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Abstra
t: In this report we deal with the problem of global output feedba
k stabilization ofa 
lass of n-dimensional nonlinear positive systems possessing a one-dimensional unknown,though measured, part. We �rst propose our main result, an output feedba
k 
ontrol pro-
edure, taking advantage of measurements of the un
ertain part, able to globally stabilizethe system towards an adjustable equilibrium point in the interior of the positive orthant.Though quite general, this result is based on hypotheses that might be di�
ult to 
he
k inpra
ti
e. Then in a se
ond step, through a Theorem on a 
lass of positive systems linkingthe existen
e of a strongly positive equillibrium to its global asymptoti
 stability, we proposeother hypotheses for our main result to hold. These new hypotheses are more restri
tive butmu
h simpler to 
he
k. Some illustrative examples, highlighting both the potential 
omplexopen loop dynami
s (multi-stability, limit 
y
le, 
haos) of the 
onsidered systems and theinterest of the 
ontrol pro
edure, 
on
lude this report.Key-words: Positive systems, Partially know systems, Global stabilization.
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Stabilisation globale d'une 
lasse de systèmes positifspartiellement 
onnusRésumé : Nous 
onsidérons i
i un problème de stabilisation globale par retour de sortied'une 
lasse de systèmes non-linéaires positifs de dimension n possédant une partie de formeanalytique in
onnue, mais 
ependant mesurée. Nous proposons tout d'abord notre résultatprin
ipal, un 
ontr�le par retour de sortie, qui stabilise globallement le système vers unéquilibre réglable appartenant à l'intérieur de l'orthant positif de l'espa
e d'état. Bienqu'assez général, 
e résultat est basé sur des hypothèses qui peuvent se révéler di�
iles àvéri�er sur un exemple 
on
ret. Dans un se
ond temps, par l'intermédiaire d'un théorème surune 
lasse de systèmes positifs liant existen
e et stabilité globale d'un équilibre fortementpositif, nous proposons d'autres hypothèses permettant d'appliquer notre résultat. Cesnouvelles hypothèses, bien que plus restri
tives, sont nettement plus fa
iles à véri�er. Lerapport s'a
hève par des exemples qui illustrent à la fois la potentielle 
omplexité des
omportements en bou
le ouverte qui peuvent être produits par les systèmes 
onsidérés(multi-stabilité, 
y
le limite, 
haos) et l'intérêt de la pro
édure de 
ontr�le proposée.Mots-
lés : Systèmes positifs, systèmes partiellement 
onnus, stabilisation globale.



Global Stabilization of a Class of Partially Known Positive Systems 31 Introdu
tionPositive systems of ordinary di�erential equations are systems produ
ing traje
tories, that,if initiated in the positive orthant of Rn, remain in this orthant for all positive time. Su
hsystems are being payed mu
h attention sin
e they abound in many applied areas su
h as lifes
ien
es, so
ial s
ien
es, 
hemi
al s
ien
es, tele
ommuni
ations, tra�
 �ows et
... [11, 4, 1℄.In this paper we deal with the problem of global output feedba
k stabilization of a 
lassof n-dimensional nonlinear positive systems possessing a 1-dimensional unknown, thoughmeasured, part. Our main result generalizes an earlier one obtained in lower dimensionsand for simpler stru
tures in the 
ontext of biopro
ess 
ontrol [13℄.This paper is organized as follows. We �rst introdu
e some notations and de�nitionsrelated to positivity for ve
tors and dynami
al systems. We then introdu
e the 
lass ofun
ertain positive systems that is 
on
erned with our 
ontrol problem. We then propose anoutput feedba
k pro
edure, taking advantage of measurements of the un
ertain part, ableto globally stabilize the system towards an adjustable equilibrium point in the interior ofthe positive orthant. The hypotheses on whi
h our main result is built might however bedi�
ult to 
he
k in pra
ti
e. In order to derive some hypotheses that are mu
h simpler to
he
k, we propose a theorem on a 
lass of positive systems (the strongly positive 
on
ave 
o-operative systems) that links the existen
e of a positive equilibrium to its global asymptoti
stability (GAS). Some examples found in the litterature illustrate the potential 
omplexopen loop dynami
s that might be produ
ed by the systems under study (multi-stability,
y
li
 behavior or even 
haos). Simulations on periodi
 and 
haoti
 behaviors stabilizationillustrate the 
ontrol e�
ien
y.2 Preliminaries2.1 NotationsWe 
onsider the following autonomous nonlinear dynami
al systems in Rn:
ẋ = f(x). (1)For the sake of simpli
ity, we assume that the fun
tions en
ountered throughout thepaper are su�
iently smooth.In the sequel, we will use the following notations:� x(t, x0) denotes the forward orbit at time t of system (1) initiated at x0.RR n° 5952



