reconfigurabl e atomic memory service for dynamic
networks. In Proc. of 16th International Symposium on Distributed Computing (DISC), pages
173-190, 2002.

N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

M. Maekawa. A /N agorithm for mutual exclusion in decentralized systems. ACM Trans. on
Computer Systems (TOCS), 3(2):145-159, 1985.

Michael Merritt and Gadi Taubenfeld. Computing with infinitely many processes. In Proceed-
ings of the 14th International Conference on Distributed Computing (DISC), pages 164178,
London, UK, 2000. Springer-Verlag.

U. Nadav and M. Naor. Fault-tolerant storage in a dynamic environment. In Proc. of he 18th
Annual Conference on Distributed Computing (DISC), 2004.

M. Naor and U. Wieder. Scalable and dynamic quorum systems. In Proc. of the 22th annual
symposium on Principles of distributed computing (PODC’03), pages 114-122. ACM Press,
2003.

S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable content-
addressable network. In Proc. of the ACM SIGCOMM, pages 161-172, 2001.

B. Silaghi, P. Keleher, and B. Bhattacharjee. Multi-dimensional quorum sets for read-few
write-many replica control protocols. In In Proc. of the 4th CCGRID/GP2PC, 2004.

Robert H. Thomas. A majority consensus approach to concurrency control for multiple copy
databases. ACM Trans. Database Syst., 4(2):180-209, 1979.

Pl n° 1805

