V. I. Arnold, Equations différentielles ordinaires, 1974.

V. I. Arnold, Chapitres supplémentaires de la théorie deséquationsdeséquations différentielles ordinaires, 1980.

L. Baratchart, M. Chyba, and J. Pomet, A Grobman???Hartman Theorem for Control Systems, Journal of Dynamics and Differential Equations, vol.5, issue.1, pp.75-107, 2007.
DOI : 10.1007/s10884-006-9014-5

URL : https://hal.archives-ouvertes.fr/inria-00000920

P. Brunovsk´ybrunovsk´y, A classification of linear controllable systems, Kybernetika, vol.6, pp.176-188, 1970.

S. Celikovsk´ycelikovsk´y, Topological equivalence and topological linearization of controlled dynamical systems, Kybernetika, vol.31, issue.2, pp.141-150, 1995.

F. Colonius and W. Kliemann, Some aspects of control systems as dynamical systems, Journal of Dynamics and Differential Equations, vol.1, issue.3, pp.469-494, 1993.
DOI : 10.1007/BF01053532

P. Hartman, Ordinary Differential Equations, Birkhäuser, 1982.

L. R. Hunt, R. Su, and G. Meyer, Design for multi-input nonlinear systems, Differential Geometric Control Theory, pp.258-298, 1983.

B. Jakubczyk, Equivalence and invariants of nonlinear control systems, Nonlinear controllability and optimal control, pp.177-218, 1990.

B. Jakubczyk and W. Respondek, On linearization of control systems, Bull. Acad. Polon. Sci. Sér. Sci. Math, vol.28, pp.9-10517, 1980.

A. Juditsky, H. Hjalmarsson, A. Benveniste, B. Delyon, L. Ljung et al., Nonlinear black-box models in system identification: Mathematical foundations, Automatica, vol.31, issue.12, pp.311725-1750, 1995.
DOI : 10.1016/0005-1098(95)00119-1

V. Jurdjevic, Geometric Control Theory, volume 51 of Cambridge Studies in Advanced Mathematics, 1997.

V. Jurdjevic and H. J. Sussmann, Controllability of nonlinear systems, J. Differential Equations, vol.12, pp.95-116, 1972.

C. Lobry, Contr??labilit?? des Syst??mes non Lin??aires, SIAM Journal on Control, vol.8, issue.4, pp.573-605, 1970.
DOI : 10.1137/0308042

J. R. Munkres, Elements of Algebraic Topology, 1984.

T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, Journal of the Mathematical Society of Japan, vol.18, issue.4, pp.398-404, 1966.
DOI : 10.2969/jmsj/01840398

H. Nijmeijer, A. J. Van, and . Schaft, Nonlinear Dynamical Control Systems, 1990.
DOI : 10.1007/978-1-4757-2101-0

R. Roussarie, Modèles locaux de champs et de formes, Astérisque. Soc. Math. de France, vol.30, 1975.

W. Rudin, Analyse réelle et complexe, 1975.

J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon et al., Nonlinear black-box modeling in system identification: a unified overview, Automatica, vol.31, issue.12, pp.311691-1724, 1995.
DOI : 10.1016/0005-1098(95)00120-8

E. D. Sontag, Mathematical Control Theory Deterministic finite-dimensional systems, 1998.

M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, vol.1, 1979.

H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Transactions of the American Mathematical Society, vol.180, pp.171-188, 1973.
DOI : 10.1090/S0002-9947-1973-0321133-2

K. Tcho´ntcho´n, The only stable normal forms of affine systems under feedback are linear, Systems & Control Letters, vol.8, issue.4, pp.359-365, 1987.
DOI : 10.1016/0167-6911(87)90103-4

A. J. Van and . Schaft, Linearization and input-output decoupling for general nonlinear systems, Syst. & Control Lett, vol.5, pp.27-33, 1984.

S. Van-strien, Smooth linearization of hyperbolic fixed points without resonance conditions, Journal of Differential Equations, vol.85, issue.1, pp.66-90, 1990.
DOI : 10.1016/0022-0396(90)90089-8

J. C. Willems, Topological classification and structural stability of linear systems, Journal of Differential Equations, vol.35, issue.3, pp.306-318, 1980.
DOI : 10.1016/0022-0396(80)90031-5