4 Mailleret, Gouzé & Bernard� Df(x) denotes the Ja
obian matrix of system (1) at state x.� Lf denotes the Lie derivative operator along the ve
tor �eld de�ned by system (1).� x|xi=0 denotes a state ve
tor whose i−th 
omponent equals zero.Moreover, a matrix is said to be Hurwitz if all of its eigenvalues have negative real parts.2.2 Positivity for ve
tors and dynami
al systemsAs we deal with positivity in Rn and some related 
on
epts, we �rst 
learly state what werefer to as positivity (resp. strong positivity) for ve
tors and dynami
al systems.De�nition 1 (Positivity)
x ∈ Rn is positive (resp. strongly positive) and denoted x ≥ 0 (resp. x ≫ 0) i� all its
omponents are non-negative (resp. positive).We denote Rn

+ and int(Rn
+) the sets of positive ve
tors and strongly positive ve
torsbelonging to Rn, respe
tively. Same de�nitions of the relations ≥ and ≫ (i.e. 
omponentby 
omponent) will be used for matri
es too.We now state the de�nition of positive systems of ordinary di�erential equations as wellas the de�nition of a spe
ial 
lass of positive systems, the strongly positive ones.De�nition 2 (Positive Systems)System (1) is a positive system (resp. strongly positive) i�:

∀i ∈ [1..n], ∀x|xi=0 ≥ 0, ẋi(x|xi=0) = fi(x|xi=0) ≥ 0, (resp. fi(x|xi=0) > 0).It is straightforward that De�nition 2 implies the following:Proposition 1Consider a positive system (1) (resp. strongly positive). Then:
∀(x0, t) ∈ R

n
+ × R

+ (resp. ∀(x0, t) ∈ R
n
+ × R

+
∗ ), x(t, x0) ≥ 0 (resp. ≫ 0).Remark 1 Though we have equivalen
e between De�nition 2 and Proposition 1 in the 
aseof positive systems (this is the original de�nition of positive systems by [11℄), we only have animpli
ation from De�nition 2 to Proposition 1 for strongly positive systems. Indeed systemswith fi(x|xi=0) ≥ 0 and a strongly 
onne
ted Ja
obian Matrix may produ
e strongly positivetraje
tories too [4℄. We however keep De�nition 2 as the de�nition of strongly positivesystems sin
e this 
riterion is mu
h easier to 
he
k on dynami
al systems. INRIA



Global Stabilization of a Class of Partially Known Positive Systems 53 Main result3.1 The 
onsidered 
lass of systemsIn the sequel we fo
us on the (global) asymptoti
 stabilization problem of the following 
lassof nonlinear positive un
ertain systems in R
n:

ẋ = uf(x) + cψ(x),
y = ψ(x).

(2)� u ≥ 0 being the s
alar input of system (2).� f : Rn → Rn� c ∈ Rn� ψ : Rn → R is an output of system (2)Fun
tion ψ(.) features the un
ertain/unknown part of the system. For 
ontrol purposes, wesuppose that, though analyti
ally unknown, ψ(.) might be online measured. We moreoverassume the following:Hypotheses 1 (H1)1. ∀x ∈ int(Rn
+), ψ(x) > 0 and ∀i, ciψ(x|xi=0) ≥ 02. f(.) is su
h that the system ẋ = f(x) is positive3. ∃βm ∈ R+ su
h that ∀β > βm, the system:

ẋ = βf(x) + c.is a strongly positive system and possesses an equilibrium x⋆
β ≫ 0 whi
h is GAS on

Rn
+.These hypotheses will be 
ommented after the statement of our main result. For now,just noti
e that Hypotheses H1-1 and H1-2 together with u ≥ 0 ensure the positivity ofthe 
onsidered 
lass of systems (2).3.2 Main resultTheorem 1Consider a system (2) and let Hypotheses H1 hold. Then for all γ > βm, the nonlinearRR n° 5952



6 Mailleret, Gouzé & Bernard
ontrol law:
u = γy = γψ(x). (3)globally stabilizes system (2) on int(Rn
+) towards the strongly positive equilibrium x⋆

γ su
hthat:
f(x⋆

γ) =
−1

γ
c.To prove Theorem 1, we need the following Lemma on Lyapunov fun
tions for positivesystems possessing a strongly positive GAS equilibrium.Lemma 1A positive system (1) possesses a strongly positive equilibrium point x⋆ GAS on int(Rn

+) i�there exists a smooth real valued fun
tion V (x) su
h that:
∀x≫ 0, x 6= x⋆, V (x) > 0,
V (x⋆) = 0,

∀x≫ 0, x 6= x⋆, V̇ (x) < 0,
⋃

α>0

{x, V (x) ≤ α} = int(Rn
+).Proof (Lemma 1)Consider a positive system (1) and suppose it possesses a strongly positive equilibrium x⋆GAS on int(Rn

+).Now 
onsider the following in
reasing (in the ≫ sense) 
hange of variables:
z = ln

( x

x⋆

)

=















ln

(

x1

x⋆
1

)...
ln

(

xn

x⋆
n

)















.that maps the strongly positive orthant on R
n and x⋆ to 0. Then we have:

ż =
f(x⋆ez)

x⋆
e−z. (4)Sin
e x⋆ is a GAS equilibrium on int(Rn

+) for (1), so is 0 on Rn for system (4). Then, fromKurzweil's 
onverse Lyapunov theorem on GAStability (see Theorem 7 in [10℄), there existsa smooth radially unbounded Lyapunov fun
tion W (z) for system (4). Coming ba
k to theoriginal variables, 
onsider the fun
tion:
V (x) = W (ln(x) − ln(x⋆)). INRIA



Global Stabilization of a Class of Partially Known Positive Systems 7Sin
e W (z) is a Lyapunov fun
tion for system (4), we have:
∀x ∈ int(Rn

+), x 6= x⋆, V (x) = W (z) > 0,
V (x⋆) = W (0) = 0,

∀x ∈ int(Rn
+), x 6= x⋆, V̇ (x) = Ẇ (z) < 0.Moreover, sin
e W (z) is smooth so does V (x) and sin
e W (z) is radially unbounded on Rn,we have:

⋃

β>0

{z, W (z) ≤ β} = R
n.Thus:

⋃

α>0

{x, V (x) ≤ α} = int(Rn
+).whi
h 
on
ludes the �rst part of the proof.The reverse impli
ation is easily obtained through 
lassi
al Lyapunov theory. �Proof (Theorem 1)Consider the positive system (2) under 
ontrol law (3). We get:

ẋ = ψ(x)(γf(x) + c) , g(x). (5)Sin
e γ > βm we know from H1-3 that the system:
ẋ = γf(x) + c , h(x). (6)is strongly positive and possesses a (strongly positive) GAS equilibrium x⋆

γ . Then, fromLemma 1, for all γ > βm, system (6) admits a real valued fun
tion Vγ(x) verifying Lemma1 properties.Now we 
onsider system (5). From H1-1, it is 
lear that we have:
∀x≫ 0, x 6= x⋆

γ , Vγ(x) > 0,
Vγ(x⋆

γ) = 0.Moreover:
LgVγ(x) = ψ(x)LhVγ(x).so that sin
e H1-1 holds:

∀x≫ 0, x 6= x⋆
γ , LgVγ(x) < 0.and the following still holds:

⋃

α>0

{x, Vγ(x) ≤ α} = int(Rn
+).So that we 
an apply Lemma 1 to the 
ontrolled system (5). Then the equilibrium x⋆

γ isGAS for the 
ontrolled system (5) on int(Rn
+). �RR n° 5952



8 Mailleret, Gouzé & BernardRemark 2 It is important to noti
e that the proposed 
ontrol law does not, to be applied,require any a priori analyti
al or quantitative knowledge of the fun
tion ψ(x). The onlytwo requirements are (i) its positivity (a qualitative property), and (ii) the possibility tomeasure this quantity on-line. This is parti
ularly important for instan
e in biologi
al pro
ess
ontrol, when some parts of the model are only qualitatively known (usually in terms of sign)while some other parts are pre
isely (analyti
ally) known. The spe
ial 
ase of biopro
essespresented by [13℄ does illustrate this point and shows the interest of su
h 
ontrol pro
eduresfor real life biopro
esses management. We 
ome ba
k to this point later in the examplesse
tion.3.3 Comments on Hypotheses H1As we have previously noted, Hypotheses H1-1 and H1-2 guarantees the positivity of thesystems (2).First part of Hypothesis H1-1 de�nes a qualitative property of the unknown part of thesystem, whi
h, though one-dimensional, possibly a
ts on all state variables dynami
s viathe ve
tor c. Noti
e that this is a really loose hypothesis sin
e the only required propertyis ψ(x) positivity as x is strongly positive. No spe
i�
 analyti
al form is assumed on ψ(.).The se
ond part of H1-1 is required to ensure system (2)'s positivity as the input u equals0. H1-2 is required for the system's positivity as the input u is positive.Hypothesis H1-3 is a stronger one. It reads that if the un
ertain part ψ(.) were positiveand 
onstant, then there must exist an input in�mum βm above whi
h system (2) would bestrongly positive and would possess a (strongly positive) GAS equilibrium. This propertymight re
all �minimum phase" 
onditions, frequenlty en
ountered when dealing with thestabilization of nonlinear and/or un
ertain systems. Minimum phase 
onditions ensures theGAStability of an equilibrium as the system's outputs are 
onstant. Minimum phase based
ontrol results usually stabilises the output(s) in order to 
on
lude on the whole system, usingresults on 
as
aded nonlinear systems' stability. However un
ertainties for these systemsare in general not on the outputs' dynami
s, but rather in the intrinsi
 �stable" part. A�minimum phase" approa
h 
an thus not be used in our 
ase sin
e the output ψ(x) and itsdynami
s is, to a large extent, unknown.From the analyti
al expression of the system that is to be stabilized, both HypothesesH1-1 and H1-2 are easy to 
he
k. This is however not the 
ase for H1-3. The existen
e of aunique and strongly positive equilibrium of:
ẋ = βf(x) + cmight indeed be easily proven, but the demonstration of its global stability is in general amu
h harder task. Nevertheless, for some spe
ial 
lasses of positive systems, one 
an linkthe existen
e of a strongly positive equilibrium to its global asymptoti
 stability. This isINRIA



Global Stabilization of a Class of Partially Known Positive Systems 9for instan
e the 
ase for positive linear systems, see e.g. [11, 4℄. It is 
lear that su
h aproperty is of great interest: it allows to prove in one step both the existen
e of a stronglypositive equilibrium and its GAStability i.e. Hypothesis H1-3. Some works 
an be foundin the litterature regarding this problem for nonlinear systems: see [18, 2℄. These results
an indeed be used to 
he
k H1-3. It is to be noti
ed that these works are all related to
ooperative systems (see De�nition 4 in the sequel).In the next se
tion we also base our approa
h on 
ooperative systems. We propose a
lass of positive systems for whi
h the existen
e of a strongly positive equilibrium impliesits GAStability. We then derive a set of �easy to 
he
k" hypotheses that are su�
ient forour 
ontrol pro
edure (3) to be applied.4 Su�
ient 
onditions to verify H14.1 Useful known resultsWe now re
all the Metzler matri
es de�nition introdu
ed by [15℄ in mathemati
al e
onomy.De�nition 3 (Metzler Matrix)A matrix is Metzler i� all its o�-diagonal elements are non-negative.We now fo
us on two results on Metzler matri
es that are 
onsequen
es of the originaltheorem of Perron-Frobenius on positive matri
es [5℄. The �rst 
omes from [11℄:Theorem 2Consider a Metzler matrix A and a ve
tor b ∈ int(Rn
+); Then, A is Hurwitz i�:

∃x ≥ 0, Ax + b = 0.The se
ond 
an be found in [20℄:Theorem 3Consider a Metzler matrix A. Then:� The dominant eigenvalue of A (i.e. of largest real part) is real; its asso
iated eigen-ve
tor is positive.� 
onsider a matrix B ≥ A. Then the real part of the dominant eigenvalue of B isgreater or equal to the dominant eigenvalue of A.RR n° 5952



10 Mailleret, Gouzé & BernardLet us re
all the de�nition of the �
ooperative systems", introdu
ed by [8℄ (see also [21℄)and that will be payed attention in the sequel.De�nition 4 (Cooperative Systems)System (1) is a 
ooperative system i� its Ja
obian Df(x) is Metzler for all x ∈ Rn.One of the most interesting result on 
ooperative systems is to be found in [21℄ and reads:Theorem 4Consider a 
ooperative system (1) and two initial 
onditions x0 and y0 in Rn su
h that
x0 ≥ y0 (resp. ≫). Then:

∀t ≥ 0, x(t, x0) ≥ y(t, y0) (resp. ≫).4.2 Preliminary resultProposition 2 (Positive Cooperative Systems)Consider a 
ooperative system (1). Then, the following are equivalent:� system (1) is positive (resp. strongly positive)� f(0) ≥ 0 (resp. f(0) ≫ 0)ProofSuppose f(0) ≥ 0 (resp. f(0) ≫ 0). Let us denote the i-th row of Df(x) by Dfi(x). Thenwe have for all x|xi=0 ≥ 0:
fi(x|xi=0) = fi(0) +

[ ∫ 1

0

Dfi(sx|xi=0)ds

]

. x|xi=0. (7)Sin
e Df(x) is Metzler for all x, the only possible negative term in the s
alar produ
t in (7)is zero: indeed, Dfi,i (the sole possible negative term of Dfi) is multiplied by xi = 0. Then:
∀x|xi=0 ≥ 0, fi(x|xi=0) ≥ fi(0) ≥ 0 (resp. > 0).Sin
e this holds for all i ∈ [1..n], we 
on
lude, using Proposition 2, that the system is positive(resp. strongly positive).The reverse impli
ation is obvious. �

INRIA



Global Stabilization of a Class of Partially Known Positive Systems 11Remark 3 Noti
e that the 
lass of positive 
ooperative systems is a generalization of the
lass of linear positive systems [11, 4℄.We now state a result on global asymptoti
 stability of an equilibrium point for a spe
ial
lass of strongly positive 
ooperative systems.Theorem 5Consider a strongly positive 
on
ave 
ooperative (SPCC) system (1), i.e. that veri�es thefollowing 
ondition:
∀(x, y) ∈ R

n
+ × R

n
+, x ≤ y ⇒ Df(x) ≥ Df(y). (8)Then, if system (1) has a positive equilibrium x⋆, it is single, strongly positive and GAS on

Rn
+.Proof:We �rst show the exponential stability of a positive equilibrium x⋆ (that is ne
essarilystrongly positive) of a SPCC system (1).We obviously have:

f(x⋆) = 0 = f(0) +

[ ∫ 1

0

Df(sx⋆)ds

]

x⋆. (9)Sin
e Df(x) is Metzler for all positive x, so does the bra
keted matrix (denoted F (x⋆) inthe sequel) in equation (9). Sin
e the 
onsidered system is a strongly positive 
ooperativesystem, we have from Proposition 2: f(0) ≫ 0. Applying Theorem 2, we 
on
lude thatmatrix F (x⋆) is Hurwitz. On the other hand, equation (8) implies:
∀s ∈ [0, 1], Df(sx⋆) ≥ Df(x⋆).whi
h yields:

F (x⋆) =

[ ∫ 1

0

Df(sx⋆)ds

]

≥ Df(x⋆).Sin
e F (x⋆) is a Hurwitz Metzler matrix, we show using Theorem 3 that its dominanteigenvalue is negative real. From the above inequation and Theorem 3, we 
on
lude that
Df(x⋆)'s dominant eigenvalue is negative real too, proving that x⋆ is exponentially stable.We now show the uni
ity of a strongly positive equilibrium x⋆.Suppose that the 
onsidered system possesses two strongly positive equilibria x⋆

1 and x⋆
2,su
h that x⋆

1 ≥ x⋆
2. Then:

0 = f(x⋆
1) − f(x⋆

2),

=

[ ∫ 1

0

Df(sx⋆
1 + (1 − s)x⋆

2)ds

]

(x⋆
1 − x⋆

2).
(10)RR n° 5952



12 Mailleret, Gouzé & BernardFrom equation (8) and sin
e x⋆
1 ≥ x⋆

2, we use similar arguments than in the previous partof the proof to show that:
[ ∫ 1

0

Df(sx⋆
1 + (1 − s)x⋆

2)ds

]

≤ Df(x⋆
2).Sin
e x⋆

2 is a strongly positive equilibrium, Df(x⋆
2) is Hurwitz. Then, using Theorem 3, thebra
keted matrix is Hurwitz too. Then it possesses an inverse in Mn(C) whi
h, togetherwith equation (10), implies that x⋆

1 = x⋆
2.Suppose now that the 
onsidered system possesses two strongly positive equilibria x⋆

1 and
x⋆

2, that are not linked by the relation �≥�, i.e. (x⋆
1 − x⋆

2) is neither positive, nor negative.Let us de�ne the parallelotopes Bz ⊂ Rn, su
h that:
∀z ∈ R

n
+, Bz =

{

x ∈ R
n
+, x ≤ z

}Using Theorem 4 together with the 
onsidered system's 
ooperativity and strong positivity,it is easy to show that Bx⋆

1
and Bx⋆

2
are positively invariant sets. We now de�ne the state

x3, su
h that:
x3,i = min(x⋆

1,i , x
⋆
2,i)Sin
e Bx3

= Bx⋆

1
∩ Bx⋆

2
, it is positively invariant by system (1) too. Then, using Brouwer�xed point Theorem (see e.g. [23℄), there must exist a third equilibrium x⋆

3 belonging to
Bx3

. Note that, from x3 de�nition, we ne
essarily have:
x⋆

3 ≤ x⋆
1 and x⋆

3 ≤ x⋆
2This 
ase has been treated previously and we 
on
lude that x⋆

1 = x⋆
3 = x⋆

2, what yields a
ontradi
tion.We 
on
lude that if a SPCC system (1) possesses a positive equilibrium, it is the solepositive equilibrium.We a
hieve the proof of Theorem 5 showing the global attra
tivity (on Rn
+) of the positiveequilibrum x⋆ of a SPCC system (1).Consider the following real valued fun
tion:

∀i ∈ [1..n], gi : R+ → R

k 7→ fi(kx
⋆)Sin
e f(0) ≫ 0 and f(x⋆) = 0, it is 
lear that gi(0) > 0 and gi(1) = 0. Then, there exists a

k0 ∈ (0, 1) su
h that:
dgi

dk
(k0) = gi(1) − gi(0) < 0.

INRIA



Global Stabilization of a Class of Partially Known Positive Systems 13From equation (8), we get:
0 ≤ k0 ≤ k ⇒ 0 >

dgi

dk
(k0) ≥

dgi

dk
(k).showing that fun
tion gi stri
tly de
reases from k0 to +∞. Sin
e gi(1) = 0, gi(k) < 0 for all

k > 1. This holds for all i ∈ [1..n], then:
∀k > 1, f(kx⋆) ≪ 0Untill the end of the proof, we assume k > 1. Noti
e that, from the 
ooperativity and strongpositivity properties, Bkx⋆ is a positively invariant set. Now 
onsider ẍ, the time derivativeof ẋ. We have:

ẍ = Df(x)ẋSin
e Df(x) is a Metzler matrix for all x, it is straightforward that if the initial statevelo
ity ẋ(t = 0) is positive (resp. negative) then it will remain positive (resp. negative) forall positive time.Remind that ẋ(x = 0) ≫ 0 and ẋ(x = kx⋆) ≪ 0. Then, the forward traje
tory of system(1) initiated at x0 = 0 (resp. x0 = kx⋆) is, in the �≥� sense, an in
reasing (resp. de
reasing)fun
tion of the time. Moreover, from B(kx⋆) positive invarian
e, it is lower (resp. upper)bounded by 0 (resp. kx⋆), thus it 
onverges, ne
essarily toward an equilibrium.
x⋆ is the sole equilibrium belonging to Rn

+, the two 
onsidered traje
tories 
onverge thustoward x⋆. From system (1) 
ooperativity together with Theorem 4, we 
on
lude that ea
htraje
tory initiated in Bkx⋆ 
onverges toward x⋆. Sin
e this holds for any Bkx⋆ (k > 1), wehave shown that x⋆ is globally attra
tive on Rn
+, whi
h 
on
ludes the proof. �Remark 4 Proof of theorem 5 uses to a large extent the ideas proposed by [20℄. However,his proof was dedi
ated to another 
lass of systems: Kolmogoro�-type population dynami
smodels of 
ooperating spe
ies, whi
h are based on di�erent hypotheses. One 
an also have alook at [19℄ for some results related to Theorem 5.Remark 5 It is 
lear that Theorem 5 is quite similar to Hirs
h's results [9℄ on 
ooperativesystems, rephrased by [17℄, and stating that for a bounded strongly monotone systems(e.g.
ooperative systems verifying x0 ≥ y0 ⇒ x(t, x0) ≫ y(t, y0) , the traje
tories, apart from aset of zero measure (thus at most n − 1 dimensional) of initial 
onditions, 
onverge to theset of equilibrium points. Thus if su
h a system were bounded and the equilibrium uniquethen almost all traje
tories 
onverge to it. Noti
e also that Smith provides a related Theorem(see [21℄, theorem 3.1). Here for SPCC systems, both uniqueness of the equilibrium (if itexists) and (real) global 
onvergen
e are guaranteed, whi
h is of parti
ular interest for theappli
ation of our 
ontrol pro
edure (3).
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14 Mailleret, Gouzé & Bernard4.3 Su�
ient 
onditions to verify H1On the basis of SPCC systems and Theorem 5 we provide su�
ient 
onditions that are mu
hsimpler to 
he
k and that guarantees that Hypotheses H1 are satis�ed.Consider a system (2) under the following hypotheses:Hypotheses 2 (H2)1. ∀x ∈ int(Rn
+), ψ(x) > 0 and ∀i, ciψ(x|xi=0) ≥ 02. f(0) ≥ 03. f(.) is su
h that system ẋ = f(x) is 
ooperative4. ∀x1, x2 ∈ Rn
+, x1 ≤ x2 ⇒ Df(x1) ≥ Df(x2)5. ∃βm ∈ R+ su
h that ∀β > βm, βf(0) + c≫ 06. ∀β > βm, ∃x⋆

β ∈ int(Rn
+) su
h that βf(x⋆

β) + c = 0One 
an show that H2 implies H1, thus that a system (2) under H2 is a 
andidate forTheorem 1.Indeed, H2-1 and H1-1 are the same. H2-2 together with H2-3 implies through Propo-sition 2 that ẋ = f(x) is a positive system i.e. H1-2 holds. H2-3 together with H2-5 andProposition 2 implies that for all β > βm, the system:
ẋ = βf(x) + c. (11)is a strongly positive 
ooperative system. This fa
t together with H2-4 implies that (11) isa SPCC system. H2-6 ensures system 11 has, for all β > βm, an equilibrium x⋆

β that is,through Theorem 5, GAS on Rn
+ so that H1-3 holds. �In the next se
tion we provide numeri
al simulations, based on examples ful�lling hy-potheses H2, that illustrates Theorem 1 interest and e�
ien
y.5 Illustrative ExamplesWe show on three examples that the possible open loop dynami
s of systems (2) under H2might be very 
omplex. Proofs of the 
omplex dynami
s are not detailed as they do notfall beyond the s
ope of this paper, but they 
an easily be performed with the help of theproposed referen
es. INRIA



Global Stabilization of a Class of Partially Known Positive Systems 15Example 1 (Bi-stability) This system models a simple biorea
tion o

uring in a 
ontin-uous stirred tank rea
tor with substrate inhibitory e�e
ts (see e.g. [22℄). This is a simplemodel of an anaerobi
 digester, an apparatus used for waste water treatment [13℄. Bothvariables represent 
on
entrations inside the rea
tor: x1 denotes the substrate (pollutant)
onsumed by the biomass (anaerobi
 mi
roorganisms) x2 to grow at a per 
apita rate µ(x2).
u denotes the �dilution rate� (i.e. passing �ow per volume unit) feeding the rea
tor withsubstrate at a 
on
entration x1,in and withdrawing a blend of x1 and x2 from it. We getthe following system that will be refered to as (S1) in the sequel.

ẋ = u

[(

−1 0
0 −1

)

x+

(

x1,in

0

)]

+

(

−k
1

)

µ(x1)x2,

, uf1(x) + c1ψ1(x).with: µ(x1) =
µmx1

Km + x1 + x2
1/Ki

x1,in, k, µm,Km and Ki are positive 
onstants.It is 
lear that Hypotheses H2-1, H2-2, H2-3 and H2-4 hold. Moreoever H2-5 holds with
βm = k/x1,in. Now pi
k a β > βm, then βf1(x) + c1ψ1(x) = 0 possesses a solution x⋆

β su
hthat:
∀β > βm, x

⋆
β =







x1,in −
k

β
1

β






≫ 0.so that H2-6 holds. Then we have through Theorem 1:Proposition 3 For all γ > k/x1,in the 
ontrol law

u(.) = γψ1(x) (12)globally stabilizes, on int(Rn
+), system (S1) towards x⋆

γ , the (sole) solution of γf1(x)+c1 = 0.Now let us 
onsider the open loop behavior that might be produ
ed by S1. Supposethat x1,in > argmax µ and u ∈ (µ(x1,in),max(µ)) is 
onstant. Then the 
onsidered systempossesses three equilibria, two of whi
h being stable on their respe
tive basins of attra
tionseparated by the stable manifold of the third equilibrium that is a saddle point. Thisbehavior is depi
ted on �gure 1; see e.g. [12℄ for a rigorous analysis.The two stable equilibria 
orrespond for the strongly positive one to the �operating point"(the biomass survives inside the rea
tor and the pollutant 
on
entration is redu
ed 
omparedto its in the in�ow) while the other do not (the biomass disappears and the waste water isno more treated). It is then ne
essary to ensure that no traje
tory may be driven to thislatter equilibrium. In this real life example, the quantity ψ1(x) 
an be easily measured sin
eRR n° 5952



16 Mailleret, Gouzé & Bernard
Bi−stability behavior in open loop
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Figure 1: State spa
e representation of various open loop forward traje
tories of (S1) with orepresenting equilibria and u belonging to (µ(x1,in),max(µ)): existen
e of two lo
ally stableequilibria.it 
orresponds to the out�ow of biogaz that is produ
ed by the anaerobi
 digester. Takingadavantage on this measurement, 
ontrol pro
edure (3) has been applied to a real life pilots
ale anaerobi
 digester. It has shown its interest and e�
ien
y for the global stabilizationof su
h multistable devi
es. It thus avoids the 
rash of the system, see [13℄ for more details.Example 2 (Attra
tive limit 
y
le)The following system is analogous to Goodwin metaboli
 models [6℄. It will be refered to as
INRIA



Global Stabilization of a Class of Partially Known Positive Systems 17system (S2) in the sequel.
ẋ = u





−lx1
µ1x1

k1+x1

− x2 + α1

µ2x2

k2+x2

− x3 + α2



 +





1
0
0





1

1 + xn
3

,

, uf2(x) + c2ψ2(x).with l = 2.1, µ1 = 2/2.1, µ2 = 4 ∗ (0.01 + 1/2.1), k1 = 1/4.2, k2 = 0.01 + 1/2.1, α1 = 0.01,
α2 = 1−2(0.01+1/2.1) and n = 80. It is easily proven that H2-1, H2-2, H2-3 and H2-4 holdtrue. Moreover H2-5 holds with βm = 0. Now pi
k a β > βm, then 
onsider the equation
βf2(x) + c2ψ2(x) = 0. We get that x3 must be a solution of:

x3 = α2 +
µ2(µ1 + α1(k1βl(1 + xn

3 ) + 1))

µ1 + (α1 + k2)(k1βl(1 + xn
3 ) + 1)evaluating both sides of this equation at x3 = 0 and +∞, we show that there exist a solution

x∗β,3 whi
h is positive for all β > βm. x∗β,2 and x∗β,1 are then 
omputed and shown to bepositive too, so that H2-6 is veri�ed.Suppose that the 
onsidered system operates in open loop with the non-negative input
u = 1. Then, as depi
ted on �gure 2, (S2) possesses an attra
tive limit 
y
le around anunstable equilibrium point. The existen
e of a nontrivial periodi
 orbit 
an be proven withTheorem 1 from [7℄.As illustrated on Figure 3, we get from Theorem 1:Proposition 4 For all γ > 0 the 
ontrol law

u(.) = γψ2(x) (13)globally stabilizes, on int(Rn
+), system (S2) towards x⋆

γ , the (sole) solution of γf2(x)+c2 = 0.Example 3 (Chaos) The following system is a state spa
e translation of the model of a
hemi
al system so 
alled �auto-
atalator�, see [16℄. It reads:
ẋ =u













−1 0 k2

1

k1

−1

k1

0

0 1 −1






x+





k2(k3−k4)
0
k4










+







−1
1

k1

0






x1x

2
2,

, uf3(x) + c3ψ3(x).

k1 is positive, k2 ∈ (0, 1) and k3 > k4 > 0 .
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X1

X3

Cyclic behavior in open loop

Figure 2: State spa
e representation of a forward traje
tory of (S2) with u = 1: existen
eof an attra
tive limit 
y
le.It is 
lear that H2-1, H2-2, H2-3 and H2-4 hold. Moreover H2-5 holds with βm =
1/(k2(k3 − k4)). Now pi
k a β > βm, then βf3(x) + c3ψ3(x) = 0 possesses a solution x⋆

βsu
h that:
∀β > βm, x

⋆
β =

















βk2k3 + k2 − 1

β(1 − k2)
k2k3

1 − k2

k2(k3 − k4) + k4

1 − k2

















≫ 0.sin
e k2 ∈ (0, 1) and k3 > k4 > 0. Then H2-6 holds true.
INRIA
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Stabilized periodic forward orbit
X1

X2

X3

U

open loop closed loopFigure 3: Time varying representation of a forward traje
tory of (S2) with u = 1 before
t = 40 and under 
ontrol law (13) from t = 40 to the end, with γ = 2 > βm(= 0) 
omputeds.t. asymptoti
ally u(.) = γψ2(x) equals its open loop value.[16℄ prove that Example 5 exhibits a 
haoti
 behavior for the parameter values k1 =
0.015, k2 = 0.301, k3 = 2.5 and u = 1 for all k4. As a spe
ial 
ase, we 
hoose k4 = 0.56.An example of a forward 
haoti
 traje
tory is shown on �gure 4.As illustrated on �gure 5, we get the following result from Theorem 1:Proposition 5 For all γ > 0 the 
ontrol law

u(.) = γψ3(x) (14)globally stabilizes, on int(Rn
+), system (S3) towards x⋆

γ , the (sole) solution of γf3(x)+c3 = 0.
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Chaotic behavior in open loop

Figure 4: State spa
e representation of a forward 
haoti
 traje
tory of the system (S3) with
u = 1.6 Dis
ussionIn this paper we have 
onsidered a rather broad 
lass of dynami
al systems en
ompassingseveral possible dynami
al behaviours. These models 
an espe
ially represent biologi
alsystems exhibiting multistability, periodi
 solutions or even 
haoti
 behaviour. In pra
ti
e,the key point for stabilising these systems is that the adequate s
alar fun
tion ψ(x), whoseexa
t analyti
al expression does not need to be known, is measured. In the example ofthe anaerobi
 digester that 
an have 3 steady states, the biogaz out�ow rate ψ(x), is easilyon-line measured though its exa
t analyti
al expression depending on ba
terial a
tivity israther un
ertain.The proposed 
ontrol law, although very simple, has proven its e�
ien
y to globallyasymptoti
ally stabilize even 
haoti
 systems whi
h is known to be a rather tri
ky task

INRIA
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Stabilized chaotic forward orbit

X3

open loop closed loopFigure 5: Time varying representation of a forward traje
tory of the 
haoti
 system (S3)with u = 1 before t = 20 and under 
ontrol law (14) from t = 20 to the end, with γ ≈ 1.73 >
βm(≈ 1.71) 
omputed so that asymptoti
ally u(.) = γψ3(x) equals its open loop value.when a part of the model (i.e. ψ(x)) is not perfe
tly known. Moreover the 
ontrol lawnaturally ful�ls the input non negativity 
onstraints whi
h is 
lassi
al e.g. for biologi
alsystems.The 
ontroller relevan
e was demonstrated in a real 
ase for an anaerobi
 wastewatertreatment plant (Mailleret et al., 2004). Despite its 
omplexity (this e
osystem is based onmore than 140 intera
ting ba
terial spe
ies [3℄) and the great un
ertainties that 
hara
terizethe biologi
al models, the 
ontroller proved to e�
iently stabilize the system. This approa
h
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22 Mailleret, Gouzé & Bernardwas also applied to a photobiorea
tor where mi
roalgae 
onsuming nitrate and light weregrowing [14℄.Another important issue when dealing with 
omplex system is the di�
ulty to on-linemeasure the variable that must be regulated. The proposed 
ontrol approa
h has thus theadvantage of proposing a regulation s
heme that does not require this measurement, whi
h
an be very di�
ult to 
arry out for biologi
al systems. Moreover, and as it has beendemonstrated with the real implementation, it is rather robust and stabilizes the systemeven if the model parameters are not perfe
tly known. The pri
e to pay is however thepossible la
k of a

ura
y, sin
e the solution of γf(x) + c = 0 
an di�er from the expe
tedset point in 
ase of parametri
 un
ertainty. In su
h a 
ase the idea 
onsists in adding anintegrator to 
orre
t the bias. This adaptive approa
h was proposed in (Mailleret et al.,2004) for the spe
i�
 
ase of anaerobi
 wastewater treatment plant and the 
onvergen
e ofthe 
ontroller was demonstrated. Of 
ourse it requires more measurement 
apability on thesystem, but we assume that the adaptation 
an be slower and thus needs a lower samplingfrequen
y. The 
onvergen
e proof of the adaptive 
ontroller in the general 
ase is now thenext 
hallenge that we will ta
kle.A
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